2,987 research outputs found

    A Fuzzy Petri Nets Model for Computing With Words

    Full text link
    Motivated by Zadeh's paradigm of computing with words rather than numbers, several formal models of computing with words have recently been proposed. These models are based on automata and thus are not well-suited for concurrent computing. In this paper, we incorporate the well-known model of concurrent computing, Petri nets, together with fuzzy set theory and thereby establish a concurrency model of computing with words--fuzzy Petri nets for computing with words (FPNCWs). The new feature of such fuzzy Petri nets is that the labels of transitions are some special words modeled by fuzzy sets. By employing the methodology of fuzzy reasoning, we give a faithful extension of an FPNCW which makes it possible for computing with more words. The language expressiveness of the two formal models of computing with words, fuzzy automata for computing with words and FPNCWs, is compared as well. A few small examples are provided to illustrate the theoretical development.Comment: double columns 14 pages, 8 figure

    Task planning with uncertainty for robotic systems

    Get PDF
    In a practical robotic system, it is important to represent and plan sequences of operations and to be able to choose an efficient sequence from them for a specific task. During the generation and execution of task plans, different kinds of uncertainty may occur and erroneous states need to be handled to ensure the efficiency and reliability of the system. An approach to task representation, planning, and error recovery for robotic systems is demonstrated. Our approach to task planning is based on an AND/OR net representation, which is then mapped to a Petri net representation of all feasible geometric states and associated feasibility criteria for net transitions. Task decomposition of robotic assembly plans based on this representation is performed on the Petri net for robotic assembly tasks, and the inheritance of properties of liveness, safeness, and reversibility at all levels of decomposition are explored. This approach provides a framework for robust execution of tasks through the properties of traceability and viability. Uncertainty in robotic systems are modeled by local fuzzy variables, fuzzy marking variables, and global fuzzy variables which are incorporated in fuzzy Petri nets. Analysis of properties and reasoning about uncertainty are investigated using fuzzy reasoning structures built into the net. Two applications of fuzzy Petri nets, robot task sequence planning and sensor-based error recovery, are explored. In the first application, the search space for feasible and complete task sequences with correct precedence relationships is reduced via the use of global fuzzy variables in reasoning about subgoals. In the second application, sensory verification operations are modeled by mutually exclusive transitions to reason about local and global fuzzy variables on-line and automatically select a retry or an alternative error recovery sequence when errors occur. Task sequencing and task execution with error recovery capability for one and multiple soft components in robotic systems are investigated

    A fuzzy approach for discrete event systems recovery.

    No full text
    International audienceA fuzzy approach for modelling and analysing the recovery activities in discrete event systems is presented. Those essential components of the management of discrete event systems require special reasoning and methods to manage uncertain knowledge. For those purposes, we introduce a tool derived from the fuzzy Petri nets. This tool, inspired from the fault tree, generalizes the defects analysis by a temporal fuzzy approach. The recovery, modelled by a dedicated tool, preserves the fuzzy temporal aspect due to a real time information exchange mechanism provied by the monitoring system

    Decision Making in the Medical Domain: Comparing the Effectiveness of GP-Generated Fuzzy Intelligent Structures

    Get PDF
    ABSTRACT: In this work, we examine the effectiveness of two intelligent models in medical domains. Namely, we apply grammar-guided genetic programming to produce fuzzy intelligent structures, such as fuzzy rule-based systems and fuzzy Petri nets, in medical data mining tasks. First, we use two context-free grammars to describe fuzzy rule-based systems and fuzzy Petri nets with genetic programming. Then, we apply cellular encoding in order to express the fuzzy Petri nets with arbitrary size and topology. The models are examined thoroughly in four real-world medical data sets. Results are presented in detail and the competitive advantages and drawbacks of the selected methodologies are discussed, in respect to the nature of each application domain. Conclusions are drawn on the effectiveness and efficiency of the presented approach

    Power system fault analysis based on intelligent techniques and intelligent electronic device data

    Get PDF
    This dissertation has focused on automated power system fault analysis. New contributions to fault section estimation, protection system performance evaluation and power system/protection system interactive simulation have been achieved. Intelligent techniques including expert systems, fuzzy logic and Petri-nets, as well as data from remote terminal units (RTUs) of supervisory control and data acquisition (SCADA) systems, and digital protective relays have been explored and utilized to fufill the objectives. The task of fault section estimation is difficult when multiple faults, failures of protection devices, and false data are involved. A Fuzzy Reasoning Petri-nets approach has been proposed to tackle the complexities. In this approach, the fuzzy reasoning starting from protection system status data and ending with estimation of faulted power system section is formulated by Petri-nets. The reasoning process is implemented by matrix operations. Data from RTUs of SCADA systems and digital protective relays are used as inputs. Experiential tests have shown that the proposed approach is able to perform accurate fault section estimation under complex scenarios. The evaluation of protection system performance involves issues of data acquisition, prediction of expected operations, identification of unexpected operations and diagnosis of the reasons for unexpected operations. An automated protection system performance evaluation application has been developed to accomplish all the tasks. The application automatically retrieves relay files, processes relay file data, and performs rule-based analysis. Forward chaining reasoning is used for prediction of expected protection operation while backward chaining reasoning is used for diagnosis of unexpected protection operations. Lab tests have shown that the developed application has successfully performed relay performance analysis. The challenge of power system/protection system interactive simulation lies in modeling of sophisticated protection systems and interfacing the protection system model and power system network model seamlessly. An approach which utilizes the "compiled foreign model" mechanism of ATP MODELS language is proposed to model multifunctional digital protective relays in C++ language and seamlessly interface them to the power system network model. The developed simulation environment has been successfully used for the studies of fault section estimation and protection system performance evaluation

    Learning Hybrid Process Models From Events: Process Discovery Without Faking Confidence

    Full text link
    Process discovery techniques return process models that are either formal (precisely describing the possible behaviors) or informal (merely a "picture" not allowing for any form of formal reasoning). Formal models are able to classify traces (i.e., sequences of events) as fitting or non-fitting. Most process mining approaches described in the literature produce such models. This is in stark contrast with the over 25 available commercial process mining tools that only discover informal process models that remain deliberately vague on the precise set of possible traces. There are two main reasons why vendors resort to such models: scalability and simplicity. In this paper, we propose to combine the best of both worlds: discovering hybrid process models that have formal and informal elements. As a proof of concept we present a discovery technique based on hybrid Petri nets. These models allow for formal reasoning, but also reveal information that cannot be captured in mainstream formal models. A novel discovery algorithm returning hybrid Petri nets has been implemented in ProM and has been applied to several real-life event logs. The results clearly demonstrate the advantages of remaining "vague" when there is not enough "evidence" in the data or standard modeling constructs do not "fit". Moreover, the approach is scalable enough to be incorporated in industrial-strength process mining tools.Comment: 25 pages, 12 figure
    • …
    corecore