1,368 research outputs found

    Support matrix machine: A review

    Full text link
    Support vector machine (SVM) is one of the most studied paradigms in the realm of machine learning for classification and regression problems. It relies on vectorized input data. However, a significant portion of the real-world data exists in matrix format, which is given as input to SVM by reshaping the matrices into vectors. The process of reshaping disrupts the spatial correlations inherent in the matrix data. Also, converting matrices into vectors results in input data with a high dimensionality, which introduces significant computational complexity. To overcome these issues in classifying matrix input data, support matrix machine (SMM) is proposed. It represents one of the emerging methodologies tailored for handling matrix input data. The SMM method preserves the structural information of the matrix data by using the spectral elastic net property which is a combination of the nuclear norm and Frobenius norm. This article provides the first in-depth analysis of the development of the SMM model, which can be used as a thorough summary by both novices and experts. We discuss numerous SMM variants, such as robust, sparse, class imbalance, and multi-class classification models. We also analyze the applications of the SMM model and conclude the article by outlining potential future research avenues and possibilities that may motivate academics to advance the SMM algorithm

    Rails Quality Data Modelling via Machine Learning-Based Paradigms

    Get PDF

    Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction:a review

    Get PDF
    Support vector machines (SVMs) are widely used classifiers for detecting physiological patterns in human-computer interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the applications of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported

    Twin Neural Network Regression is a Semi-Supervised Regression Algorithm

    Full text link
    Twin neural network regression (TNNR) is a semi-supervised regression algorithm, it can be trained on unlabelled data points as long as other, labelled anchor data points, are present. TNNR is trained to predict differences between the target values of two different data points rather than the targets themselves. By ensembling predicted differences between the targets of an unseen data point and all training data points, it is possible to obtain a very accurate prediction for the original regression problem. Since any loop of predicted differences should sum to zero, loops can be supplied to the training data, even if the data points themselves within loops are unlabelled. Semi-supervised training improves TNNR performance, which is already state of the art, significantly

    Class-Imbalanced Complementary-Label Learning via Weighted Loss

    Full text link
    Complementary-label learning (CLL) is widely used in weakly supervised classification, but it faces a significant challenge in real-world datasets when confronted with class-imbalanced training samples. In such scenarios, the number of samples in one class is considerably lower than in other classes, which consequently leads to a decline in the accuracy of predictions. Unfortunately, existing CLL approaches have not investigate this problem. To alleviate this challenge, we propose a novel problem setting that enables learning from class-imbalanced complementary labels for multi-class classification. To tackle this problem, we propose a novel CLL approach called Weighted Complementary-Label Learning (WCLL). The proposed method models a weighted empirical risk minimization loss by utilizing the class-imbalanced complementary labels, which is also applicable to multi-class imbalanced training samples. Furthermore, we derive an estimation error bound to provide theoretical assurance. To evaluate our approach, we conduct extensive experiments on several widely-used benchmark datasets and a real-world dataset, and compare our method with existing state-of-the-art methods. The proposed approach shows significant improvement in these datasets, even in the case of multiple class-imbalanced scenarios. Notably, the proposed method not only utilizes complementary labels to train a classifier but also solves the problem of class imbalance.Comment: 9 pages, 9 figures, 3 table

    Big data analytics for preventive medicine

    Get PDF
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. Medical data is one of the most rewarding and yet most complicated data to analyze. How can healthcare providers use modern data analytics tools and technologies to analyze and create value from complex data? Data analytics, with its promise to efficiently discover valuable pattern by analyzing large amount of unstructured, heterogeneous, non-standard and incomplete healthcare data. It does not only forecast but also helps in decision making and is increasingly noticed as breakthrough in ongoing advancement with the goal is to improve the quality of patient care and reduces the healthcare cost. The aim of this study is to provide a comprehensive and structured overview of extensive research on the advancement of data analytics methods for disease prevention. This review first introduces disease prevention and its challenges followed by traditional prevention methodologies. We summarize state-of-the-art data analytics algorithms used for classification of disease, clustering (unusually high incidence of a particular disease), anomalies detection (detection of disease) and association as well as their respective advantages, drawbacks and guidelines for selection of specific model followed by discussion on recent development and successful application of disease prevention methods. The article concludes with open research challenges and recommendations

    ROLE OF MACHINE VISION FOR IDENTIFICATION OF KIDNEY STONES USING MULTI FEATURES ANALYSIS

    Get PDF
    The purpose of this study is to highlight the significance of machine vision for the Classification of kidney stone identification. A novel optimized fused texture features frame work was designed to identify the stones in kidney.  A fused 234 texture feature namely (GLCM, RLM and Histogram) feature set was acquired by each region of interest (ROI). It was observed that on each image 8 ROI’s of sizes (16x16, 20x20 and 22x22) were taken. It was difficult to handle a large feature space 280800 (1200x234). Now to overcome this data handling issue we have applied feature optimization technique namely POE+ACC and acquired 30 most optimized features set for each ROI. The optimized fused features data set 3600(1200x30) was used to four machine vision Classifiers that is Random Forest, MLP, j48 and Naïve Bayes. Finally, it was observed that Random Forest provides best results of 90% accuracy on ROI 22x22 among the above discussed deployed Classifier

    DeepFT: Fault-tolerant edge computing using a self-supervised deep surrogate model

    Get PDF
    The emergence of latency-critical AI applications has been supported by the evolution of the edge computing paradigm. However, edge solutions are typically resource-constrained, posing reliability challenges due to heightened contention for compute capacities and faulty application behavior in the presence of overload conditions. Although a large amount of generated log data can be mined for fault prediction, labeling this data for training is a manual process and thus a limiting factor for automation. Due to this, many companies resort to unsupervised fault-tolerance models. Yet, failure models of this kind can incur a loss of accuracy when they need to adapt to non-stationary workloads and diverse host characteristics. Thus, we propose a novel modeling approach, DeepFT, to proactively avoid system overloads and their adverse effects by optimizing the task scheduling decisions. DeepFT uses a deep-surrogate model to accurately predict and diagnose faults in the system and co-simulation based self-supervised learning to dynamically adapt the model in volatile settings. Experimentation on an edge cluster shows that DeepFT can outperform state-of-the-art methods in fault-detection and QoS metrics. Specifically, DeepFT gives the highest F1 scores for fault-detection, reducing service deadline violations by up to 37% while also improving response time by up to 9%
    • …
    corecore