358 research outputs found

    Improvement of environmental aspects of thermal power plant operation by advanced control concepts

    Get PDF
    The necessity of the reduction of greenhouse gas emissions, as formulated in the Kyoto Protocol, imposes the need for improving environmental aspects of existing thermal power plants operation. Improvements can be reached either by efficiency increment or by implementation of emission reduction measures. Investments in refurbishment of existing plant components or in plant upgrading by flue gas desulphurization, by primary and secondary measures of nitrogen oxides reduction, or by biomass co-firing, are usually accompanied by modernisation of thermal power plant instrumentation and control system including sensors, equipment diagnostics and advanced controls. Impact of advanced control solutions implementation depends on technical characteristics and status of existing instrumentation and control systems as well as on design characteristics and actual conditions of installed plant components. Evaluation of adequacy of implementation of advanced control concepts is especially important in Western Balkan region where thermal power plants portfolio is rather diversified in terms of size, type and commissioning year and where generally poor maintenance and lack of investments in power generation sector resulted in high greenhouse gases emissions and low efficiency of plants in operation. This paper is intended to present possibilities of implementation of advanced control concepts, and particularly those based on artificial intelligence, in selected thermal power plants in order to increase plant efficiency and to lower pollutants emissions and to comply with environmental quality standards prescribed in large combustion plant directive. [Acknowledgements. This paper has been created within WBalkICT - Supporting Common RTD actions in WBCs for developing Low Cost and Low Risk ICT based solutions for TPPs Energy Efficiency increasing, SEE-ERA.NET plus project in cooperation among partners from IPA SA - Romania, University of Zagreb - Croatia and Vinca Institute from Serbia and. The project has initiated a strong scientific cooperation, with innovative approaches, high scientific level, in order to correlate in an optimal form, using ICT last generation solutions, the procedures and techniques from fossil fuels burning processes thermodynamics, mathematical modelling, modern methods of flue gases analysis, combustion control, Artificial Intelligence Systems with focus on Expert Systems category.

    Artificial neural networks and physical modeling for determination of baseline consumption of CHP plants

    Get PDF
    An effective modeling technique is proposed for determining baseline energy consumption in the industry. A CHP plant is considered in the study that was subjected to a retrofit, which consisted of the implementation of some energy-saving measures. This study aims to recreate the post-retrofit energy consumption and production of the system in case it would be operating in its past configuration (before retrofit) i.e., the current consumption and production in the event that no energy-saving measures had been implemented. Two different modeling methodologies are applied to the CHP plant: thermodynamic modeling and artificial neural networks (ANN). Satisfactory results are obtained with both modeling techniques. Acceptable accuracy levels of prediction are detected, confirming good capability of the models for predicting plant behavior and their suitability for baseline energy consumption determining purposes. High level of robustness is observed for ANN against uncertainty affecting measured values of variables used as input in the models. The study demonstrates ANN great potential for assessing baseline consumption in energyintensive industry. Application of ANN technique would also help to overcome the limited availability of on-shelf thermodynamic software for modeling all specific typologies of existing industrial processes

    Improvement of existing coal fired thermal power plants performance by control systems modifications

    Get PDF
    This paper presents possibilities of implementation of advanced combustion control concepts in selected Western Balkan thermal power plant, and particularly those based on artificial intelligence as part of primary measures for nitrogen oxide reduction in order to optimise combustion and to increase plant efficiency. Both considered goals comply with environmental quality standards prescribed in large combustion plant directive. Due to specific characterisation of Western Balkan power sector these goals should be reached by low cost and easily implementable solution. Advanced self-learning controller has been developed and the effects of advanced control concept on combustion process have been analysed using artificial neural-network based parameter prediction model. (c) 2013 Elsevier Ltd. All rights reserved

    Multi-Criteria Optimal Planning for Energy Policies in CLP

    Full text link
    In the policy making process a number of disparate and diverse issues such as economic development, environmental aspects, as well as the social acceptance of the policy, need to be considered. A single person might not have all the required expertises, and decision support systems featuring optimization components can help to assess policies. Leveraging on previous work on Strategic Environmental Assessment, we developed a fully-fledged system that is able to provide optimal plans with respect to a given objective, to perform multi-objective optimization and provide sets of Pareto optimal plans, and to visually compare them. Each plan is environmentally assessed and its footprint is evaluated. The heart of the system is an application developed in a popular Constraint Logic Programming system on the Reals sort. It has been equipped with a web service module that can be queried through standard interfaces, and an intuitive graphic user interface.Comment: Accepted at ICLP2014 Conference as Technical Communication, due to appear in Theory and Practice of Logic Programming (TPLP

    A Review of using Data Mining Techniques in Power Plants

    Get PDF
    Data mining techniques and their applications have developed rapidly during the last two decades. This paper reviews application of data mining techniques in power systems, specially in power plants, through a survey of literature between the year 2000 and 2015. Keyword indices, articles’ abstracts and conclusions were used to classify more than 86 articles about application of data mining in power plants, from many academic journals and research centers. Because this paper concerns about application of data mining in power plants; the paper started by providing a brief introduction about data mining and power systems to give the reader better vision about these two different disciplines. This paper presents a comprehensive survey of the collected articles and classifies them according to three categories: the used techniques, the problem and the application area. From this review we found that data mining techniques (classification, regression, clustering and association rules) could be used to solve many types of problems in power plants, like predicting the amount of generated power, failure prediction, failure diagnosis, failure detection and many others. Also there is no standard technique that could be used for a specific problem. Application of data mining in power plants is a rich research area and still needs more exploration

    Multivariable Control of a Drum type Boiler

    Get PDF

    Multivariable Control of a Drum type Boiler

    Get PDF

    Utilization of Models for Online Estimation in Combustion Applications

    Get PDF
    The emerging environmental and energy system related requirements urge renewed combustion systems, with a focus on extended flexibility and decreased emissions. At the same time, monitoring and measurement reliability requirements are increasing. All these requirements also increasingly affect existing combustion plants.To tackle the increasing needs and requirements of existing combustion processes, this thesis’ objective is to integrate process and domain knowledge, models, and online estimation to provide cost effective and practically feasible solutions for online emission monitoring and control in existing combustion processes. These solutions are domain specific, comprising power level, main fuel, boiler technology, process environment, and market. This thesis presents a framework to provide practically justified, online monitoring and control solutions that is applied to selected combustion applications.The first application is combustion control of small-scale (100 MW). A novel, first principle combustion model was developed for these. The generic combustion model interlinks the combustion related measurements distributed within any boilers regardless of boiler type or fuels. The interlinking enables combustion processes to be considered as an entity that reveals if a measurement provide realistic readings compared with others. The static, computationally light model enables simultaneous data reconciliation and gross error detection and hence several attractive online applications, such as reliable estimation of unmeasured variables, and separation of process disturbances from sensor malfunctions.The results verify that the process performance improved in all studied practical applications, providing feasible solutions for increasing requirements
    corecore