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Abstract: During the last decade Genetic Programming (GP) has emerged as an efficient 

methodology for teaching computers how to program themselves. This paper presents research 

work which utilises GP for developing mathematical equations for the response surfaces that have 

been generated using hybrid modelling techniques for predicting the properties of hot deformation 

of materials. Collected data from the literature and experimental work on aluminium are utilised as 

the initial training data for the GP to develop the mathematical models under different deformation 

conditions and compositions.  
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1. INTRODUCTION 

One of the central challenges of computer science is to get a computer to perform certain tasks without 

instructing it how to do it. Genetic programming addresses this challenge by providing a method for 

automatically creating a working computer program from a high-level statement of the problem.  

Genetic Programming (GP), invented by Cramer in 1985 and further developed by Koza (1992), solved the 

problem of fixed length solutions by creating non-linear entities with different sizes and shapes. The repertoire 

used to create these entities was also more varied, creating a richer, more versatile system of representation.  

GP achieves this goal of automatic programming (also sometimes called program synthesis or program 

induction) by genetically breeding a population of computer programs using the principles of Darwinian natural 

selection and biologically inspired operations. The operations include reproduction, crossover (sexual 

recombination), mutation, and architecture-altering operations patterned after gene duplication and gene deletion 

in nature.  

This paper is based on developing mathematical models for hybrid models that have been developed for 

modelling metals properties under hot deformation conditions. Collected data from the literature and 

experimental work for aluminium alloys are utilised as the databases for the models. Under different deformation 

conditions and compositions, data points are available for the flow stress and recrystallisation.  

 

2. GENETIC PROGRAMMING 

Genetic programming starts with a primordial large set of randomly-generated computer programs. The set of 

functions that may appear at the internal points of a program tree may include ordinary arithmetic functions and 

conditional operators. The set of terminals appearing at the external points typically include the program's 

external inputs (such as the independent variables X and Y) and random constants (such as 3.2 and 0.4). The 

randomly created programs typically have different sizes and shapes 

Consider, for example, the following algebraic expression:  

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/337248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ed
c

ba

   (1) 

 It can also be represented as a diagram which is shown in Figure 1. 

 

Fig. 1. Genetic programming tree. 

 

where ‘Q’ represents the square root function. This kind of diagram representation is in fact the phenotype of GP 

chromosomes, being the genotype easily inferred from the phenotype as follows: 
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which is the straightforward reading of the equation from left to right and from top to bottom (exactly as ones 

read a page of text). The expression is an Open Reading Frame, starting at ‘+’ (position 0) and terminating at ‘e’ 

(position 9).  The subtraction and division are functions of two arguments, and therefore in the next line are 

placed four more nodes, in this case, the symbols at positions 3, 4, 5, and 6. Now, we have two different 

functions in the third line: one is a function of one argument (Q), and another a function of two arguments (+). 

Therefore, three more nodes are required in the next line. In this case, they are filled with the elements at 

positions 7, 8, and 9. 

 

2.1. Solving Problems with Genetic Programming 

 

The aim of this study is to utilise GP for finding mathematical equations as a solution for modelling the 

behaviour of metals based on specified input conditions. 

In symbolic regression or function-finding the goal is to find an expression that satisfactorily explains the 

dependent variable. The input into the system is a set of fitness cases in the form (a(i,0), a(i,1), ..., a(i,n-1), yi) where 

a(i,0) - a(i,n-1) are the independent variables and yi is the dependent variable. The set of fitness cases consists of the 

adaptation environment where solutions adapt, thus discovering, solutions to problems.  

There are five major steps in preparing to use GP. The first is to choose the fitness function. For instance, we 

could measure the fitness fi of an individual program i by the following expression:  
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where M is the range of selection, C(i,j) the value returned by the individual chromosome i for fitness case j (out 

of Ct fitness cases), and Tj is the target value for fitness case j. If |C(i,j) - Tj| (the precision) is less than or equal to 

0.01, then the precision is equal to zero, and fi = fmax = Ct .M. (Ferreira 2001). 

The second major step consists of choosing a set of terminals T and a set of functions F to create the 

chromosomes. The third major step is to choose the chromosomal architecture, i.e., the length of the individual 

and the number of genes.  The fourth major step in preparing to use GP is to choose the linking function.  

Finally, the fifth major step is to choose the set of genetic operators that cause variation and their rates. 
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3. MATERIAL PROPERTIES MODELLING 

One method for modelling of metals properties is the hybrid modelling technique which provides a good 

modelling tool which combines different modelling approaches in one dynamic model (Abbod et al, 2002). 

Combinations of physical models and neuro-fuzzy models work very efficiently. While the physical model 

ensures that the results are physically sensible, the neuro-fuzzy model can be utilised to increase the accuracy of 

the results. One of the possible hybrid modelling techniques is the semi-parametric model which utilises serial 

and parallel parametric and non-parametric models. This gives advantages for compensating for sparse data, 

extrapolation improvements, uncertainty and the bias of the default model. 

The ultimate aim of modelling the metals behaviour, however, is to be able to provide tools that can be extended 

to all conditions and for other material. Currently, physically-based modelling is difficult to apply to extended 

conditions and materials. To extend the region of application requires the carrying out of a huge amount of 

experimental research, which is a very time-consuming process. Therefore, it is desirable to develop a modelling 

tool capable of being used for prediction under extended deformation conditions and for other kinds of metals. 

The hybrid modelling is carried out by combining the developed neuro-fuzzy models to predict the internal 

states, while the physically-based models all used to predict the final recrystallisation and flow stress conditions 

(Zhu et al, 2003).  In the hybrid model, the inputs are the deformation conditions such as strain rate, temperature 

T and deformation level, i.e. strain for a given material. The friction stress is at present difficult to calculate 

theoretically and hence is calculated using a neuro-fuzzy model based on experimental results. The internal state 

variables such as internal dislocation density , subgrain size  and misorientation between subgrains  are 

calculated by neuro-fuzzy models. The neuro-fuzzy models were trained based on data extracted from fitted 

smoothed curves of the original experimental measurements. Then, using the physical equations the final flow 

stress and the recrystallisation behaviour (Nv, drex, t50) are determined. Since the model covers a wide range of 

temperature and strain rate for each individual composition, tuning the model was important to adjust some of 

the parameters for scaling the internal state variables and calculating the individual internal stresses.  

 

4. FLOW STRESS MODELLING 

The generalisation of the model to a wide range of deformation conditions and compositions started with 

collecting data from the literature for different authors and different deformation conditions. The validation 

process of the hybrid model is based on the input-output relationships, in other words the input deformation 

conditions, composition, and the output flow stress and the recrystallisation kinetics. The intermediate variables 

(internal states) are  validated based on the output of the model using the physical equations.  

 

4.1.Model Developments 

Model prediction has been performed for different alloys based on the experimental results from different 

researchers. It was observed that the most important elements which have a significant effect on the flow stress 

are Mg, Mn and Fe. Therefore, in order to develop a global model, the effects of the alloying elements have to be 

considered as the major inputs to the composition block. In designing experimental conditions for developing 

such a model, the input parameters to be considered are the strain, strain rate, temperature, and composition (Mg, 

and other alloying elements).  

The collected data from the literature were based on the input deformation conditions, the composition of the 

material, and deformation conditions, and any other related information which might be of use in the future in 

order to explain some of the unexpected behaviour that might occur during the modelling stage. Information of 

particular importance is the composition of the material which has been recorded for most of the collected data. 

One of the important factors that affect the final properties of the metals is the level of impurities. During the 

validation process it was noted that for  commercial alloys, the impurities might be very high such that they 

exceed the solubility limits. Therefore, coarse second phase particles are formed which do not affect the final 

flow stress of the material. Therefore, it was important to test the limits of the solubility of the impurities because 

it is considered to be an important factor for the model prediction. 

The developed hybrid model is based on commercial purity Al-1%Mg alloy which has some impurities, 

therefore it is expected that for high purity aluminium the predicted flow stress should be higher than the actual 

values. The same statement is valid for commercial purity aluminium, as the inclusion of more impurities should 

increase the flow stress while the hybrid model will under-predict the flow stress.  For commercial alloys, the 



model under-predicts the flow stress due to the effect of the magnesium whose presence increases the flow 

stress.  

Using the calculated slopes for different compositions, the final effect of the impurities on the slope of the 

predicted flow stress behaviour is divided into two steps; for pure aluminium, and for commercial aluminium. 

The two relationships for the pure aluminium and aluminium alloys can be combined together to generate a 3D 

surface that represents the effects of the impurities and Mg content on the final predicted flow stress of the 

material.  

The dynamic evolution of the flow stress should be based on some parameters, which are the initial flow stress, 

the final flow stress and the strain when steady-state conditions are reached. The dynamic behaviour of the flow 

stress is governed by the following equations: 

2
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where a, b and c should be composition-dependant only. 

 

The final flow stress can be calculated using the following equation: 
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The start of steady-state s is defined as follows:  
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A graphical representation of the flow stress curve behaviour is shown in figure 2. 

Table 1 shows the data collected from the literature via different authors. All the related information is listed in 

this table. 

The initial values for the flow stress are not easy to quantify. This is because the figures are digitally quantised 

from different sources, therefore,it was not always clear what the initial values were. Since these locations are 

not easy to distinguish and quantify, it has been decided to select the steady-state flow stress ( ss), the relaxation 

stress ( r) and the relaxation strain ( r).  

Using the collected and quatitised data, three 3-D surfaces were generated which describe the relationship 

between the Mg contents, the impurities and the steady-state flow stress ( ss), relaxation stress ( r) and 

relaxation strain ( r) as shown in Figure 3-5(a) respectively. The surfaces were generated using a neuro-fuzzy 

modelling technique. 

 

5. MODELLING RESULTS 

One important feature of GP is that the initial structure of the equations can be predefined and constrained for 

both the parameters limits and the algebraic formulas. With the initial metallurgical knowledge of such 

formulation, the equations can be predefined and formulated to evolve to semi-physical equations. Different 

input variables can be used such as the deformation conditions and the composition of the material. 

The developed 3-D surfaces which describe the relationship between the impurities, Mg contents and the 

predicted slope are based on neuro-fuzzy models which are data-driven. Such models are linguistically 

interpretable in terms of the input and output variables. Nevertheless, a mathematical equation can be used to 

model the surfaces based on the data generated by the neuro-fuzzy models. The modelling of such surfaces 

requires knowledge of the basic components of a polynomial equation. The structure of the polynomial equation 

can be made flexible to select the best fit that minimises the error between the predicted and modelled surfaces. 

GP is one method which allows such flexibility in the structure. 



Typically, an initial function structure can be based on the basic mathematical operators (+-/*) and the input 

variables, with some knowledge being available about the sort of surface. Some functions are supplied to the 

algorithm to start as an initial programming seed. Such functions are exp(impurities), Mg
3
,  Mg

2
, and Mg. 

The predicted equations for the steady state flow stress and r were found to be respectively: 
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where im denotes the impurities. The equations parameters are as shown in Table 2. Figures 3-5(b) show the 

prediction accuracy for the flow stress, relaxation  stress and relaxation strain respectively. 

 

parameters stress_ss stress_r strain_r 

G 0.55696 0.53517 0.55777 

R   0.66129 

T 0.05033 0.04879 0.05196 

A -0.01666 -0.02315 -0.05088 

B 0.08998 0.12599 0.37836 

C 0.22410 0.30580 -0.56219 

D 0.28571 0.60565 0.74449 

error 0.00056 0.00158 0.00146 

 

Table 2: GP parameters fitting. 

 

 

6. CONCLUSIONS 

The developed hybrid models have been extensively validated against different experimental results from 

different authors and different deformation conditions.  The developed model can be used by both the research 

community and industry as it provides the internal states as well as the final metals properties. Furthermore, GP 

was utilised to generate mathematical models for a wide range of compositions that can be used to predict the 

material properties without the need for experimental testing which may prove to be an expensive and time 

consuming exercise.  
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material Mg (%) Impurities r (MPa) ss (MPa) r 

CP Al 0.00 0.0000 1.5988 2.0376 1.0609 

AL99.997 0.00 0.0000 1.9323 3.0671 0.8708 

Al 0.0011 0.0045 1.2278 1.6010 1.5992 

Al-1Mn 0.016 1.0154 0.8774 1.2176 1.3940 

Al-0.5Mg 0.50 0.0000 1.1125 1.5599 1.1818 

Al-1Mg 0.94 0.0031 1.0000 1.0000 1.0000 

Al-1Mg 0.94 0.0031 0.6190 1.4842 1.3666 

Al-0.96Mg 0.96 0.0000 0.8194 1.2623 1.2000 

Al-Mg 1.00 0.0000 0.6837 0.9508 0.7683 

Al-Mg-Mn 1.09 1.0040 0.4681 0.6457 0.5000 

AA5052 2.70 0.0620 0.3571 0.4797 0.3373 

 

Table 1: Calculated parameters for the developed correction surfaces. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 2. Graphical presentation of the dynamic behaviour of the flow stress. 
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(a) NF response surface     (b) GP equation prediction 

 

Fig. 3. Steady-state flow stress modelling. 
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(a) NF response surface     (b) GP equation prediction 

 

Fig. 4. Relaxation stress modelling. 
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(a) NF response surface     (b) GP equation prediction 

 

Fig. 5. Relaxation strain modelling. 


