25,656 research outputs found

    On-line multiobjective automatic control system generation by evolutionary algorithms

    Get PDF
    Evolutionary algorithms are applied to the on- line generation of servo-motor control systems. In this paper, the evolving population of controllers is evaluated at run-time via hardware in the loop, rather than on a simulated model. Disturbances are also introduced at run-time in order to pro- duce robust performance. Multiobjective optimisation of both PI and Fuzzy Logic controllers is considered. Finally an on-line implementation of Genetic Programming is presented based around the Simulink standard blockset. The on-line designed controllers are shown to be robust to both system noise and ex- ternal disturbances while still demonstrating excellent steady- state and dvnamic characteristics

    Generating Interpretable Fuzzy Controllers using Particle Swarm Optimization and Genetic Programming

    Full text link
    Autonomously training interpretable control strategies, called policies, using pre-existing plant trajectory data is of great interest in industrial applications. Fuzzy controllers have been used in industry for decades as interpretable and efficient system controllers. In this study, we introduce a fuzzy genetic programming (GP) approach called fuzzy GP reinforcement learning (FGPRL) that can select the relevant state features, determine the size of the required fuzzy rule set, and automatically adjust all the controller parameters simultaneously. Each GP individual's fitness is computed using model-based batch reinforcement learning (RL), which first trains a model using available system samples and subsequently performs Monte Carlo rollouts to predict each policy candidate's performance. We compare FGPRL to an extended version of a related method called fuzzy particle swarm reinforcement learning (FPSRL), which uses swarm intelligence to tune the fuzzy policy parameters. Experiments using an industrial benchmark show that FGPRL is able to autonomously learn interpretable fuzzy policies with high control performance.Comment: Accepted at Genetic and Evolutionary Computation Conference 2018 (GECCO '18

    Evolutionary computing for metals properties modelling

    Get PDF
    This is a post print version of the article, the official published version can be obtained from the link below.During the last decade Genetic Programming (GP) has emerged as an efficient methodology for teaching computers how to program themselves. This paper presents research work which utilizes GP for developing mathematical equations for the response surfaces that have been generated using hybrid modelling techniques for predicting the properties of materials under hot deformation. Collected data from the literature and experimental work on aluminium are utilized as the initial training data for the GP to develop the mathematical models under different deformation conditions and compositions.Financial support from the UK EPSRC (Engineering and Physical Sciences Research Council) under grant number GR/R70514/01 was used in this study

    Evolutionary-based sparse regression for the experimental identification of duffing oscillator

    Get PDF
    In this paper, an evolutionary-based sparse regression algorithm is proposed and applied onto experimental data collected from a Duffing oscillator setup and numerical simulation data. Our purpose is to identify the Coulomb friction terms as part of the ordinary differential equation of the system. Correct identification of this nonlinear system using sparse identification is hugely dependent on selecting the correct form of nonlinearity included in the function library. Consequently, in this work, the evolutionary-based sparse identification is replacing the need for user knowledge when constructing the library in sparse identification. Constructing the library based on the data-driven evolutionary approach is an effective way to extend the space of nonlinear functions, allowing for the sparse regression to be applied on an extensive space of functions. The results show that the method provides an effective algorithm for the purpose of unveiling the physical nature of the Duffing oscillator. In addition, the robustness of the identification algorithm is investigated for various levels of noise in simulation. The proposed method has possible applications to other nonlinear dynamic systems in mechatronics, robotics, and electronics

    Probabilistic and fuzzy reasoning in simple learning classifier systems

    Get PDF
    This paper is concerned with the general stimulus-response problem as addressed by a variety of simple learning c1assifier systems (CSs). We suggest a theoretical model from which the assessment of uncertainty emerges as primary concern. A number of representation schemes borrowing from fuzzy logic theory are reviewed, and sorne connections with a well-known neural architecture revisited. In pursuit of the uncertainty measuring goal, usage of explicit probability distributions in the action part of c1assifiers is advocated. Sorne ideas supporting the design of a hybrid system incorpo'rating bayesian learning on top of the CS basic algorithm are sketched

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system
    • …
    corecore