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Abstract - In this paper an evolution strategy (ES) is 
introduced, to learn reactive behaviour in autonomous 
robots. An ES is used to learn high-performance reactive 
behaviour for navigation and collisions avoidance. The 
learned behaviour is able to solve the problem in a dynamic 
environment; so, the learning process has proven the ability 
to obtain generalised behaviours. The robot starts without 
information about the right associations between sensors and 
actuators, and, from this situation, the robot is able to learn, 
through experience, to reach the highest adaptability grade to 
the sensors information. No subjective information about 
“how to accomplish the task” is included in the fitness 
function. A mini-robot Khepera has been used to test the 
learned behaviour. 

1. INTRODUCTION 

Many real world problems involve interactions 
with dynamic environments. Some examples appear in 
control systems which have to be able to deal with 
unexpected events that occur in their environments. A 
particular case are robotic systems that have to react with 
the real physical world. The successful operation in such 
environments depends on the ability to adapt the system to 
the changes. 

Autonomous robots are sometimes viewed as 
reactive systems; that is, as systems whose actions are 
completely determined by current sensorial inputs. This is 
the base of the subsumption architecture [l], where finite 
state machines are used to implement robot behaviours. 
Other systems use fuzzy logic controllers instead [2]. The 
rules of these behaviours could be designed by a human 
expert, designed “ad-hoc” for the problem or leamed using 
different artificial intelligence techniques [3]. 

Machine leaming has been applied to shape the 
behaviour of autonomous agents in these kinds of 
environments. Some of these techniques become 
inapplicable to the learning reactive behaviour problem 
because they require more information than the problem 
constraints allow. 

The control architecture used to evolve the 
reaction (adaptation) is based on the Braitenberg models. 
Braitenberg [4] shows clearly and on strong biological 
grounds that behaviours which seem complex can be 
generated by means of a very simple control structure. 

In the proposed model, the robot starts without 
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information about the right associations between 
environmental signals and actions responding to those 
signals. And from this situation the robot is able to learn 
through experience to reach the highest adaptability grade 
to the sensors information. The number of inputs (robot 
sensors), the range of the sensors, the number of outputs 
(number of robot motors) and its description is the only 
previous information. 

In this paper, we present the results of a research 
aimed at leaming reactive behaviours in an autonomous 
robot using an ES. In section 2, we outline the general 
theory of Evolution Strategies. Section 3 is related to the 
experimental environment and the goals of the work. The 
experimental features are described in Section 4. The 
experimental results are shown in Section 5. The last 
section contains some concluding remarks. 

11. EVOLUTION STRATEGIES 

Evolution strategies (ES) developed by 
Rechenberg [5] and Schwefel [6], have been traditionally 
used for optimization problems with real-valued vector 
representations. As Genetic Algorithms [7] (GA) the ES 
are heuristic search techniques based on the building block 
hypothesis. Unlike GA, however, the search is basically 
focused in the gene mutation. This is an adaptive mutation 
based on the likely the individual represents the problem 
solution. The recombination plays also an important role in 
the search, mainly in the adaptive mutation. 
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Fig. 1. Schema of an evolution strategy 

Figure 1 shows a typical evolution strategy. First, 
it is necessary to codify each solution of the problem in a 
real-valued vector. Each vector represents a solution and 
also an individual. The method consists in evolving 
solution sets, called populations, in order to find better 
solutions. The evolution of populations is performed by 
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selecting pairs of individuals (parents) that produce new 
individuals (children) via recombination, which are further 
perturbed via mutation. The best individual (p+1 selection) 
or the best individuals (pth selection), in the set composed 
by parents and children, are selected to form the next 
population [SI. 

An individual is represented by 

a = (x, ...) x,, 0, ... , a,) E %", that are the n real 
values (x i )  and their corresponding deviations (q) used in 
the mutation process for the (p+h) ES. The mutation is 
represented by equations (1) and (2). 

cri'= cri 'exp(N(0,An)) 

x , ' =  X ,  + N (0, g3') 

Where xi' and q' are the mutated values, 
following a normal distribution (N(p, 4). 

However, when a (p+l) ES is used the mutation 
process follows the 1/5 rule [SI. In both cases, the 
recombination follows the canonical GA approach [7]. 

111. EXPERIMENTAL ENVIRONMENT 

The task faced by the autonomous robot is to 
reach a goal in a complex environment avoiding obstacles 
found in the path. Different environments have been used 
to find a generalised solution. The system has been 
developed using a simulator to prove different 
characteristics of the system. Finally, a real robot has been 
used to test the proposed solution. 

A mini-robot Khepera [9] has been used, which is 
a commercial robot developed at LAM1 (EPFL, Laussanne 
Switzerland). The robot characteristics are: 5.5 cm of 
diameter in circular shape, 3 cm of height and 70 gr. of 
weight. The robot has two wheels controlled by two 
motors that let any type of movement. The ES should 
specify the wheel velocity that could be read later by an 
odometer. Eight infra-red sensors supply two kinds of 
incoming information: proximity to the obstacles and 
ambient light. Instead of using eight sensors individually, 
to reduce the amount of information six sensors are used 
and grouped (as Figure 2 shown) giving a unique value, 
the average, from two input values. Representing the goal 
by a light source, the ambient information lets the robot 
know the angle (the angle position in the robot of the 
ambient sensor receiving more light) and the distance (the 
amount of light in the sensor). 

A simulator developed in a previous work [ 101 
has been used as a complete software for the simulation of 
mobile robot. Working with a simulation offers the 
possibility to evaluate several systems in different 
environments controlling the execution parameters. 

The simulated world consists of a rectangular map 
of user defined dimensions, where particular objects are 
located. In this world it is possible to define a final 
position for the robot (the goal to reach), (Figure 3 (a)). In 
this case, the robot is represented with three proximity 
sensors and two special sensors to measure the distance 
and the angle to the goal. 

w!,/ r ~ 1 Ambient Sensors 

0 Proximity Sensors 

Fig. 2. Sensors considered in the real robot. 
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Fig. 3. (a) SimDAI Simulator (Example of one simulated environment). 
(b) Example of a real experimental environment. 

Different simulated worlds which resemble real 
ones have been defined before being implemented in the 
real world. An example of these environments are shown 
in Figure 3 (a) and Figure 3 (b). The controlled developed 
is the same in both cases (simulated and real) except the 
differences in the treatment of the sensors. 

For the evaluation of the controller performance 
(in the real robot as well as in the simulator) some 
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quantitative measures have been used: the time needed to 
reach the goal, the trajectory length (measured using the 
movement of the robot centre), the number of oscillations 
(measured adding all the angle variations) and the number 
of collisions. 
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IV. EVOLVING WEIGHTS BY MEANS OF 
EVOLUTION STRATEGIES 

It has been proved that by means of connections 
between sensors and actuators, a controller is able to solve 
any autonomous navigation robotic behaviour 141, just 
finding the right weights for those connections for each 
particular problem. The input sensors considered in this 
approach are the ambient and proximity sensors of Figure 
2. The controller outputs are the wheel velocities. The 
velocity of each wheel is calculated by means of a linear 
combination of the sensor values using those weights 
(Figure 4): 

(3) 

i = i  

Where wIJ are searched weights, s, are sensor input 
values and f is a function for constraining the maximum 
velocity values of the wheels. 

Weight values depend on problem features. In 
general, these dependencies are unknown. To find them 
automatically, an ES is proposed. In this approach each 
individual is composed by a 20 dimensional-real valued 
vector, representing each one of the above mentioned 
weighs and their corresponding variances. The individual 
represents one robot behaviour consequence of applying 
the weights to the equation 3. The evaluation of behaviours 
is used as fitness function. 

In order to make the problem more realistic no 
information about the location of the goal, neither 
direction nor distance, has been included in the evaluation 
function. The evaluation of the behaviour of the robot is 
based on the following concepts: 

Time needed to reach the goal, measuring time 
(seconds) in the real robot and simulation 
cycles in the simulator. 
Trajectory length, measured using the velocity 
values of the motor wheels. 
Number of oscillations using the difference 
between the wheels velocity. 
Number of collisions using the minimum 
value of the proximity sensors. 

The evaluation begins with a initial value. This 
value decreases linearly with time, collision number and 
oscillations and increases, also linearly, with trajectory 
length. Although, taking into account the trajectory length 
seems contradictory it has been included not to allow static 
behaviours. 

Each evaluated robot behaviour ends over one 
environment when the goal has been reached or the time 
exceed some time out, fixed by the time needed to reach 

the goal using a fuzzy controller [3]. To evaluate a 
behaviour in a set of environments, the minimum value of 
evaluations is used as the fitness value of the individual. 

Si ; Sensor i 

Wi, ; Weight of the conexion 
between sensor I and wheel j 

Vi ; Velocity of wheel i 

Fig. 4. Connections between sensors and actuators in the Braitenberg 
representation of a Khepera robot. 

V. EXPERIMENTAL RESULTS 

Three different experiments have been done, all 
of them over the same set of environments. The 
environments have been generated by changing the goal 
position, number and location of obstacles looking for a 
generalised environment. 

Experiment one.- Static goals are considered and a 
p+h-ES has been used with the following parameters: 
p=50, h=50, Ao = 0,l and dynamic and preservative 
selection. 
Experiment two.- The goal follows a trajectory that is 
randomly generated in each environment. The ES 
characteristics are the same as in experiment one. 
Experiment three.- Environments and goals are the 
same as in experiment two but now a 1+1-ES has been 
used with the following parameters: C,=0,82, C,=1,2 
and dynamic and preservative selection. 

In Figure 5 the evolution of the fitness in 
experiment one is shown. The values in the y-axis 
represent the average of the fitness of the best individual 
over the whole set of environments for each iteration. 

I .-fitness ~ 

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 ,teratlon 

Fig 5 Evolution of the l+h-ES fitness (exp 1) 

IEEE Catalog Number: 97TH8280 - 688 - ISIE'97 - Guimarbs, Portugal 

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:44 from IEEE Xplore.  Restrictions apply.



Figure 6 shows the evolution of the different 
quality measures that compose the fitness. The Figure 6 
represents the average over the whole set of environments 
of each quality measure of the best individual (in fitness). 
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Figure 6. Evolution of the p+A-ES quality measures. (a) Collisions, (b) 
Trajectory length, (c) Goal reaching time and (d) Oscillations. 

The plots show the: different learning tendencies 
for each iteration. At the beginning, the system learns to 
avoid obstacles, and to follow a straight path, the number 
of collisions and the oscillations, thus, decrease fast 
(Figure 6 (a) and (d)) and the time needed to reach the goal 
is kept constant (Figure 6 (c)). This value of time is around 
the time out, what means that the system is unable to reach 
the goal. 

As no information about the direction nor distance 
of the goal is known by the evaluation function, the robot 
reaches the goal, the first time, by chance. The first 
individuals that reaches the goal have a little fitness 
advantage although they have loosed the ability of 
obstacles avoidance, as it can be seen in plots (a) and (c) of 
Figure 6. In previous iterations the number of collisions 
and oscillations lead the evolution. 

At this moment a selective pressure over the time 
appears. Therefore, the time needed to reach the goal 
decreases abruptly, and the number of collisions increases. 
This new selective pressure gives the ability of reaching 
the goal, not by chance but as a result of the behaviour of 
the individuals. This is shown in Figure 6 (c) where the 
time is continuously decreasing. When this behaviour is 
able to reach the goal in every environment the selective 
pressure over the collisions is added to the time selective 
pressure. From this point the system evolves a complex 
behaviour to reach the goal avoiding obstacles. 

The fitness evolution of the second experiment 
can be seen in Figure 7. The system evolution is equivalent 
to the result obtain in the above experiment. In this 
experiment the complexity of the environment makes the 
fitness evolve less continuously. The converged fitness 
value is higher than in the previous experiment due to the 
difficulty of reaching the go,al in all situations. 
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Fig. 7. Evolution of the p+;L-E,S fitness, with a goal in movement 

In the last experiment, a simpler strategy has been 
used in order to improve the total time of the learning 
process but keeping the same performance. The fitness 
evolution can be seen in Figure 8 .  
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Fig. 8. Evolution of the l+l-ES fitness, with a goal in movement 

The results achieved have been tested in a real 
robot. The behaviour of the robot is similar to the one 
obtained in the simulated experiments. An example of 
execution of the robot is showed in Figure 9, with two 
frames that represents the starting point (Figure 9 (a)), and 
the final position (Figure 9 (b)). 

Fig. 9. System Evolution Examples in one real experimental 
environment. (a) Starting position, (b) Goal reached. 

VI. CONCLUSIONS AND FURTHER WORK 

The experiments prove the possibility of learning 
behaviours in an autonomous robot by means of an ES. 

The process has been applied on a simple controller where 
the directly associations between sensors and motors 
allows to solve a navigation problem. It can be also 
extended to other more complex controllers where the 
association could be non-linear functions. It is important to 
remark that the fitness functions doesn’t include any 
subjective information “how to accomplish the task” but 
objective information about “how the task has been 
accomplished”. 

As a consequence, the leaming process can be 
easily modified in order to consider new problems that 
could appear such as: surrounding an obstacle, or hiding 
from the light. The adaptation to new problems does not 
require too much effort because of no inclusion of local 
information about the problem in the fitness function. 
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