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THESIS ABSTRACT 
 

NAME: Syed Minhajullah 
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Emission monitoring and control is becoming a crucial subject for process industry. 

Recently stringent regulations have been enforced to monitor and to keep the emissions 

to below regulatory levels. Boilers are one of the main sources of emissions of Nitrogen 

Oxides, commonly known asNOx. This research work focuses on the control of boiler 

along with emission control of NOx. A mathematical model for a drum type boiler is 

presented that takes into account NOx development and emission. The Problem 

formulated considers the steam as a disturbance input as of real industrial situation. 

Model predictive control (MPC) is developed to control the boiler dynamics including 

xNO under constraints and continuous input disturbances. The performance of the 

controller is compared with the conventional PI controller. 
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ABSTRACT (ARABIC) 

 
 سيد منهاج الله: لأسم ا

التحكم متعدد المتغيرات للغلايه من النوع الاسطواني: العنوان  

هندسة نظم: التخصص  

2011نوفمبر : التاريخ  

 

  قوانين تطبيق  تم ،امؤخر  .للعمليات الصناعيه  بالغ الأهمية موضوعا أصبح التحكم بهاو الانبعاثاترصد 

المصادر الرئيسية  واحدة من  الغلايات تعتبر .منخفظه مستويات في هللحفاظ علٮو الانبعاثات  لرصد صارمة

 مقدار التحكم في إلى جنب مع جنبا   الغلايه يركز على هذا البحث. NOxعاده مثل أكاسيد النيتروجين،  نبعاثاتللا

عين   يأخذ في بحيث للغلايه من النوع الاسطواني نموذج رياضيسوف يتم تقديم  .NOxن م الانبعاثات

لتمثل الحالة الصناعيه  اضطرابات كمدخل بخارال تعتبرسوف   مشكلةال  صياغةل . NOxأنبعاث و  نشوء الاعتبار 

بما  الخاصه بالغلايه  اتكيديناميبال للتحكم تم تطويرها  )MPC(  تنبؤيال طريقالتحكم بالنمودج عن طريقة  .الحقيقة

مع  المصممه  وحدة تحكم أداء تتم مقارنةسوف  .والاضطرابات المفروضة القيود استمرار  في ظل  NOx في ذلك

 التقليدية  PI وحدة تحكم
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CHAPTER 1  
 
 
 

INTRODUCTION 
 

In Process Industries and power generation, boilers consume large amounts of 

fuel and produce considerable amounts of Carbon monoxide and other environmentally 

damaging gases such as Nitrogen oxides (NOx). NOx emission represents a concern as it 

poses risk to both the environment as well as to the human health. NOx emission initiates 

reactions that affect the ozone layer and form acid rain, which could cause health 

problems, destruction of green land, damage buildings, impairing visibility and many 

other negative effects. Many efforts are being made worldwide to limit NOx emission to 

certain regulatory limits meeting the strict environmental rules on air pollution [1]. 

Accordingly, emission of NOx from boilers is considered a major pollutant problem and 

needs to be carefully monitored and controlled. 

On other hand, from process dynamic point of view, boilers are nonlinear, time 

varying, multi- input multi- output (MIMO) systems. The major problem in controlling 

such nonlinear devices is that their drum water level dynamics is of integrator type that 

results in a critically stable behaviour causing the Shrink/Swell phenomena. Particular 

attention has been given to model drum level dynamics. It has been found in the literature 

that 30% of the emergency shut downs in pressurized water reactors (PWR) plants are 

caused by poor level control of the drum water level [2].  
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Boiler drum level control is critical for both plant protection and equipment safety 

and applies equally to high and low levels of water within the boiler drum [3-5].The 

purpose of the drum level controller is to bring the drum up to level at boiler start-up and 

maintain the level at constant steam load. A dramatic decrease in this level at constant 

steam load may uncover boiler tubes, allowing them to become overheated and damaged. 

On the other hand, the drum level may interfere with the process of separating moisture 

from steam within the drum, thus reducing boiler efficiency and carrying moisture into 

the process or turbine. 

Improving boiler control pays large dividends, in terms of reduced fuel costs, 

reduced pollution, improved safety and an extended plant life-time. Many efforts in the 

literature addressed the issue of controlling the drum level. However, rare are those who 

addressed jointly NOx emission. 

In this work, boiler- NOx problem has been addressed in three ways. 

1) We developed a mathematical model for a drum type boiler that takes into 

account NOx development and emission. 

2) We considered real industrial applications under practical operation constraints 

and continous input disturbances. 

3) We developed Model Predictive Control (MPC) combining control of the boiler 

dynamics and NOx emission level. 

The block diagram below shows the basic structure of the proposed Model Predictive 

Controller in the thesis. 
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Figure  1.1: Block Diagram Structure of Model Predictive Control 

The next chapter provides a detailed literature survey of the work done in the 

context of boiler modeling and control. NOx emission monitoring and control and finally 

model predictive control are also discussed. Chapter 3 highlights the boiler system and its 

emission. In chapter 4 detailed descriptions of boiler and NOx model is given and finally 

an augmented model is developed. In Chapter 5, the proposed controller technique is 

presented in detail. Chapter 6, describes the MPC formulation of the augmented boiler 

model along with implementation issues. The results obtained are also presented and the 

MPC performance is compared with the conventional PI control. Finally, the thesis was 

rounded up by giving conclusion and recommendations for future work. 
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CHAPTER 2  
 
 
 

LITERATURE SURVEY 

 

In this chapter, some of previous research for boiler modeling, boiler control, NOx 

emission monitoring and control and finally model predictive control is discussed. 

This chapter is divided into following sections, 

i. Review of Modeling of Boilers  

ii. Approach to Boiler Control. 

iii. Approach to Emission Monitoring and Control. 

iv. Model Predictive Control (MPC) 

 2.1 Review of Modeling of Boilers 

The operations of boilers face many challenges stemming from various required 

safety and control issues as well as economic and regulatory issues. Dynamic simulation 

models of industrial boilers are essential for the study of plant transient characteristics 

with the aim to improve the design and control strategies to meet stringent operational 

requirements. Modeling of boilers has been an ongoing effort for many years. Dynamic 

models of boiler systems are developed on the basis of laws of conservation of mass, 

momentum and energy as applied to the various system’s components or modules. 
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To our best knowledge, early work stated by Astrom and Euckland[6], considered a 

simple non-linear boiler turbine unit. The model was designed in a way such that it can 

be used as  

i. a boiler Turbine model in power system studies 

ii. to understand how a boiler behaves under different operating conditions 

iii. to synthesize optimal trajectories for large load changes. 

The experiments were conducted on the boiler unit P16 and turbine unit G16 at 

Oresundsverket of Sydsvenka (Sweden) for the purpose of modeling. In the experiment 

the variables, fuel flow, feed water flow, two attemperator (An apparatus for reducing 

and controlling the temperature of a superheater vapour or a fluid) flows and the control 

valve position were considered as inputs. The outputs are drum pressure, generated 

electric power, drum level, temperatures and pressures in various parts of the system. 

Different experiments were conducted by changing input variables. One input was 

changed and others were kept constant. Finally, a simplified model was developed by a 

combination of data analysis and physical arguments. 

A simple non-linear model derived from first principles for a drum boiler was 

described by Astrom and Bell [7] . The model is characterized by a few physical 

parameters that are easily obtained from construction data. The models were found to 

capture the major dynamical behaviour and were validated against experimental data. The 

models require steam tables for a limited operating range. The model is capable of 

capturing the essence of the steam generation in the riser pipes.  
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De Mello [8] has demonstrated the validity of simplified boiler models that have 

previously been used to represent steam turbine mechanical power response including 

boiler pressure. Boiler response characteristics derived from the basic energy balance, 

mass balance and volume balance relations using physical boiler parameters were 

compared with those obtained from two other simplified models, one which matched 

both the steady state and transient open loop boiler response characteristics, and a simpler 

model which matches the initial open loop response. It was shown that both simplified 

models yield acceptable results of the boiler response including pressure controls.  

Astrom and Bell [9] derived from first principles a non-linear model for steam 

generation processes. Comparison with data from plant experiment indicated that the 

model derives the behaviour of the system quite well. The predicted pressure swing was 

large in general. The results showed that increasing the metal mass results in a decrease 

in the swing of the pressure. Possible modifications to the model include dynamics in the 

model of circulation flow or making a finer subdivision of the risers. 

Peet and Leung [10] discussed the development of a dynamic simulation model 

and its application in the study and design of drum-type boiler system to meet the 

operational requirements of fossil fuelled steam plants and to achieve flexible and 

economic production of steam.  

Bell and Astrom [11]  derived from first principles a non-linear model for a drum 

boiler. The model is characterized by a few physical parameters that are easily obtained 

from construction data and steam tables. Comparisons with data from plant experiments 

covered a large operating range for a plant at low and high loads. The results of 



7 
 

experiments at low and high loads included changes in fuel flow, feed water and steam 

demand. The agreement of the model results with plant data was good. The pressure 

dynamics predicted agreed with the plant data. The model captured the major dynamical 

behaviour of the process which is verified by the extensive comparisons with real plant 

data presented in the paper.  

Control of water circulation in steam generation is also an important problem that 

must be considered for plant safety and reliability. Poor water circulation may cause 

tubes burnout resulting in unscheduled boiler shutdown and interrupting plant operation. 

Poor control may lead to frequent shutdown. Water circulation in natural circulation 

drum-boilers is one of the critical problems in boiler technology. Such poor circulation 

may arise from operational-type problems such as PI changes in boiler load causing PI 

changes in the heat flux as a result of PI changes in fuel flow rates. 

Significant modeling of boilers systems did not begin until the 1990’s. Still, very little 

work has been presented to advance the development of modeling and simulation for 

design. 

Adam and Marchetti [12] explored the dynamic simulation of water-in-tube 

boilers. The model was developed using an algorithm that utilized two non-linear models: 

one for the evaporation in the vertical tubes and one for the phase separation in the steam 

drum. Also incorporated was a PI controller for feed-water flow rate while the pressure 

control loop was open. 

A physics based drum boiler model which runs in real-time has been developed 

by Flynn and O’Malley [13] . Differential equations describing the drum, downcomer and 
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risers were solved and the control parameters were identified using data available from 

tests carried out on actual plant parameters. The parameters include superheated steam 

temperature and pressure, feedwater flow rate, fuel flow rate. The model was validated 

using dynamic data recorded on an actual plant. The model was shown to be useful for 

predicting performance capability while also modeling critical internal variables such as 

drum level and steam temperatures which may cause the unit to trip if safety limits are 

violated. 

A non linear dynamic model for natural circulation of drum boilers was presented 

by Astrom and Bell [14] .The model describes the complicated dynamics of the drum, 

downcomer, and riser components. It was derived from the first principles and is 

characterized by a few physical parameters and can be easily scaled to represent any 

drum power station. The model has four states; two of these accounts for the storage of 

energy and mass, one for the steam distribution in the risers, and the last for the steam 

distribution in the drum. The model agrees well with experimental data (shrink and 

swell). The data obtained from the results for this model were compared to plant data 

demonstrating the correlation that resulted from the model to the plant data. A strong 

correlation was proven for both medium and high loads while changing the fuel flow rate, 

feed water flow rate, and steam valve for both of the loads. 

Kim and Choi [15] developed a model for water level dynamics in the drum-riser-

downcomer loop of a natural circulation drum-type boiler. The model is based on basic 

conservation rules of mass, momentum, and energy, together with the constitutional 

equations. The work provides an investigation of the response of water level dynamics to 

changes in steam demand and/or heating rate. The results were compared with those of 
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Astrom and Bell [14]. Likewise Astrom and Bell [14] the assumption of metal 

temperature being equal to the steam saturation temperature and the linear variation of 

the steam quality along the riser tubes is employed. 

 

2.2 Approach to Boiler Control 

The main control problems that are normally handled are the combustion control 

and the drum level control. The combustion control is mainly aimed at providing the right 

energy input to maintain the drum pressure. It is also aimed at controlling the air to fuel 

ratio to minimize the incomplete combustion and limit the excess air to achieve economic 

operation at different boiler loads. The objective of the boiler drum level control systems 

is to maintain the water/steam interface at its optimum level to provide a continuous 

mass/heat balance by replacing the steam leaving the boiler with feedwater to replace it. 

The interface level is subjected to several disturbances in the water/steam drum. These 

are the drum pressure and feedwater temperature.  

Particular attention has been given to model drum level dynamics as it has been found in 

the literature that 30% of the emergency shut downs in pressurised water reactors (PWR) 

plants are caused by poor level control of the drum water level [2]. The drum-level 

control is difficult because of the complicated shrink and swells dynamics as stated 

above. These create a non- minimum phase behaviour, which changes significantly with 

the operating conditions. 

Huang et al [4] proposed adaptive control strategy for the drum level of a power 

plant boiler. The boiler is controlled by three element feed water PI control, Recursive 
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least square (RLS) method is used to identify the plant parameters and Genetic Algorithm 

(GA) is applied to find the optimum parameters of the controller. Results showed that GA 

self tuned system is able to have better self adaptation and reduce disturbances compared 

to the fixed PI system. 

 Yang et al [16] proposed a new approach for water level control in power station 

based on an internal model control using neural networks. The control system adopted the 

steam flux signal to the internal model controller. The influence of load changing, which 

has the ability of feed-forward compensation for steam flux disturbance was considered. 

The authors indicated that the system also can avoid “false water level” phenomenon. 

Pellegrinetti and Bentsman [17], developed a boiler model on the basis of 

fundamental physical laws with previous efforts in boiler modeling with known physical 

constants, plant data, and heuristic adjustments The resulting fairly accurate model is non 

linear and of order four. The model includes inverse response, time delays, measurement 

noise models, and a load disturbance component. The model can be used for the purpose 

of model-based control algorithms as well as setting up a real-time simulator for testing 

of new boiler control systems and operator training. 

Pedersen, Hansen and Hangstrup [18] proposed a multivariable controller as 

optional process optimizing extensions to existing convectional control systems. The 

basic idea is to consider a conventionally controlled power plant boiler as the process to 

be optimized. For the purpose it is making use of Linear Quadratic (LQ) controller. The 

control errors from the conventional controllers are used as inputs to a LQ-controller. The 
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outputs from the LQ controller are added to the outputs from the conventional PI-type 

controller. The performance has been evaluated on a non linear boiler model. 

Kai and Li [19] design fuzzy controlled system to tune the parameters of PI 

controllers on-line and apply to the drum boiler. Two control variables, fuel flow rate and 

water feed rate were used as control variables for drum pressure and drum water level. 

The PI controller and Fuzzy system tuned PI controller were designed. The two 

controllers were compared, for set point tracking fuzzy controller gave less overshoot and 

quick convergence. For disturbance rejection also it turned out be effective. 

 Robert and Lee [20]  used Genetic Algorithm (GA) to design PI controller and 

State feedback controller for a non linear boiler turbine unit. The goal of the GA is to 

determine the matrix gains to ensure tracking of the reference signal over wide operating 

range. This controller was compared with that of a LQR system of a linearised model. 

Step responses showed that GA/PI controller achieved good steady state tracking. 

A fuzzy model-based control methodology was proposed by Cheng and Rees [21] 

for controlling the steam generation in a drum-boiler power plant. The hierarchical 

control structure consists of three levels; compensator, scheduling and planning layers. 

The compensator layer includes a set of state feedback compensators, feedforward 

compensators and state estimators. The scheduling and planning layers were incorporated 

with the approximate reasoning feature of the fuzzy model to form a fuzzy coordinator. 

Elshafei et al [22]  provides an optimization method of the swing rate for the 

steam generation units using genetic algorithm. This optimization framework is 

suggested to provide improved ability of the boilers to respond to fast steam load 
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changes. The optimization technique is able to reduce the firing rate overshoots, drum 

level fluctuation, feedwater oscillations and maximizing the allowable rate of increase in 

steam delivery per minute ensuring good performance and good safety.  

Wang, Li and Zhang [23] proposed a hybrid classical/fuzzy control methodology 

to integrate high-level supervision for the steam temperature and water level processes of 

power plant boiler. To overcome the problem of coordination between two spraying 

systems they developed decoupling rules based on human experience for primary 

spraying process and proposed a hybrid intelligent control methodology by adding a extra 

fuzzy- PI to the existing PI controller for secondary spraying process. For the purpose of 

water level they proposed a multivariable fuzzy controller which proved to be better than 

traditional PI control. In industrial applications, it resulted in superiority over the 

traditional control methods. 

Tan, Marquez and Chen [24] proposed a multivariable robust controller design for 

utility boiler system. The boiler model considered is Syncrude utility plant of SCL 

(Canada) which has got their simulation package called SYNSIM. The model is 

simulated using this software. They identified Linear Time Invariant (LTI) model by 

collecting I/P and O/P data on Synsim and identification tool box of Matlab. For the 

purpose of control design they adopted H∞ loop-shaping technique and reduce this 

controller to multivariable PI controller. The multi loop PI controller presently used in 

plants, H∞ controller and its PI approximation both in frequency and time domain were 

compared and it resulted that designed PI controller outperforms the existing one in both 

robustness and performance. 
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Aranda, Frye and Qian [25] developed a dynamic non-linear model for the CPS 

energy spruce natural circulation drum boiler and also designed a controller for it. Among 

the model in literature the CPS model closely represented the Astrom and Bell model. 

The boiler model was simulated on Matlab to study the dynamic behaviour of it, Then an 

Unscented Kalman Filter (UKF). 

(The Unscented Kalman Filter belongs to a bigger class of filters called Sigma -

Point Kalman Filters or Linear Regression Kalman Filters, which are using the statistical 

linearization technique) was applied to the boiler model to estimate the un-measurable 

states of the model. Two measurable outputs from the model drum pressure and drum 

water level were fed into the UKF. These estimated states are then compared with the 

measurable states of the non-linear model. These results tracks the actual outputs,  then 

un-measurable estimation of states gives a clear idea of how much steam is present under 

the liquid level in the drum. Finally, controller is developed based on linear models that 

approximate the linear model. 

Wen and Ydstie [26] discusses a modeling and control scheme for boiler system. 

Authors introduced a state space model derived from Astrom and Bell’s boiler model 

[14] for drum boilers with natural recirculation. The states of this new state space model 

are total mass and energy inventories. The model shows affine structure in control 

variables which is beneficial for controller design. The affine structure is build directly 

from the mass, energy and momentum balance laws. Based on this new model, authors 

proposed a passivity based inventory controller giving asymptotic stability of the closed 

loop boiler system.  
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2.3 Approach to Emission Monitoring and Control  

Climate change is one of the greatest problems facing humankind. Pollution is 

considered the main reason for climate change. Environmental degradation issues due to 

pollution have gained as significant attention at international and regional levels.  

Emissions of Nitrogen oxide NOx and CO are major global and regional pollutants from 

industrial boilers, Combustion optimization has recently demonstrated its potential to 

reduce NOx emissions. It includes two important and separate steps, i.e. NOxemission 

modeling and NOx emission control (optimization). Due to this there has been research 

on monitoring and control methods for emission from industries. 

Emission monitoring (NOx) is carried out by different modeling techniques like 

Computational Fluent dynamics (CFD), Artificial Neural Networks (ANN) and Support 

Vector Regression (SVR). 

Neural network based Soft sensors for monitoring NOx prediction was addressed by 

many researchers.  

Elshafei, Habib and Dajani [27] developed an inferential soft sensor based on 

polynomial function network, for emission monitoring of NOx and 𝑂2 from a water tube 

boiler. Boiler model was simulated in commercial CFD package FLUENT. Simulation 

results showed that boiler efficiency increases by 0.25% by decreasing the excess oxygen 

2O  from 1% to 5%, in turn saving one ton of fuel daily in a 160 MW boiler. This soft 

sensor can be used practical application for industrial boilers. 
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Ahmed [28] proposed soft sensors for NOx and 𝑂2 prediction from industrial 

water tube boiler. Soft sensors were based on static neural networks. Different static 

neural networks like multilayer perceptron and radial basis function were discussed. 

Particle Swarm Optimization algorithm was used for training multi layer perceptron. A 

static neural network model was developed using real data from an industrial boiler. Soft 

sensors were simulated under FLUENT CFD package. Results from different training 

algorithms were also discussed and compared. 

Shakil et al  [29] developed a soft sensor based on dynamic neural network model 

for NOx and 𝑂2  prediction from an industrial boiler. The boiler unit considered here is a 

water tube boiler equipped with temperature sensors at the superheater tubes and the riser 

tubes for monitoring their temperature. These temperatures were referred as skin 

temperatures which are inputs to the model. Data is scaled and then Principal Component 

Analysis (PCA) is applied for data reduction. The genetic Algorithm (GA) is used to 

estimate the system’s time delays by optimizing a linear time-delay model. Models were 

validated by real data from a boiler plant. Results demonstrated that the proposed 

dynamic neural network model performed better than static neural network models. 

Dong, McAvoy and Chang [30] proposed a soft –sensor for NOx approximation 

from an industrial heater. It involves two parts, first one has sensor for data analysis using 

Non-linear principal component analysis (NLPCA) which has associative neural net with 

two three-layer neural networks and NLPCA was used for data analysis. The second part 

involves neural network partial least square (NNPLS). The results showed that the 

proposed soft sensor approach gives much better results than a linear method. 
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Qin, Yue and Dunia [31] proposed a self validating inferential sensor for emission 

monitoring from industrial boilers. Proposed model was based on principal component 

analysis (PCA). They proposed fault identifications and reconstruction schemes earlier 

which were used for validation of input sensors. Validated principal components were 

used to predict the emission from boilers using regressors. 

L. Hua, W. Hua and Feng [32] developed a soft-sensor model of NOx emission 

based on Least Squares Support vector machines (LSSVM) of Power Station Boilers. 

Different factors which impact NOx emission such as boiler load, distribution mode of 

over-fire air and secondary air, variable coals, burner’s swing were studied. 12 data sets 

were obtained and based on it NOx emission model was built. This model handles the 

linear and non-linear properties between the input variables effectively. When compared 

with ANN, simulation results showed that generalization ability of sample data and the 

time of its training is shorter. 

The primary advantage of NN is the fast and simple model development without a prior 

detailed knowledge of the process to be identified. One drawback, however, is the long 

training time to get reasonable results. 

Reisnschmidt and Ling [33] developed feedforward Neural network (NN) for the 

modeling and control of NOx emissions from coal-fired boilers. NN NOx simulation 

model and NN controller were trained using real plant data. To restrict the range of 

controller, Multiple-state neurons are used in NN. For network training purpose a 

modified propagation algorithm is used. The results showed that neural network NOx 
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simulation model and NOx controller can be used as a real-time advisor for the plant to 

handle various operating conditions, including faulted conditions. 

Ohl, Ayoubi and Kurth [34] proposed a dynamical model of a power plant using 

static neural network and linear dynamical models. Two different models were presented 

using radial basis and multilayer perceptron. In the first model, dynamics were introduced 

at the input of each neuron of multilayer perceptron. In the second case, a dynamical part 

was used at the output of each neuron in the radial basis neural network. Second order 

dynamical IIR model was used in each neural network model. 

Li and Thompson [35] developed a novel type of neural network, namely a 

cascade neural network for modeling of NOx emission from a 300 MW coal fired power 

generation plant. This cascade neural network has the properties of feed forward network 

(FFN). The network was shown to have more connection than that found in FNN, and 

therefore leads to a network with less number of neuron. For training purpose a data set 

was obtained using DAS system and it was trained using back propagation algorithms 

with momentum gradient method. Only 3 inner nodes were considered for modeling the 

NOx emission for a power generation plant. Model was simulated for different time 

intervals and simulation results showed that the model is capable of predicting NOx to 

about 7% of error to target ratio. 

Li and Thompson [36] presented a mathematical model NOx emissions for a 

power plant boiler. The model is developed from the extended Zeldovich mechanism and 

needs only few physical parameters from experiments. The boiler with oil firing unit was 

used for experiments. For the sake of modeling NOx different parameters were obtained 
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from experiments. The model can be used for combustion control and optimizing boiler 

operation as well. Finally, responses of NOx to changes in fuel flow rate, fuel air ratio and 

burner tilt are shown. 

Li, Thompson and Peng [37] proposed a NOx emissions modeling for real-time 

operation and control of a 200 MW coal-fired power generation plant. The fundamentals 

governing the xNO  formation mechanisms and a system identification technique is used 

to develop a grey-box model. This approach extracted a collection of fundamental non-

linear functions from the NOx formation equations. Based on operation plant data used 

for modeling and validation, a linear Auto Regressive (ARX) model and a non-linear 

ARX model (NARX) are built. Although the three models were similar in terms of short-

prediction performance, the developed grey-box model is able to consistently produce 

better overall long-term production than other two models. When compared with CFD 

models if only NOx emission information is required than the proposed model gives the 

better prediction. 

Hao, Kefa and Jianbo [38] introduced a way of optimizing the xNO  using neural 

network and Genetic algorithm (GA) for pulverized coal combustion of 600 MW 

capacity tangentially fired boiler operated under different operating conditions. Several 

tests were conducted by changing the boiler parameters like boiler load, secondary air 

distribution pattern, coal quality, etc. to analyse the NOx emission characteristics of the 

boiler. Based on experimental data, a neural network based model was developed and 

was trained using Back Propagation (BP) algorithm, and GA was applied to find the 
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optimum operating parameters to decrease the NOx emission. ANN model proved to be 

more convenient and direct and less time consuming comparatively to CFD. 

Hao, Kefa and Fan [39] introduced an approach to predict the NOx emission 

characteristics of a large capacity pulverized coal fired boiler with artificial neural 

networks (ANN). The NOx emission and carbon burnout characteristics were investigated 

through parametric field experiments. The effects of over-fire-air (OFA) flow rates, coal 

properties, boiler load, air distribution scheme and nozzle tilt were studied. On the basis 

of the experimental results, an ANN was used to model the NOx emission characteristics 

and the carbon burnout characteristics. Compared with the other modeling techniques, 

such as computational fluid dynamics (CFD) approach, the ANN approach is more 

convenient and direct, and can achieve good prediction effects under various operating 

conditions. For optimization, a modified genetic algorithm (GA) using the micro-GA 

technique was employed to perform a search to determine the optimum solution of the 

ANN model, determining the optimal set points for the current operating conditions, 

which can suggest operators' correct actions to decrease NOx emission. 

Ahmad et al  [40] developed a model based on ANN for monitoring and control 

of emission from the palm oil mill. The different pollutants (CO, xNO  and SO) data has 

been collected by using a gas analyzer. ANN model is combined with genetic algorithm 

(GA) to find the optimal operating value. Initially GA writes the selected input 

parameters in the text file. The text file is then read by the ANN and received as a new 

input parameter. Then, ANN will predict the output value, this generated value is 

compared with the pollutant limit. If the value exceeds the limit, GA generates new input 
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parameters from the GA operator. It is repeated until the optimal input values of fuel are 

found.  

Zhang et al [41] developed a hybrid ANN model to predict the boiler efficiency 

and pollutant emissions of a 360MW W-flame coal fired boiler. As boiler efficiency and 

NOx emissions have strong relationship with furnace temperature, it was selected as 

intermediate variable in the hybrid model, hence the predictive precision of hybrid model 

was improved. Based on the neural network and optimal objects GA was employed to 

seek real-time solution for every 30 seconds. Optimum manipulated variables were 

obtained under different operating conditions. This algorithm was interconnected with 

DCS gave the supervisory control and achieved real-time coordination optimization 

control of utility boiler. 

Zheng et al [42] developed a new technique for modeling NOx emission rather 

than by NN. Support Vector Regression (SVR) was introduced to model the relationship 

between NOx emissions and operating parameters of a 300 MW coal-fired utility boiler, 

in which 19 operating parameters of the boiler was chosen as inputs, the NOx emission as 

output. Experiments were conducted under different conditions. The training and testing 

data for SVR modeling were obtained from the DCS and CEMS equipped on the 

boiler.SVR parameters were determined by the grid search method and GA. To search for 

or to regulate the (optimizing) the optimal inputs of SVR model so as to achieve low 

NOx emissions Ant Colony Optimization (ACO) is used. The predicted NOx emissions 

from the SVR model showed better agreement than that of ANN and ACO proved to be 

better optimizing tool than GA. Combination of SVR and ACO showed that it reduces 

NOx emission by about 18.69% (65ppm) and moreover, a time period of less than 6 min 
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was required for NOx emissions modeling and 2 min for run of optimization under a PC 

system which are suitable for the online application of the actual power plants. 

Zhao and Wang [43] proposed a hybrid model by combining SVR with simplified 

boiler efficiency model to obtain relationship between operational parameters and both 

NOx emission and boiler efficiency of 600 MW pulverised coal fired utility boiler. The 

experimental data was recorded by DCS and CEMS. In hybrid model, three SVR models 

were employed for relationship purpose. Grid search method and 5-fold cross validation 

method were combined to find the SVR parameters. For optimizing purpose, CenterPSO 

was introduced rather than traditional PSO. The results showed that prediction of NOx 

emission and boiler efficiency by the hybrid model reduces by about 13.83mg/Nm 3 % 

and increases efficiency by 2.1 %. When compared with the BPNN model, it showed to 

be more promising than BPNN. 

Zhou, Zheng and Cen [44] most recently introduced SVR based NOx emission 

model and used ACO for solving low NOx emission from a 300 MW coal-fired utility 

boiler. It showed that ACO has better performance than Gain terms of quality of solutions 

and convergence speed. However, its computational efficiency is yet to be improved 

(about 2min computational time). For that purpose Particle Swarm Optimization (PSO) 

was employed as an optimizing tool in order to improve time efficiency and so as to 

reduce NOx emission. The proposed approach were compared with GA and ACO under 

different conditions and showed that the mean optimization results derived from PSO, 

ACO and GA were 32.67%, 32.27% and 26.37% NOx reduction respectively. The 

computational time of PSO was less than 25 sec under a PC system, was about one fifth 

of those required for ACO. 



22 
 

 

2.4 Model predictive Control (MPC) 

The working of MPC is well-known in the literature and will be discussed in 

detail in Chapter 5. In the literature, different MPC structures and slightly varying 

algorithms are abundantly found. The typical way to present these is to apply the 

algorithm to a challenging problem/application and observe the results.  

Hogg and El-Rabaie [45] presented an application of Generalised Predictive 

control (GPC) to superheat steam pressure of a 200 MW drum boiler. They initially used 

a, single loop PI controllers, but performance of such controllers is limited since they do 

not account for variations in the system parameters. Then they used a practical motivation 

for considering adaptive or self-tuning control. The results showed that improvements in 

control can be achieved with GPC. Steam pressure variations were reduced, without 

offsets or overshoot, and with less controller activity. In addition, due to interactions 

between control loops, there was a reduction in variations of steam temperatures and 

other outputs. 

Molloy and Ringwood [46] showed that a linear model based controller is 

multivariable and computationally efficient than a conventional PI controller. They 

employed a general predictive control strategy which attempts to achieve its objective by 

finding the controller action which minimises an appropriate cost function .The controller 

was fuzzified to operate well over the full operating range of the plant. 

Sbarbaro and Jones [47] applied a nonlinear predictive controller incorporating a 

nonlinear model-based observer within the MPC framework for the control of a paper 
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machine headbox. The proposed approach was shown to handle deterministic 

disturbances, constraints in the manipulated variables and mismatch between model and 

process. Under very restrictive assumptions the algorithm can be interpreted as a 

linearizing controller. 

Parker, Doyle and Pappas [48] applied MPC to control the level of blood glucose 

in Type I diabetic patients. A nonlinear model of the diabetic patient is developed using 

compartmental modeling theory and literature data. The constraint handling and 

prediction capabilities of MPC provide an excellent framework for the glucose control 

problem. Linear MPC proved to be sufficient for controlling blood glucose, but it results 

in glucose concentrations near the output lower bound. Therefore, Linear MPC with state 

estimation, utilizing a Kalman filter and a more accurate Internal Model (IMC), yields 

improved control when compared to the linear MPC scheme and a discretized IMC 

controller from literature. 

Tan, Chen and Marquez [49] employed MPC on SYNCRUDE utility boiler plant 

for boiler firing rate control. Initially, the system is equipped with PI control, to control 

firing rate with ease and simplicity, but due to large (load) disturbances, primarily due to 

firing rate limit constraints, causes unstability, so a Derivative term in the existing PI 

controller is introduced and re-tune the resultant PI controller for firing rate control. Later 

they used MPC to overcome the poor performance of PI controller for small load 

disturbances. Simulation results showed that both PI and MPC controllers can improve 

plant stability and performance due to sudden change in steam demand for firing rate 

control of an industrial boiler, but MPC was recommended as it gives superior 

performance and stability and handles controller constraints effectively. 
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MPC is also applied to glass melting process [50]  and mechanical pulp bleaching 

process [51].    

Xu, Shaoyuan and Cai [52] proposed a cascade model predictive control scheme 

for boiler drum level control. This algorithm had been implemented to control a 75-MW 

boiler plant, and the results showed an improvement over conventional (PI) control 

scheme. The system has two loops, the inner loop (feedwater flow-valve position) used 

an adaptive model based predictive controller, to overcome the disturbances, while the 

outer loop (drum level water flow system)  used a GPC controller to restrain the error 

from nonlinear identification of the generalized system. Simulation results showed that 

cascade GPC performed better than the well tuned cascade PI controller, and the 

performance of the system was very good. 

Vladimir and Findejs [53] showed application of model predictive control for 

advanced combustion control (ACC). Their main emphasis was to control boiler pressure 

while simultaneous keeping combustion (air-fuel ratio) optimization coordination. They 

also came up with the actual plant results and operational experience with ACC and it 

showed substantial improvement in boiler efficiency and reduction in NOx production. 

Majanne [54] demonstrated the use of MPC to control the pressure in a multilevel 

steam network in a simulator environment. Three steam pressures controlled were steam 

pressure in the high pressure (HP) header, pressures in the intermediate pressure (IP) and 

low pressure (LP) headers. He compared operation of MPC with conventional PI 

controller. Results showed that MPC can stabilize pressures in IP and LP headers better 
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than PI controller, and pressure response in the HP header were almost equal. He also 

demonstrated MPC as a tool for process design. 

Liu and Lin [55] presented MPC method which combines integral control and 

constraint handling proposed for mechatronic system. They designed state observer using 

pole placement for output feedback control. They applied the proposed controller to the 

piezo-actuated system. Different controller design parameters, (Prediction horizon, 

control horizon, weighting parameters) that effects control design were analyzed. 
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CHAPTER 3  
 
 
 
BOILER SYSTEM AND EMISSION FORMATION 

 

3.1 Boilers in Brief 

Boiler system is briefly introduced in this section since it is the plant under study in this 

thesis.  

The term “boiler” applies to a device for generating (1) steam for power, 

processing or heating purposes; or (2) hot water for heating purposes or water supply 

[56]. Boilers are designed to transmit heat by convection and radiation from combustion 

of fuel. Heating mechanism is provided through a firebox or a furnace. The purpose of 

this firebox is to burn the fuel to provide heat for the convection process. Boiler operation 

is a complex operation [27], hot water or steam must be delivered to couples system or 

turbine at a fixed rate, pressure and temperature for reliable operation. It is also desired to 

keep the pollutants minimum while maintaining optimal efficiency of the boiler. 

Simplified dynamic models for steam and water side for drum boilers were proposed in 

[7]. These models have been developed to be used to guide power plant operations or to 

design simulators and control systems. Nonlinear model for boiler dynamics were 
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proposed by Pellegrinetti and Bentsman [17]  and NOx emission by Li and Thompson 

[36]. 

A common classification of boilers is based on whether the gas flows inside or 

outside the tubes. In fire tube boilers, the flue gases flow inside the tubes, whereas in 

water tube boilers, the gas flows outside the tubes. The features of each type are 

discussed below. 

 

3.1.1 Fire tube boilers 

Fire tube boilers consist of a series of straight tubes that are housed inside a 

water-filled outer shell [57]. The tubes are arranged so that hot combustion gases flow 

through the tubes. As the hot gases flow through the tubes, they heat the water 

surrounding the tubes. The water is confined by the outer shell of boiler. To avoid the 

need for a thick outer shell fire tube boilers are used for lower pressure applications. 

Generally, the heat input capacities for fire tube boilers are limited to 50 mbtu per hour or 

less, but in recent years the size of fire tube boilers has increased. Most modern fire tube 

boilers have cylindrical outer shells with a small round combustion chamber located 

inside the bottom of the shell. Depending on the construction details, these boilers have 

tubes configured in one, two, three, or four pass arrangements. Because the design of fire 

tube boilers is simple, they are easy to construct in a shop and can be shipped fully 

assembled as a package unit. 

These boilers contain long steel tubes through which the hot gases from the furnace pass 

and around which the hot gases from the furnace pass and around which the water 
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circulates. Fire tube boilers typically have a lower initial cost, are more fuel efficient and 

are easier to operate. 

 

Figure  3.1: A fire tube boiler diagram 

 

3.1.2 Water tube boilers 

In this type, the water tubes are arranged inside a furnace in a number of possible 

configurations: often the water tubes connect large drums, the lower ones containing 

water and the upper ones, steam and water; in other cases, such as a mono tube boiler, 

water is circulated by a pump through a succession of coils. This type generally gives 

high steam production rates, but less storage capacity than the above. Water tube boilers 

can be designed to exploit any heat source and are generally preferred in high pressure 

applications since the high pressure water/steam is contained within small diameter pipes 

which can withstand the pressure with a thinner wall. 
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Figure  3.2: Schematic of the water tube boiler 

 

3.2 Main components of a Boiler: 

Riser: 

Heat collecting surfaces constructed from tubing and conveying boiler circulating 

water upwards to the steam drum are generally called risers. The risers may originate 

from either the water wall header at the base of the furnace, or from the mud drum. Boiler 

circulating water absorbs primarily radiant energy from the furnace fireball while resident 

in risers jacketing the furnace. 
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Downcomer 

Water is carried down from the boiler drum to the mud drum or to the water wall 

feedwater header through tubes called downcomers. The downcomers are not heated and 

are located outside of the furnace cavity. 

Drum: 

Figure 3.3 is a representation of a drum-type boiler. The steam drum and mud 

drum are mounted in a furnace and are interconnected with watertubes called risers and 

downcomers. The furnace includes one or more burners for the combustion of an air and 

fuel mixture. The heat of combustion is transferred to the watertubes to generate steam. 

Steam bubbles form in the tubes (risers) closest to the burner and rise to the steam drum 

where they are separated from the water. 

 

Figure  3.3: Structure of a drum boiler 
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The steam in the risers is replaced by water in the downcomers to provide natural 

circulation in the watertubes. A continuous supply of feedwater is necessary to replace 

the steam leaving the boiler. In most cases, the saturated steam leaving the steam drum is 

returned to the furnace for superheating.  

Superheater 

The superheater is a flue gas to steam heat exchanger. Heat from the flue gases is 

added to the saturated steam from the drum. 

Burner 

The burner is used to introduce fuel and air to the furnace at the required 

velocities, turbulence, and concentration to maintain ignition and combustion of the fuel 

within the furnace. 

Forced Draft Fan 

A forced draft (FD) fan provides combustion air to the wind box from which it is 

delivered to the burners. 

Economizer 

Feedwater from the condensate-feedwater system enters the economizer located 

in the furnace flue gas ductwork. Waste heat from the flue gas is absorbed by the 

feedwater in order to improve efficiency. 
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Induced Draft Fan 

An induced draft (ID) fan draws the flue gases from the furnace and drives them 

up the stack. Heat from the flue gas is used to preheat the combustion air to improve 

efficiency. 

Air pre-heater 

The steam-generator air heater improves boiler efficiency by transferring heat to 

incoming combustion air from the flue gases before they pass to the atmosphere. The heat 

is transferred to the air from the flue gas through a regenerative heat-transfer surface in a 

rotor that turns continuously through the gas and airstreams. 

 

3.3 Theory of NOx Formation 

This section gives a brief introduction to the fundamental theory of NOx 

formation. Nitrogen oxides are of environmental concern because they initiate reactions 

that result in the formation of ozone and acid rain, which can cause health problems, 

damage buildings, and reduce visibility. The allowable NOx emissions from boilers vary 

depending on local regulations but are gradually edging toward single-digit values in 

parts per million (ppm) due to advances in combustion and pollution control technology. 

The principal nitrogen pollutants generated by boilers, gas turbines, and engines and 

other combustion equipment are Nitric Oxide (NO) and Nitrogen Dioxide (NO2) 

collectively referred to as NOx and reported as NO2. Once released into the atmosphere, 

NO reacts to form NO2,which reacts with other pollutants to form ozone (O3). Oxides of 
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nitrogen are produced during the combustion of fossil fuels through the oxidation of 

atmospheric nitrogen and fuel-bound nitrogen. 

These sources produce three kinds of NOx: fuel NOx, prompt NOx, and thermal NOx. 

3.3.1 Fuel 𝐍𝐎𝐱 

Fuel NOx is generated when nitrogen in fuel combines with oxygen in combustion 

air. Gaseous fuels have little fuel-bound nitrogen, whereas coal and oil contain significant 

amounts. Fuel-bound nitrogen can account for about 50% of total NOx emissions from 

coal and oil combustion. Most NOx control technologies for industrial boilers reduce 

thermal NOx and have little impact on fuelNOx, which is economically reduced by fuel 

treatment methods or by switching to cleaner fuels. Fuel NOx is relatively insensitive to 

flame temperature but is influenced by oxygen availability [58]. 

3.2.2 Prompt 𝐍𝐎𝐱 

 Prompt NOx results when fuel hydrocarbons break down and recombine with 

nitrogen in air. Prompt NOx is chemically produced by the reactions that occur during 

burning; specifically, it forms when intermediate hydrocarbon species react with nitrogen 

in air instead of oxygen. PromptNOx, so called because the reaction takes place ahead of 

the flame tip, accounts for about 15–20 ppm of the NOx formed in the combustion 

process and is a concern only in low temperature situations. 

3.2.3 Thermal𝐍𝐎𝐱 

Thermal NOx forms when atmospheric nitrogen combines with oxygen under 

intense heat. This rate of formation increases exponentially with an increase in 
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temperature and is directly proportional to oxygen concentration. Its formation is well 

understood and straightforward to control. Keeping the flame temperature low reduces it. 

Below a certain temperature, thermal NOx is nonexistent. Combustion temperature, 

residence time, turbulence, and excess air are the other factors that affect the formation of 

thermal NOx. Most NOx is formed in this manner in gas turbines, industrial boilers, and 

heaters fuelled by natural gas, propane, butane, and light fuel oils. The thermal NOx is 

due to the direct oxidation of molecular nitrogen N2 in hot flames and can be described as 

2

2
(3.1)

N O NO N

N O NO O

N OH NO H

→+ +←

→+ +←

→+ +←
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CHAPTER 4  
 
 
 

MATHEMATICAL MODEL FOR DRUM BOILER 

AND NOx (AUGMENTED SYSTEM) 

 

 4.1 Drum Boiler Model 

 The model has been adapted from the work of Astrom and Bell [14]. The 

considered boiler is 160MW oil fired boiler unit in Sweden. In this model, much of the 

system behaviour is captured by considering the mass and energy balance for total system 

so that a fourth order non-linear state space model can be obtained. 

The model describes the complicated dynamics of the drum, downcomer, and riser 

components. It is derived from the first principles and is characterized by a few physical 

parameters and can be easily scaled to represent any drum power station. 

The basic schematic of a boiler is given in the following figure as shown by Astrom and 

Bell. 
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Figure  4.1: Schematic picture of a drum boiler 
 

In the above figure [22],  is the heat applied on the riser tubes. This applied heat causes 

the water in the drum to boil. The applied heat also causes saturated steam to rise in riser-

drum-downcomer loop. Feedwater, , is the flow rate of water being supplied to the 

boiler. Saturated steam, , is the flow rate of the steam which is fed to the superheaters 

and the turbine. 

 

4.1.1 Governing Equations of Drum Boiler  

A simple model of the drum boiler, that captures the pressure dynamics very well 

is a second order model based on the global mass and energy balances [14]. 

Three inputs to the model are and two measurable outputs are drum pressure, p  

and the drum water level, . 

Standard notations used to write the balance equations are: denotes volume, denotes 

specific density,  specific internal energy,  specific enthalpy, t temperature and  

mass flow rate. Also the subscripts, Also, the subscripts, , ,  and  refer to steam, 

Q

fq

sq

, ,s fq q Q

l

V ρ

u h q

s w f m
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water, feedwater and metal, respectively. The double subscripts, t, d and r denoting the 

total system, drum and the riser are used for clarification of the system components. The 

total mass of the metal tubes and the drum is and the specific heat of the metal is . 

The global mass balance is:  

[ ] (4.1)s st w wt sf
d V V q q
dt

ρ ρ+ = −  

The global energy balance is: 

[ ] (4.2)s s st w w wt t p m s sf f
d u V u V m C t Q q h q h
dt

ρ ρ+ + = + −  

Since the internal energy is , the global energy balance can be written as 

[ ] (4.3)s s st w w wt wt t p m s sf f
d u V h V p V m C t Q q h q h
dt

ρ ρ+ − + = + −  

The total volume of the drum, downcomer, and risers is: 

(4.4)t st wtV V V= +  

These equations along with saturated steam tables capture the gross behaviour of 

a simple boiler and describe the drum pressure responses due to input and 

fluctuations. The second order model which follows describes the total water in the 

system but does not capture the drum water level dynamics because the distribution of 

steam and water are not included. The state variables for the state model are p and . 

tm pC

/u h P ρ= −

fq sq

wtV
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11 12

21 22 (4.5)

wt
sf

wt
s sf f

dV dpe e q q
dt dt

dV dpe e Q q h q h
dt dt

+ = −

+ = + −

 

Where, 
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22 (4.6)( ) ( )
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s w
st wt
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e
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e h h

h h te V h V h V m C
s

ρ ρ

ρ ρ
ρ ρ

ρ ρ

ρ ρρ ρ
ρ ρ ρ ρ

= −

∂ ∂= +
∂ ∂

= −

∂ ∂ ∂ ∂ ∂= + + + − +
∂ ∂ ∂ ∂ ∂

 

But the serious deficiency in this simple model lies in its failure to model drum water 

level. Although it does determine the total amount of water in the system it does not take 

into account the steam in the risers and below the water surface level in the drum. To do 

this separate mass and energy balances must be written for the risers and the drum. 

Riser dynamics: 

The global mass balance for the riser is: 

(4.7)( (1 ) )s v r w v r rdc
d V V
dt

q qρ α ρ α+ − = −  

where  is the average volume fraction in the risers, is the total mass flow rate out of 

the risers and  is the total mass flow rate into the risers. 

The global energy balance of the riser section is  

vα rq

dcq



39 
 

(4.8)( (1 ) ) ( )s w r r p s w r c ws v r w v r rdch h pV m C t h h hd V V Q
dt

q qρ α ρ α α− + ++ − = + −

Eliminating the flow rate out of the risers, , multiplying Eq.(4.7) by and  

adding to Eq.(4.8) gives, 

) ( ) ( )

( )

( ) ( (1 ) )

(

(1 )

)

s w r c s v r

w

w r c w v r

s
r r p r c

s v r
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dh h h V
dt

d h
dt

dh h V
dt

dtdpV m C h
dt dt

d V
dt
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Q q

α ρ α

α ρ α
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This can be simplified to  
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Drum Dynamics: 

The dynamics for the steam in the drum is: 

0

1

( )

(1 ) (1 ) )

( ) (4.10)

(
)

sd s
sd

c

s
sd wd d p

r r v w v s

f ws
sd sd f

d c

s w
s s wsd wdV

h
dtdpV V m C

dt dt
dV
dt

h h
V V q

T h

dV d dh dhV V
dt dt dt dt

β α ρ α ρ

ρ

ρρ ρ ρ

α

+ +

− + +

+ − +

−
= − +

+

+

 

Astrom and Bell conveniently chose four state variables with good physical 

interpretation that describe the storage of mass, energy and momentum. These state 

variables capture the pressure, water, riser, and drum dynamics. The state variable for the 

drum pressure, p represents the total energy. The state variable for the total water volume

 represents the accumulation of water. The state variable for the steam mass fraction 

or quality in the riser outlet  represents the distribution of steam and water. Finally, the 

state variable for the steam volume under the liquid level inside the drum is represented 

by . The time derivatives of these state equations can be rewritten as: 

wtV

rα

sdV
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0
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42 43 (4.11)( )

r
r

f wsd sr
sd sd f

d c
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sf
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s sf f

c dc

hdV q
dt T h

dV dpe e q q
dt dt

dV dpe e Q q h q h
dt dt

ddpe e Q h q
dt dt

hddpe e e V V
dt dt

αα

ρα −
+ −

+ = −

+ = + −

+ = −

+ = +

 

The outputs are chosen as the drum-level  and the drum pressure . 

(4.12)
V Vsd wdl

Ad

+
=

where 

(4.13)(1 )V V V Vv rwtwd dc α= − − −

 

Steam tables are required to calculate   

 at the pressure   

Steam table was interpolated with a function using MATLAB, the drum boiler dynamic 

model of Astrom and Bell is based on physical parameters. 

 The set of nonlinear differential equations Eq. (4.11) representing the time dependence 

of the state variables can be presented in a matrix form as follows: 

  

l p

, , , , , , , ,s w s w s
s w s w s

h h p p th h t and
p p p p p

ρ ρ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

p
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4.1.2 Linearisation of Drum Boiler Model 

Non-linear drum boiler model can be expressed by  

Since most control system techniques require a linear model, the non-linear model is 

linearised.  

The resulting linear model is expressed by following state space equation 

(4.1.2.1)
x A x B u
y C x D u
∂ = ∂ + ∂
∂ = ∂ + ∂



  

The operating point around which the plant is linearised is 

 

 

Mass flow rate of Steam ( ) = 50 kg/s 

Mass flow rate of Water ( ) =50 kg/s 

Fuel flow rate ( ) = 86.121 MW 

Volume of water in the drum = 56.28 3m  

Drum pressure = 8500 kPa 

Steam mass fraction in riser = 0.0346 

Volume of steam in the drum = 4.14 3m  

at these values, system matrices are given by 

( , ) ( , )x f x u and y g x u= =

[56.28 8500 0.0346 4.1432]ox =

[50 50 86.121]ou =

sq

fq

fW
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1/ 2 00 0 0
0 1/ 20 0 0

0 0 0
(4.1.2.2)

0 0 0

C

D

 
=  
 

 
=  
   

 

 4.2 NOx Emission Model 

The model considered is 300MW oil fired drum boiler of a Kilroot power station in 

Northern Ireland [59] The boiler was designed to supply its turbine with steam at a 

temperature of  and up to pressure of 162 bar. It has got one burner box on each 

corner. Each burner box contains nine separate sections. The fuel used is crude oil. 

Three inputs to the model are Fuel flow rate Burner tilt position and Fuel air ratio

and the output is NOx. 

Thermal NOx is the principal source of nitrogen oxide emissions at Kilroot. The 

formation of thermal NOx is determined by a set of chemical reactions known as 

extended Zeldovich mechanism. 

0         0  -5.269e-016      0
0         0         0                0
0         0   -0.1546            0
0         0  -16.9454   -0.0833

A

 
 
 =
 
 
 

    -0.002045     0.001418         3.64e-007
    -0.4655         -0.06679          0.0003091
    4.757e-005    6.824e-006     3.058e-008
     0.01203        -0.003133       -1.176e-006

B

 
 
 =
 
 
 

0540 c

,fW ,ξ

λ
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The principal reactions are: 

 

 

 

 The rate coefficients for the forward reactions (4.21)-(4.23) are and for the 

corresponding backward reactions are Invoking the steady-state 

approximation for the N-atom concentration, that is , and assuming the partial 

equilibrium for the reaction 

2O    OH     O     H+ ⇔ +  
                                                                                                                                                                                         
NO formation rate may be expressed  

2
1 2 2 2 1 2

2 2 1

2[ ]( [ ][ ] [ ] )( ) (4.2.2)
[ ] [ ]

O K K O N K K NOd NO
dt K O K NO

− −

−

−
=

+
 

Considering the initial concentrations of NO and OH are low and only the forward 

reaction rates are significant, therefore the NOx formation rate can be expressed as  

1 2
( ) 2 ( )( )d NO K O N
dt

=  

In this equation, the O  can be related to the 2O  from the assumed equilibrium condition 

of reaction  

 
2

1
2

2

0.5

( ) /( )o

O O

K O O

⇔

=
 

 

1 2 3, , ,K K K

1 2 3, ,K K K− − −

( ) 0d N
dt

≅

1

1

2

2

3

3

2

2

(4.2.1)

k

k

k

k

k

k

N O NO N

N O NO O

N OH NO H

−

−

−

→+ +←

→+ +←

→+ +←
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And equation …becomes 

1
2

1 0 2 2
( ) 2 ( ) ( )d NO K K O N
dt

=  

Oxygen Volume flow rate: 

2
(1.87 0.70 5.6 ) (4.2.3)f ff o C S H W WV β= + + =

 

 

C, S and H are Carbon, Sulphur, and Hydrogen weight percentage in the fuel. 

Stoichiometric air mass flow 

2
, (4.2.4)

0.21 0.21
f

a st
a a

f o W
W

v v
V β

= =  

= is the specific volume of air (m3/kg)  

 = stoichiometric Fuel-to-Air ratio 

Let be the Air volume flow rate, and Air mass flow rate respectively. 

Then  and let the actual Fuel-to-Air ratio be  

Theoretical Oxygen concentration in the exhaust (after burning) 

We usually define the air-to fuel ratio, 

fW Fuel mass flowrate=

av

,

0.21f a
st

a st

W v
W

λ
β

= =

,a aV W

a a aV v W= f
f

aa

W
W

λ =
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,

(4.2.5)a

a st
e

W
W

λ =

The concentration for Oxygen in the exhaust is given by 

2 ( ) (4.2.6)st
a

O
v
β λ λ= −  

Therefore, equation (4.34) can be written as  

1/ 2 1/ 2
1 0 2

1/ 2

( ) 2 ( )( / ) ( ) (4.2.7)

( )

a st

st

d NO K K N v
dt

β λ λ

α λ λ

= −

= −

 

is the fuel to air ratio and is the stoichiometric Fuel-to-Air ratio 

Assuming that 

, 0 1
55( ) (1 ) (4.2.8)

90
r

f ff W W ξα ξ α α −
= = +

 

Equation (4.3.9) gives NO formation rate 

1/ 2
0 1

( ) 55(1 )( ) (4.2.9)
90

r
f st

d NO W
dt

ξα α λ λ−
= + −

 

For physical parameter estimation experiments were conducted on the boiler unit [59] 

Thus corresponding parameters were obtained as 1806, 0.438 and 0.25 

respectively. 

0.25 1/ 2( ) 551806 (1 0.438 )( ) ( ) (4.2.10)
90

NO
f st NO

dY t W Y t
dt

ξ λ λ−
= + − −

 

λ stλ

0 1, ,and rα α
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4.2.1. Linearisation of NOx Model
 

Considering the equation  

0.25 1/ 2( ) 551806 (1 0.438 )( )
90

NO
st NOf

dY t W Y
dt

ξ λ λ−= + − −
 

The NOx non linear model can be expressed as  

 

( , , )fu W ξ λ=  

The resulting linear model is expressed by following state equation  

(4.2.1.1)NOx NOxx A x B u∂ = ∂ + ∂

 

Where  

0 0 0 0
(4.2.1.2)( , ) ( , );NOx NOx

f x u f x uA B
x u

∂ ∂= =
∂ ∂

 

The operating point around which the NOx non linear model is linearised is 

0 232.4x ppm=  

0

0
0, 0[2.13 55 0.0679] [ , ]fu W ξ λ= =  

Therefore,  

Differentiating 4.2.12 with respect to  

( , )NOx f x u=

0 0( , )NOx f x u=

fW
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f
f

f W
W

 ∂
∆  ∂ 

= 

0

0.75 1/ 20
0 (4.2.1.3)( 55)451.5* [1 0.438 ]*[ ]

90 stfW ξ λ λ− −+ −
 
 

                 = 20.83      

Differentiating 4.2.12 with respect to ξ  

f ξ
ξ

 ∂
∆ ∂ 

  = 

0

0.25 1/ 2
01806* *[0.438 / 90]*[ ] (4.2.1.4)f stW λ λ−

 

                 = 0.86 

 

Differentiating 4.2.12 with respect to ξ  

   f λ
λ
∂ ∆ ∂ 

 =  

0

0.25 1/ 20
0 (4.2.1.5)( 55)903* [1 0.438 ]*[ ]

90 stfW ξ λ λ −−− + −

 

                    = 13139.7 

Therefore, Linearised model is:  

20.83 0.86 13139.7 (4.2.1.6)NO NO fx x W ξ λ= − + + −
 

Equation, 4.2.16 will be appended as 5th state in the augmented model 

20.83 0.86 13139.7NO NO fx x W ξ λ= − + + −  

451.5*0.56*0.0824=

1806*1.2*4.866 003*0.0824e= −

903*1.2*12.126= −
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1[ ] [20.83 0.86 13139.7] (4.2.1.7)
f

NO NO

W
x x ξ

λ

 
 = − + + −  
  



 

4.3 Need of Augmented Model 

Boiler drum level control is critical for both plant protection and equipment safety 

and applies equally to high and low levels of water within the boiler drum. The purpose 

of the drum level controller is to bring the drum up to level at boiler start-up and maintain 

the level at constant steam load. A dramatic decrease in this level at constant steam load 

may uncover boiler tubes, allowing them to become overheated and damaged. An 

increase in this level may interfere with the process of separating moisture from steam 

within the drum, thus reducing boiler efficiency and carrying moisture into the process or 

turbine. 

Pollution of environment from industrial processes has been blamed for causing 

climate changes. Climate changes in recent time have increased the frequency of natural 

disasters. The concerns over the global warming and environmental degradation have led 

to the enforcements of stringent constraints. These constraints are nowadays among the 

most important factors impacting on plant performance and profitability. These new 

regulations have already led to the close down of some production sites. These 

regulations have changed, and will keep on changing the rule of the game in many 

industrial sectors. Many of the international agreements are imposing limits on emissions 

of CO, NOxand other gases. Due to the new regulation, measures have been taken to limit 

the emission up to regulatory level.  
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4.3.1. Linear Augmented Model 

The augmented model is developed by considering the linear model of drum 

boiler shown in section 4.12 and NOx model mentioned in section 4.21. A Schematic of 

the augmented model is shown below 

Boiler Model

Feed Water rate

Fuel Flow rate

Burner Tilt position

Fuel Air ratio

Steam Flow rate

Drum Level

Drum Presssure

NOx

  

Figure  4.2: Augmented model of Boiler and NOx 

 

Model Formulation 
 
The augmented model has 5 inputs and 3 outputs as mentioned below: 
 

Inputs: 

Mass flow rate of Steam ( sq ) (kg/s) 

Mass flow rate of Water ( fq ) (kg/s) 

Fuel flow rate ( fW ) (kg/s) 

Burner Tilt Position (ξ ), 

Fuel Air Ratio (λ ) 
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Outputs: 

Drum Level  (mts) 

Drum Pressure ( )p  (kPa) 

NOx (ppm) 

Referring to the linear model developed in section 4.12, we need to add a fifth state to 

account for NOx, as developed in equation 42.1.6. 

The operating point around which the augmented model is linearised is: 

0 [56.28 8500 0.0346 4.41432 232.4]x =  

0 [50 50 2.13 55 0.0679]u =  

State space augmented model linearization is given by: 
 

,
(4.3.1)

aug aug

aug aug

x A x B u
y C x D u
= +

= +


 

Before coming up with the augmented model, we need to scale the units of Fuel flow 

rate( ) of linear boiler model from MW to kg/s 

*fQ W HHV=  

Q = Flow rate (MW); 

fW = Fuel flow rate (Kg/s) 

HHV = High Heating Value of Fuel (KJ/Kg) 

( )l

( )NO

3u
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HHV of Crude oil=40360 KJ/Kg [60] 

Therefore, system matrices are 

0         0  -5.269e-016      0 0
0         0         0                0 0
0         0   -0.1546            0 0
0         0  -16.9454   -0.0833 0
0 0 0 0 1

Aaug

 
 
 
 =
 
 
 − 

 

 
 

-0.002045     0.001418    0.0147    0        0
-0.4655      -0.06679       12.475    0        0
4.757e-005   6.824e-006     0.0012    0        0
0.01203       -0.003133     -0.0024    0        0
    

augB =

0             0          20.83     0.86    -13139.7

 
 
 
 
 
 
    

[1/ 2 00 0 0 0

0 1/ 2 00 0 0
0 0 0 0 1]

[0 0 0 0 0

0 0 0 0 0
0 0 0 0 0] (4.3.2)

aug

aug

C

D

=

=
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CHAPTER 5  
 
 
 

MODEL PREDICTIVE CONTROL 

 

5.2 Overview 

Model Predictive Control (MPC), is an advanced control theory and method, that 

is primarily based on prediction and optimization [61]. MPC has numerous applications 

especially within the process industry. MPC originated from the industry and was 

developed and practiced for nearly 20 years before the academic world got its eyes on it. 

So, for a long time MPC was used without even having been proven stable. 

One of the big advantages of MPC compared to other control theories is its ability 

to handle constraints, both in the process variables, that are to be controlled and in the 

manipulated variables that are the calculated output of the MPC and are used to control 

the plant. Many industrial processes benefit from operating close to or at their limits, to 

improve production effectiveness and consequently maximize the profit, at the same time 

manage to stay within safety or environmental restraints. MPC is well suited for 

multivariable systems but even smaller feedback systems can be rendered more effective 

with the use of MPC, especially if the application contains deadtimes. Since MPC 

algorithms are more computationally demanding than simpler control algorithms, such as 
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PI control, the advantage of MPC keeps growing due to the ever-increasing 

computational speed of modern computers. 

 

5.1  The Predictive Controller Concept (MPC Strategy) 

Model Predictive Control refers to a class of algorithms that compute a sequence 

of signals (manipulated variable adjustments) in order to optimize the future behaviour of 

a plant. The optimal sequence is generated by utilizing a model of the process. The model 

of the system is any entity that describes the input and output relations and any type of 

model can be used. We will utilize the state-space modeling technique to describe our 

processes. Naturally, these models can be linear or non-linear. Also, if the process is 

subjected to disturbances, noise or variations, these can be incorporated to the process 

models in the form of disturbance or noise models. This will allow the effect of 

disturbances on the predicted process to be taken into account. MPC also incorporates 

process constraints in the prediction. All of these qualities constitute the Model Predictive 

Controller Concept [61]. 

The strategy of MPC can be well understood from Figure 5.1  

At the present time n, the future outputs (y(n+k) for k=1.... P ) of the system over 

a prediction horizon ( P  or ), are predicted at each instant by using the model of the 

process, knowing values up to instant n (past inputs and outputs) and future inputs (u(n), 

u(n+1),..., u(n+k) for k=1…)  over the control horizon (C  or ) 

pH

cH
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Figure  5.1:Strategy of MPC 

 

Thus we can define the parameters as 

[ ( ), ( 1),........... ( 1)]T
pu u n u n u n H= + + −  

ˆ ˆ ˆ ˆ[ ( ), ( 1),.......... ( 1)]T
py y n y n y n H= + + −  

[ ( ), ( 1),........... ( 1)]T
pr r n r n r n H= + + −  

 In Figure 5.1, the past inputs (u(n-k) for k=1...C -1) are expressed by solid lines 

and the future inputs (u(n+k) for k=1... ) are shown by dashed lines. The set of future 

inputs which minimize an objective function are applied to the system. Only the first 

element of the future input is applied to the process since a new measurement of the 

output can be present at the next sampling instant. This procedure is repeated for next 

sampling time with addition of the new measurements, this is called receding strategy. 

cH
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A model is used in order to predict the future outputs based on past inputs and 

outputs of the system. A comparison is made between the predicted output of the plant 

and the reference trajectory of it and the future errors of the plant are calculated at each 

time step. The optimizer calculates the best future inputs considering the objective 

function and the constraints. Only the first element of this optimal set is applied to the 

plant and the same procedure repeated at the next sampling time. 

Optimizer Plant

Model

Set Point

Predicted 
Output

Future Errors Future Inputs

Future Inputs

Cost function Constraints

Model Predictive 
Control

 

Figure  5.2: Basic structure of MPC 
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5.2  Summary of Model Predictive Control Algorithm 

The Model Predictive Control algorithm can be briefly described to have the following 

three general steps [61].  

 

1. Explicit use of a model to predict the process output along a future time horizon 

(Prediction Horizon, ). 

2. Calculation of a control sequence along a future time horizon (Control Horizon,

), to optimize a performance index. 

3. A receding horizon strategy, so that at each instant the horizon is moved towards 

the future which involves the application of the first control signal of the sequence 

calculated at each step.  

 

5.3  Elements of MPC models 

In this section the components that build up a model predictive control are discussed. 

5.3.1 Process Model 

The process model is the heart of the model predictive control concept. Explicitly, 

MPCs use a model of the plant to be controlled to determine the future. Many different 

types of models exist for MPC algorithm. Process models can be linear as well as non-

linear.  

Historically, the models of choice in early industrial MPC applications were time domain, 

input/output, step or impulse response models due to the ease of understanding provided 

by these models. The linear models can be developed relatively easy and also provide 

pH

cH
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acceptable results when the plant is operated in the neighbourhood of the operating point. 

Thus linear model have been emphasized and worked upon in this thesis. 

Linear State Space Model: 

State space model is the common technique of model representation. It have 

several advantages including easy generalization to multi-variable systems, ease of 

analysis of closed loop properties, and on-line computation. Every linear lumped system 

with p inputs, q outputs and n state variables can be described by a set of equations of the 

form [thesis40]: 

(5.4.1.1)
x Ax Bu
y Cx
= +
=



 

The size of the constant matrices, A, B, C, and D are: 

• A = 𝑛 x 𝑛  

• B = 𝑛 x 𝑝 

• C = 𝑞 x 𝑛 

• D = 𝑞 x 𝑝 

While in the equations 5.4.1.1,  are the states,  represents the derivative of 

the states,  is the input and  is the output of the process. 

Other Models 

Other dynamic models of the systems that can be used with Linear MPC as follows: 

1.  Impulse Response Model 

2. Step Response Model 

3. Transfer Function Model 

 

x x

u y
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5.3.2 Cost function 

In order to determine the health of the tracking (predicted process output, 

tracking the reference trajectory, ), a criterion function or cost function is used. 

Typically, such a function is a function of and  . A simple criterion function is 

given in the Equation 5.4.2.1 and it is, 

2

1
(5.4.2.1)ˆ[ ( ) ( )]

i

pH
J y n i r n i

=
= + − +∑

 
 
In this criterion, there is no involvement of u. Other criterion functions can be obtained 

by augmenting different penalty terms to this criterion function. These penalties usually 

involve the input,  and the rate of change of the input, . These quantities are 

penalized by weighting matrices when they exceed a certain desired threshold. A more 

comprehensive criterion function is  

1 1 1

(5.4.2.2)

( ) ( ) ( ) ( ) ( ) ( )T T T

i i i

p pcH HH
J e n i Qe n i u n i R u n i u n i S un i

= = =
= + + + ∆ + ∆ + + + +∑ ∑ ∑

 

,Q R and S are the weighting matrices, is the control horizon and e is the error 

between the desired output and the predicted output. i.e., 

                                               

Now minimization of J  with respect to over the prediction horizon gives the 

controller output sequence  i.e., 

arg{min }opt u Ju =  

ˆ( )y n

( )r n

ˆ,y r u

u u∆

cH

ˆ( ) ( )e r n y n= −

u

optu
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Then, optu  is the optimal with respect to the criterion function that is minimized. As a 

result, the future tracking error is minimized. If there is no disturbance or constraints and 

the model is exactly identical to the process, the process will track the reference 

trajectory exactly on each of the sampling instants. 

5.3.3 Constraints 

In practice, all industrial processes are subject to constraints. These constraints are 

discussed here before moving on to the discussion of the proposed MPC controller. For 

constrained model predictive control of a physical system, some criteria must be satisfied 

along with the minimization of the quadratic cost function. These conditions/criteria are 

known as constraints. The most common constraints are constraints on the manipulated 

(input to the process) and/or state variables. These constraints can make even a linear 

system nonlinear. Most commonly these constraints are in the form of saturation 

characteristics: valves with a finite range of adjustment, flow rates with maximum values 

due to fixed pipe diameters, or control surfaces with limited deflection angles. Input 

constraints also appear in the form of rate constraints: valves and other actuators with 

limited slew rates. These constraints, especially of the saturation type, are also often 

active, when a process is running at its most profitable condition. 

Constraints can also be used to represent the performance objectives of the 

controllers. Although most control constraints should be respected throughout the 

operation as hard constraints, sometimes, especially during the case when the system is 

subjected to unexpected disturbances, it may be unavoidable to exceed some state 

constraints i.e. soft constraints. Hard constraints are usually imposed on the input to the 

process while soft constraints are usually implemented on the output of the process. 
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Obviously, it is preferable (intended) to avoid violations of the soft constraints as well to 

ensure optimal or safe plant operation. 

 

5.4  MPC Characteristics 

MPC has remarkable features, some of which are as follows: 

1. It is relatively easy to tune and can handle non-minimal phase and unstable 

processes. 

2. It handles structural changes and it can be easily extended to multiple input-

multiple output (MIMO) systems. 

3. It is robust to modeling errors to some extent. 

4. It allows operation closer to constraints, hence increased profit. 

5. It can take account of actuator limitations. 

6. Predictive control can canter for process constraints during the controller design 

itself. It is the most attractive feature of MPC. 

7. Process model can be finite impulse response (FIR), step response, transfer 

function, state space or even non-linear. This is the contrast with respect to linear 

quadratic (LQ) or pole-placement control. 

8. Known and unknown disturbances can also be catered for in the design process. 

9. Because MPC is predictive in nature, if the reference set-point trajectory is known 

in advance ( e.g. Drum Level and Pressure), it too can be used in the controller 

design by “looking ahead” for the trajectory. 
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CHAPTER 6  
 
 
 

MPC FORMULATION OF THE AUGMENTED 
BOILER MODEL 

 

 6.1 Problem Formulation 

The goal of the thesis is to develop an MPC controller for the augmented boiler 

model to keep the drum level and drum pressure at the desired reference despite 

variations in the quantity of steam demanded, and also to limit the emission of NOx to 

the lowest value. 

In this chapter, formulation of MPC for the linear augmented model developed in 

Chapter 4 is shown. Initially elements of MPC like cost function and constraints are 

described then followed by MPC with Observer and MPC with Integral action controller 

for the augmented boiler model. Finally the performance of the proposed MPC controller 

is compared with that of conventional PI control. 
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6.2 Cost function 

The objective is to minimize the deviation from the desired drum level and drum 

pressure and reduce 𝑁𝑂𝑥 to certain level without controlling it, in the presence of 

measured disturbance. The cost function will have the following appearance. 

2 2

2 2 2 2
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The weighting matrices of output levelQ  and pressureQ  are kept as 1, while the weights for 

the change in inputs fuelR , feedwaterR , burnertiltpostionR , fuelairratioR  are kept as 0.1. 

 

6.3 Constraints 

In our design, Prediction Horizon ( ) is chosen to be 4 and control horizon (

) as 2 and the model is constrained under following limits.  

 

min max

20 20
4 10
10 10
0 0.04

Feedwaterrate
Fuelflowrate

u u
TiltPosition
Fuelairratio

−     
     −     = ≤ ≤ =
     −
     
       

 

6.4 State Observer design 

State observer can be described as a copy of the system with a feedback from the 

measured output with an observer gain to get a better value of the estimated state. MPC 

pH

cH
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with state estimation has advantage over standard MPC. The increased amount of 

information provided to the controller yields tighter control. Thus, we estimate the all 

states of boiler along with NOx. 

Model Predictive 
Controller Plant

State
Observer

Umpc

X(k)

Ref

 

Figure  6.1: MPC structure with State Observer 

 

Designing of observer for estimation of states can be done by several approaches. 

For example, a common technique is pole-placement or well known is Kalman filter. In 

our study, pole placement technique is used. An advantage of this approach is that 

stability of the closed-loop system is guaranteed by placing the poles in the stable region. 

Let the state vector of the observer be and the state estimation error be ˆe x x= −    

By constructing and subtracting the observer dynamics from the original system 

dynamics the estimation error dynamics becomes ( )e A LC e= − , where  is the observer 

gain, which has to be designed such that it assures stability by having all the eigen values 

of  to the left half plane (stable region) in the s-plane. 

x̂

L

( )A LC−



66 
 

The observer dynamic equation can be summarized as follows: 

ˆ ˆ ˆ( )

ˆ ˆ( )

x Ax Bu L y y
or

x A LC x Bu Ly

= + + −

= − + +





 

The observer gain  is determined by assigning a set of pole locations and using the 

Matlab command place  which is shown below 

desEigvalue = [-0.5 -1.2 -0.75 -0.6 -1]; 

L=place (A', C', [desEigvalue]'); 

Using the above code we find that, 

 
  936.4      1934.5   0
    0             0.9        0
  2.4           6.2       0
-888.5 -1899.7 0

0 0  0.5

L

 
 
 
 =
 
 
  

 

 
 

However, the gain matrice  determined by manually assigning pole locations 

provide satisfactory control.  

Thus, the response of the system under 10 kg/s (20% increase of nominal value) 

of step change in steam flow rate is shown for MPC with observer system, there was a steady 

state offset error in drum level as shown in figure 6.2. 

L

L
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Figure  6.2 : Response of drum level for MPC with Observer 
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Figure  6.3: Response of drum pressure for MPC with observer 
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6.5 MPC with Integral Control 

In order to overcome the steady state offset error in drum level, an integrator was 

added. The MPC control structure with state estimation and integral control is shown in 

figure below. 

Model Predictive 
Controller Plant

State
Observer

Uint

X(k)

Ref

Integrator

Y(k)

+

-

+

+

 
 

Figure  6.4: MPC structure with state estimator and integral control 

Before implementing the above structure, Muske and Badgwell approach for elimination 

of steady-state offset error using MPC was applied. Their approach involves augmenting 

the system model to include a constant step disturbance which as shown below: 
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where dsq R∈ , ds  is the number of augmented disturbance states, dG determines the effect 

of the disturbance. The model was augmented by steam flow rate, but the results did not 

show significant improvement. The conditions to use such formalism as presented in [62] 

appeared to be stringent and less practical for the current problem. 

Thus the technique of inserting the integral action in the MPC is implemented by 

integration of the output vector as  

q q y= −  

After adding the integrator and system dynamics together the augmented system is 

represented as: 

x Ax Bu= +  

Y C x=    

0
0

[ 0]
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u

q C I q
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= +       −       
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6.6 Simulation Results and Discussion 

Response of the system under 10 kg/s of step change in steam flow rate for MPC 

with integral system is shown. Due to the variation in the steam flow rate, causes an 
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increase in the fuel flow rate from 0 kg/s at 20 sec to 0.46 kg/s at 25 sec. At 26sec, 

reduction form 0.46 kg/s to 0.425 and remains constant as shown in figure 6.5. 

 

 

Figure  6.5: Response of Fuel Flow rate for MPC with Integral 

 

 

For every pound of steam that leaves the drum we must add a pound of water in order to 

maintain the desired level. In our study 10kg/s of steam is leaving so we need to add 10 

kg/s of water which was achieved as shown in figure below. 

Thus the feedwater rate follows similar trend to that of steam flow rate but with a slight 

larger oscillation before it settle down. 
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Figure  6.6: Response of Feed Water rate for MPC with Integral 

 

The corresponding response of drum pressure is shown in figure 6.7. At 20 sec, 

the pressure starts dropping from 0 kPa to -4.43 kPa at 21 sec, then increases to -3.55 kPa 

at 40 sec, again decreases to -4.56 kPa at 102 sec. 
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Figure  6.7: Response of Drum Pressure for MPC with Integral 

 

Figure 6.8 shows the variation of drum level and exhibits the allowable limits of the low 

and high level. 
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Figure  6.8: Response of Drum Level for MPC with Integral 
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Figure  6.9: Response of NOx for MPC with Integral 

 

6.6.1 Comparison of MPC and PI Controller 

Results show that response of MPC with constraints is much better that 

conventional control. The graph clearly shows that the oscillatory behaviour of drum 

level has been decreased and with MPC it settles to steady state value very quickly at 

1000 sec in response to PI and also drop in drum pressure has been reduced significantly. 

The controller reduces the oscillations in fuel flow rate and eliminates feed water 

oscillations which causes frequent failure of the water feed pumps and it reduces 

overshoot of NOx thus releasing less amount of NOx to the environment. 
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Figure  6.10: Comparison of Fuel Flow rate 
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Figure  6.11: Comparison of Feed Water rate 
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Figure  6.12: Comparison of Drum Level 
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Figure  6.13: Comparison of Drum Pressure 
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Figure  6.14: Comparison of NOx 

 

6.6.2 Controlling NOx with drum dynamics 

As we have stated in the previous cost function that we are controlling drum 

dynamics without NOx control, i.e. not including the NOx in cost function. So, in order to 

control NOx to steady state level with drum dynamics we made analysis which is shown 

below. 
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Cost function 

The objective is to minimize the deviation from the desired drum level and drum 

pressure and also reduce 𝑁𝑂𝑥 to steady state level by controlling it, in presence of 

measured disturbance. The cost function will have the following appearance 

2 2 2
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In our design, Prediction Horizon ( ) is chosen to be 4 and control horizon (

) as 2 and the model is constrained under same limits as mentioned earlier. With the 

above cost function implementation, the system response remains same for drum level, 

drum pressure and we are able to reduce NOx back to steady state level. Thus, the 

following figures show the response of drum level, drum pressure and NOx respectively 

pH

cH



82 
 

 

Figure  6.15: Response of Drum Pressure with NOx Control 
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. 

 

Figure  6.16: Response of Drum Level with NOx Control 
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Figure  6.17: Response of NOx under control  
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SPECIAL CASE: 

Comparison of PI and MPC for a disturbance of 20kg/s steam flow rate 

We have seen in the previous section that the proposed MPC controller performs 

well in all aspects compared to PI control, especially drum pressure as the pressure drop 

has been reduced to -5kPA from -28kPA. But for the case of drum level, there is not 

much improvement as the variation difference is only 1.4 centimetres, which is a minor 

difference. So, to have a better evaluation of the performance, we analysed the response 

of boiler for disturbance of 20kg/s of steam demand. We are able to have a much better 

performance in drum level and also other responses which are shown below. 
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Figure  6.16: Comparison of Drum Level for 20 kg/s disturbance 

When a step change of 20 kg/s in steam demand is made, the proposed controller is 

keeping the drum level under allowable limits, i.e. 4.4 centimetres while the PI controller 

keeps the level to 7.8 centimetres which may trip the boiler. 
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Figure  6.17: Comparison of Drum Pressure for 20kg/s disturbance 

The drum pressure drop has been reduced significantly even in presence of 20kg/s step 

change in steam demand, which is much better than PI controller. Also, there is reduction 

in overshoot of NOx which can be seen in the figure below. 
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Figure  6.18: Comparison of NOx for 20kg/s disturbance 
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Figure  6.19: Comparison of Fuel flow rate for 20kg/s disturbance 
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Figure  6.20: Comparison of Feed flow rate for 20kg/s disturbance 
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CHAPTER 7  
 
 
 

CONCLUSIONS AND FUTURE RESEARCH 

7.1 Conclusion 

The work presented in this thesis focuses upon the problem of controlling a drum 

type boiler operation as well as its NOx emission level in presence of variations of the 

steam demanded. For that purpose an augmented model integrating both boiler and NOx 

models has been developed. The augmented model was developed from the knowledge of 

Astrom and Bell drum boiler model and Li and Thompson NOx emission model. Before 

coming up with augmented model, scaling of Astrom model was done in order match 

with NOx model. Model Predictive Control (MPC) technique has been implemented for 

controlling the system. Conventional PI controller was also implemented. Results shown 

in Chapter 6 demonstrated that the performance of the proposed controller improves the 

performance and plant stability under sudden changes in steam demand better than PI 

controller.  

 

7.2 Recommendations  

In the present work, we developed a linear simulation model of boiler which 

considers NOx formation and also controlling the emission of NOx is carried out, but still 
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some of the other areas in terms of modeling is to be explored.  Following are some of 

the recommendations for future research 

a) Firstly, the present work considers the dynamics of the plant to be linear, 

thus we can develop a non liner boiler model considering NOx. 

b) We can also consider other emission pollutants like CO and O2 for 

modeling purpose. 

c) Adaptive control with combination of MPC may also provide better 

results. Very few work on adaptive-MPC approach is reported in literature 

for this area of research.  
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APPENDIX  

i. Matlab code for MPC with Obsever and Integral 

 

%.........Code for boiler obsv with integral...% 
 

Clear all; 

close all; 

load MPC1 

 

global Ad1hat Bd1hat Cd1hat Dd1hat Khat z; 

 

umin=[-20;-4; -10;   0.0; -20;-4; -10 ;0.0]'; 

umax=[20 ;10;  10;  0.04; 20;10 ;  10; 0.04]'; 

z=[ 0 0 0 0 0 0 ];%[ qs state-vector] 

X0=[0 0 0 0 0]'; 

Y0=[ 0 0 0]'; 

U=[0 0 0 0 0]'; 

  

 A=[0  0     -5.269e-016    0           0;... 
     
    0  0         0          0           0;... 
     
    0  0      -0.1546       0           0;... 
     
    0  0     -16.9454   -0.0833         0;... 
     
    0  0         0          0         -1]; 
  
HHV=40360; kJ/Kg 
 
b13=(3.64e-7)*HHV; 

 

b23=0.0003091*HHV; 

b33=(3.058e-8)*HHV; 
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b34=(-1.176e-006)*HHV; 

  
B=[-0.002045     0.001418       b13      0        0;... 
    
  -0.4655        -0.06679       b23      0        0;... 
    
   4.757e-005   6.824e-006      b33      0        0;... 
   
   0.01203      -0.003133       b34      0        0;... 
       
      0             0          20.83    0.86    -13139.73]; 
 
Ad=20; 
 
C= [1/Ad 0 0 1/Ad 0; 
    
   0 1 0 0 0]; 
 
  D=zeros(2,5); 
  
Khat=place(A,B(:,2:5),[-0.5 -1.2 -0.75 -0.6 -1]/5); 
  
L=place(A',C',[-0.5 -1.2 -0.075 -0.06 -1])'; 
 
tfinal=1000; 
 
sim('boiler_withoutNOxcontrol_integral'); 
 figure(1); 
plot(outputs(:,2)); 

xlabel('Time(sec)');ylabel('Drum level(mts)'); 

title('Drum level'); 

 figure(2); 

plot(outputs(:,3)); 

xlabel('Time(sec)');ylabel('Drum pressure(KPa)'); 

title('Drum pressure'); 

 figure(3); 

plot(NOx(:,2)); 

xlabel('Time(sec)');ylabel('NOx(ppm)'); 

title('NOx'); 

figure(4); 
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plot(inputs(:,2)); 

xlabel('Time(sec)');ylabel('Feed water rate(kg/s)'); 

title('Feed water rate'); 

 figure(5); 

plot(inputs(:,3)); 

xlabel('Time(sec)');ylabel('Fuel flow rate(kg/s)'); 

title('Fuel flow rate'); 
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ii. Simulink Model for MPC + Observer + Integral 
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