3,585 research outputs found

    Realization of reactive control for multi purpose mobile agents

    Get PDF
    Mobile robots are built for different purposes, have different physical size, shape, mechanics and electronics. They are required to work in real-time, realize more than one goal simultaneously, hence to communicate and cooperate with other agents. The approach proposed in this paper for mobile robot control is reactive and has layered structure that supports multi sensor perception. Potential field method is implemented for both obstacle avoidance and goal tracking. However imaginary forces of the obstacles and of the goal point are separately treated, and then resulting behaviors are fused with the help of the geometry. Proposed control is tested on simulations where different scenarios are studied. Results have confirmed the high performance of the method

    Adaptive neuro-fuzzy technique for autonomous ground vehicle navigation

    Get PDF
    This article proposes an adaptive neuro-fuzzy inference system (ANFIS) for solving navigation problems of an autonomous ground vehicle (AGV). The system consists of four ANFIS controllers; two of which are used for regulating both the left and right angular velocities of the AGV in order to reach the target position; and other two ANFIS controllers are used for optimal heading adjustment in order to avoid obstacles. The two velocity controllers receive three sensor inputs: front distance (FD); right distance (RD) and left distance (LD) for the low-level motion control. Two heading controllers deploy the angle difference (AD) between the heading of AGV and the angle to the target to choose the optimal direction. The simulation experiments have been carried out under two different scenarios to investigate the feasibility of the proposed ANFIS technique. The simulation results have been presented using MATLAB software package; showing that ANFIS is capable of performing the navigation and path planning task safely and efficiently in a workspace populated with static obstacles

    Evolving connection weights between sensors and actuators in robots

    Get PDF
    International Symposium on Industrial Electronics. Guimaraes, 7-11 July 1997.In this paper, an evolution strategy (ES) is introduced, to learn reactive behaviour in autonomous robots. An ES is used to learn high-performance reactive behaviour for navigation and collisions avoidance. The learned behaviour is able to solve the problem in a dynamic environment; so, the learning process has proven the ability to obtain generalised behaviours. The robot starts without information about the right associations between sensors and actuators, and, from this situation, the robot is able to learn, through experience, to reach the highest adaptability grade to the sensors information. No subjective information about “how to accomplish the task” is included in the fitness function. A mini-robot Khepera has been used to test the learned behaviour

    A Survey and Analysis of Cooperative Multi-Agent Robot Systems: Challenges and Directions

    Get PDF
    Research in the area of cooperative multi-agent robot systems has received wide attention among researchers in recent years. The main concern is to find the effective coordination among autonomous agents to perform the task in order to achieve a high quality of overall performance. Therefore, this paper reviewed various selected literatures primarily from recent conference proceedings and journals related to cooperation and coordination of multi-agent robot systems (MARS). The problems, issues, and directions of MARS research have been investigated in the literature reviews. Three main elements of MARS which are the type of agents, control architectures, and communications were discussed thoroughly in the beginning of this paper. A series of problems together with the issues were analyzed and reviewed, which included centralized and decentralized control, consensus, containment, formation, task allocation, intelligences, optimization and communications of multi-agent robots. Since the research in the field of multi-agent robot research is expanding, some issues and future challenges in MARS are recalled, discussed and clarified with future directions. Finally, the paper is concluded with some recommendations with respect to multi-agent systems

    Intelligent Robotics Navigation System: Problems, Methods, and Algorithm

    Get PDF
    This paper set out to supplement new studies with a brief and comprehensible review of the advanced development in the area of the navigation system, starting from a single robot, multi-robot, and swarm robots from a particular perspective by taking insights from these biological systems. The inspiration is taken from nature by observing the human and the social animal that is believed to be very beneficial for this purpose. The intelligent navigation system is developed based on an individual characteristic or a social animal biological structure. The discussion of this paper will focus on how simple agent’s structure utilizes flexible and potential outcomes in order to navigate in a productive and unorganized surrounding. The combination of the navigation system and biologically inspired approach has attracted considerable attention, which makes it an important research area in the intelligent robotic system. Overall, this paper explores the implementation, which is resulted from the simulation performed by the embodiment of robots operating in real environments

    Neural networks robot controller trained with evolution strategies

    Get PDF
    Congress on Evolutionary Computation. Washington, DC, 6-9 July 1999.Neural networks (NN) can be used as controllers in autonomous robots. The specific features of the navigation problem in robotics make generation of good training sets for the NN difficult. An evolution strategy (ES) is introduced to learn the weights of the NN instead of the learning method of the network. The ES is used to learn high performance reactive behavior for navigation and collision avoidance. No subjective information about “how to accomplish the task” has been included in the fitness function. The learned behaviors are able to solve the problem in different environments; therefore, the learning process has the proven ability to obtain a specialized behavior. All the behaviors obtained have been tested in a set of environments and the capability of generalization is shown for each learned behavior. A simulator based on the mini-robot, Khepera, has been used to learn each behavior

    A Reactive Anticipation for Autonomous Robot Navigation

    Get PDF
    • 

    corecore