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Abstract

In this paper an evolutionary based sparse regression algorithm is proposed and
applied onto experimental data collected from a Duffing oscillator setup and nu-
merical simulation data. Our purpose is to identify the Coulomb friction terms
as part of the ordinary differential equation of the system. Correct identifica-
tion of this nonlinear system using sparse identification is hugely dependent on
selecting the correct form of nonlinearity included in the function library. Con-
sequently, in this work the evolutionary based sparse identification is replacing
the need for user knowledge when constructing the library in sparse identifica-
tion. Constructing the library based on data driven evolutionary approach is an
effective way to extend the space of nonlinear functions, allowing for the sparse
regression to be applied on an extensive space of functions. The results show
that the method provides an effective algorithm for the purpose of unveiling the
physical nature of the Duffing oscillator. In addition, the robustness of the iden-
tification algorithm is investigated for various levels of noise in simulation. The
proposed method has possible applications to other nonlinear dynamic systems
in mechatronics, robotics and electronics.

Keywords: Duffing oscillators, ODE identification, Friction identification,
Genetic programming, Sparse regression

1. Introduction

The Duffing oscillator is a nonlinear dynamic system with a considerable
number of engineering applications and presents a key benchmark in nonlinear
system analysis. The ordinary differential equation of this system consists of
a cubic nonlinear term which can result in chaotic behavior and bifurcation.5

Suppression strategies are required to accommodate for this behavior in flexible
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robotic manipulators and high precision mechatronic systems to increase their
efficacy [1]. The control performance is however drastically affected by modeling
errors in the system parameters [2, 3]. Also the design of flexible manipulators
and high precision systems depend on the characteristics of the Duffing oscillator10

parameter variations [4]. Additionally the design of harvesting devices from
vibrations rely on Duffing type dynamic equations and when characterized well
can be used as a tool for further analysis [5].

This work focuses on identifying the nonlinear ordinary differential equation
of the Duffing system that consists of difficult to discover friction terms. Non-15

linear system identification is a vast research field. The progress of this research
area can be followed via several surveys including earlier works by Billings [6]
and Mehra [7] as well as more recent studies [8], [9] and [10].

In cases that the nonlinear model structure can be obtained from first prin-
ciples and is a priori known, the identification problem boils down to parameter20

estimation. Many works have been done in this area such as [11] where the
physical parameter values are directly estimated using measured data. In many
works such as [12], [13] and [14], the least squares method is used in order to
estimate the parameter values. Others report the usage of genetic programming
for the same purpose ([15], [16]).25

Parameter estimation using a fixed model structure based on captured data
has been previously applied on Duffing oscillator type systems. In [17], the
parameters of a numerical fractional-order Duffing system has been identified
using sequential differential evolution method. Other algorithms such as non-
linear subspace identification method, particle swarm optimization, Volterra-30

Wiener based model and Wiener-type cascade model were used to numerically
estimate the parameters of Duffing-type systems [18, 19, 20, 21]. In a more
recent attempt, authors in [22] have used a tailored sequential Monte Carlo al-
gorithm within a Markov Chain Monte Carlo (MCMC) scheme to identify the
parameters of Duffing in a Bayesian manner.35

Alternatively when the model structure is not a priori known, the form of
the model needs to be discovered. Different black-box model structures can be
considered to form the system equations. In [23] a modeling method for nonlin-
ear systems using polynomial nonlinear state space equations was introduced.
Furthermore, NARMAX models have been used in [24] and [25] to represent40

nonlinear systems. Genetic algorithm and genetic programming have been also
introduced in this field. In [26] genetic programming is used in a multiobjec-
tive fashion to generate global nonlinear models. Authors in [27] apply genetic
programming to discover nonlinear differential equations. More examples of
genetic algorithm application for system identification are [28], [29] and [30].45

Other modeling methods are including but not limited to neuro-fuzzy methods
[31] and high-order neural network structures [32].

Black-box identification of the Duffing equation has also been a matter of
investigation. In [33], explorative genetic programming is used to identify the
model of a noisy Duffing-van der Pol oscillator using numerical simulation data.50

Artificial neural networks have been used to determine the mathematical model
of the damped Duffing by [34]. A similar approach was proposed based on a set
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of basis functions and applying least-squares in [35].
A more exploitation based nonlinear system identification approach was re-

cently proposed in [36]. In this approach, a fixed matrix of candidate terms is55

first built upon prior expert knowledge. Subsequently, a linear system of equa-
tions is formulated using this matrix. The dominant terms in the constructed
matrix later form the identified equation of the system. The sequential thresh-
old least-squares algorithm is applied to find the true model of the system,
depending on choosing the accurate value of the regularization parameter. A60

revised version of this method using the Alternating Direction Method of Mul-
tipliers (ADMM) has been successfully implemented on captured data from an
experimental Duffing setup [37].

The biggest criticism towards sparse identification method lies in select-
ing ad-hoc the appropriate library functions. This problem can be observed65

in [37] as the identification fails to discover the friction terms existing in the
experimental data as these complex non-polynomial terms are lacking in the
library of functions. When identifying an experimental dataset, the friction
forces within Duffing oscillators form an important model uncertainty that also
arises in many other mechatronic applications such as in hydraulic actuators70

[38]. Nonlinear friction model parameters are reconstructed, mostly based on
a priori given friction model structures such as Coulomb, Stribeck, etc. fric-
tion models. Once these friction models are correctly identified they can be
used in control algorithms [39]. Consequently, in this paper we aim at imple-
menting an evolutionary based sparse identification algorithm on numerical and75

experimental Duffing system. The combination of genetic programming and
sparse identification algorithm has been previously suggested in [40], however
no methodology has been proposed so far.

In this paper a revised version of sparse identification using the evolutionary
based sparse identification algorithm is for the first time to the authors’ knowl-80

edge applied on a set of real-world experimental data. This paper is organized
as follows. Section 2 describes the Duffing oscillator and the collected data from
the setup and simulation. Section 3 provides details on the sparse regression
algorithm. Section 4 briefly introduces the genetic programming method as
the base for the evolutionary construction of the library and presents the evo-85

lutionary based sparse identification algorithm to identify the model structure
and parameters of the Duffing oscillator. Results and discussions are provided
in Section 5 applying the identification method on experimental and numerical
Duffing oscillator data. Conclusions are drawn in the final section.

2. Problem statement and data acquisition90

In this work the proposed algorithm is applied on the Duffing oscillator both
numerically and experimentally. The cubic Duffing equation as a differential
equation with third-power nonlinear term is an example of a dynamic system
that exhibits chaotic behavior and bifurcations. Experimental datasets are ex-
tracted from this setup to identify the underlying equation. Simulations from95

the same setup (using its characteristic parameters) implemented in MATLAB
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Figure 1: A mechanical Duffing oscillator subjected to imposed ground motion

environment [41], furthermore allow to examine the efficiency of the algorithm
and validating the presented method. The robustness of the algorithm is inves-
tigated on the data set by increasing added noise.

2.1. Duffing oscillator: theory and experimental realization100

2.1.1. Theoretical description

The mechanical Duffing oscillator with a imposed ground motion is depicted
on Fig. 1 is characterized by the following dynamic equation:

mẍ = −c (ẋ− ż)− k (x− z)− k3 (x− z)3 (1)

with m the Duffing’s mass, c its linear damping, k the linear stiffness and
k3 the cubic stiffness.105

A change of coordinates to the relative ground displacement q , x−z yields:

mq̈ = −cq̇ − kq − k3q3 −mz̈ (2)

or the dynamics expressed in state space: q̇1 = q2

q̇2 = − c

m
q2 −

k

m
q1 −

k3
m
q31 − z̈

(3)

2.1.2. Design principle of mechanical Duffing oscillator

To realize the mechanical Duffing oscillator, a mass-spring system, see Fig. 2,
is constrained to move along a designed track y = f(x). The track’s shape
determine the linear and nonlinear stiffness, k and k3, (3).110

If the mass is subject to a static force in the x-direction, the mass moves
along the track until equilibrium is reached. It is now shown that the spring
characteristic is nonlinear. The track exerts a reaction force on the followers
attached to the spring, R, perpendicular to the track’s curvature. The linear
spring is compressed according to the track, imposing a force on the mass in115
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Figure 2: Design principle of Duffing oscillator

the y-direction, Fy = kly(x). The static applied force, the reaction force on the
follower, and the reaction force on the mass are related by static equilibrium:

Fx = 2R sin(θ) Fy = R cos(θ)⇒ Fx = 2Fy tan(θ) (4)

with θ the tracks curvature’s angle, related to the force profile by tan θ =
df(x)
dx . If the track is f(x) = ax2 + b, the spring characteristic is:

Fx = 2klf(x)
df(x)

dx
= 4kla(bx+ ax3) = kx+ k3x

3 (5)

with k = 4klab and k3 = 4kla
2. By machining a parabolic track, f(x) = ax2,120

the linear coefficient can be simply tuned by shifting the profiles over a distance
b.

2.1.3. Experimental setup

The realized mechanical Duffing oscillator with the above mentioned design
principle is shown on Fig. 3a. A mass with linear springs was fitted on a linear125

guide rail. Tracks with the shape with a = 4 m−1 were made from machined
steel. The followers on the springs are SKF ball-bearings. The linear springs
have a stiffness of kl = 16.7 kN, according to the manufacturer, with the cubic
stiffness then being k3 = 1.07 MN/m

3
. The profiles can be shifted for adjusting

the b-term in Eq. (5).130

To impose the ground motion, the oscillator is put on a shaking table, here
a Beckhoff linear permanent magnet motor. To measure the Duffing’s mass
and shaking table displacement, accelerometer signals are integrated with the
algorithm in [42]. For this algorithm to perform well, the signals should stay
in a certain frequency band. The ground displacement imposed by the shaking135

table is limited in bandwidth by choosing a sine sweep and a random phase
multisine.

The material contact between the followers and the track causes dry friction.
The force in the y-direction Fy, will cause a perpendicular opposing friction
force, µFy, with µ the friction coefficient. The total opposing friction is:140

Ff = 2µkl(ax
2 + b)sgn(vx) = µ1sgn(vx) + µ2x

2sgn(vx) (6)
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Figure 3: (a) Realisation of Duffing oscillator design (b) Duffing oscillator on shaking table

with vx the speed in the x-direction. Including the friction forces in the state
space representation of the Duffing oscillator dynamics is:

 q̇1 = q2

q̇2 = − c

m
q2 −

k

m
q1 −

k3
m
q31 −

µ1

m
sgn(q2)− µ2

m
q21sgn(q2)− z̈

(7)

The viscous damping c, linear stiffness k and dry friction coefficients µ1 and
µ2 have to be experimentally identified.

2.1.4. Experimental data145

The input of the dynamical equation (7), acceleration of the shaking table
z̈ and the relative acceleration between the mass and shaking table q̈, captured
from the described setup are shown on Fig. 4a and Fig. 4b respectively. The
excitation signal of the experiment is a sine sweep from 2 to 20 Hz. The sampling
time equals 0.488 ms.150

2.2. Duffing oscillator: Numerical data

In order to validate the performance of the algorithm on numerical data,
the described Duffing setup has been simulated in MATLAB. The state space
model used for the purpose of simulation is the same as (3).

The control input of the system is a linear swept-frequency cosine presented155

in Fig. 5a. The noisy output acceleration obtained from numerical simulation is
presented in Fig. 5b. The sampling time is 0.488 ms. The amplitude is selected
such that the bifurcation is observable in the output. Considering both sets of
experimental and numerical data in Fig. 4 and Fig. 5 it can be noted that the
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Figure 4: Experimental data: (a) The input, the acceleration of the shaking table z̈ (b) The
output, the relative acceleration between the mass and shaking table q̈ (c) Velocity versus
displacement
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bifurcation occurs sooner in simulation. The bifurcation of a Duffing oscillator160

occurs at a certain frequency of the input sweep. This frequency depends on
the amplitude of the sweep, [43], which is different for the experiment and the
simulation, explaining why the bifurcation happens at a different instant. The
data for both (experimental, numerical) cases is divided in identification and
validation parts.165

3. Sparse regression

The aim of sparse regression in the field of system identification is to extract
a low dimension (sparse) representation of the system from a high dimensional
space of candidate representations using input and output data of the system.
Considering q ∈ Rn×p as the data matrix with p state variables, each presented170

as a column of the matrix over n time instants, sparse regression determines the
state space equation as a general nonlinear function g:

q̇ = g(q,u) (8)

where u ∈ Rn×1 is the input of the system, q̇ ∈ Rn×p is the time derivative of
the states which can be measured or numerically calculated and the q matrix
(with derivatives q̇) is assumed to be fully observable.175

By introducing a library of terms as functions of the states and input of the
system, the identification problem can be presented as finding the sparse matrix
ξ ∈ Rm×p [36]:

q̇ = Aξ (9)

where A is the library of (non-)linear terms.
Choosing the right form of nonlinearity in the construction of the dictionary180

is essential in this approach which requires user knowledge. Equation (10) illus-
trates such a library. Each column, m, corresponds to a linear/ nonlinear term
as a function of the states or the input.

A(q,u) =

 | | | | | | |
1 q q2 · · · u u2 · · ·
| | | | | | |


n×m

(10)

By solving Eq. (9), the dominant linear and nonlinear elements of the library
A(q,u) will be chosen to combine linearly and form the equation of the system185

g in Eq. (8). The ξ matrix is determined by minimizing a defined optimization
problem. In this paper we define the optimization problem as the elastic net
regulator [44]:

ξ∗EN = arg min
ξ
‖Aξ − q̇‖22 + λ1 ‖ξ‖1 + λ2 ‖ξ‖22 (11)

Where λ1 and λ2 are the hyper-parameters that are changed discretely. The
order of magnitude for these hyper-parameters is defined through parameter190

sweep.
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(a)

(b)

(c)

Figure 5: Numerical data: (a) The input, acceleration of the shaking table z̈ (b) The output,
the relative acceleration between the mass and shaking table q̈ (c) Velocity versus displacement

9



4. Evolutionary based sparse regression methodology

4.1. Genetic programming

Genetic programming (GP) is a subclass of genetic algorithms that was first
presented by Koza in 1992 [45]. The basic idea of genetic programming is to195

evolve populations of equations based on the captured data and the fitness
function evaluation of the simulation of each equation, where each equation is
presented as a tree.

In the first generation a population is randomly constructed by combining
the numbers, variables and mathematical operations. Terminal nodes of the200

trees are occupied by variables and numbers. The operators consisting of ba-
sic algebraic operations (+, −, ×, /), functions (sin, cos, tan, abs, sgn) or
user-defined functions fill in the non-terminal nodes called the primitives. Af-
terwards, the population can vary in two ways: crossover and mutation. A
crossover happens when two parent trees randomly exchange branches to form205

new offspring (Fig. 6). Mutation involves random alteration of a parent’s sub-
tree (Fig. 7). In the next step, the algorithm evaluates the fitness of each tree.
The next generation is built based on the fitness evaluation. Following, the
algorithm cycles through this loop until it reaches the stopping criteria or its
convergence. A typical error metric such as least squares or root mean squared210

error is used as the fitness measure.

4.2. ESparse algorithm

Following the description of sparse regression and genetic programming, in
this section the proposed algorithm is described. As presented in ESparse algo-
rithm 1, the identification procedure consists of two main steps:215

1. Construction of the library ( A
n×m

) using genetic programming

2. Performing the sparse regression

In each iteration an ODE equation is realized by solving a layered optimization
problem: the individual trees in the population are used as the functions to
build the A

n×m
library in (10). Next, the sparse regression is performed on the220

constructed library by solving (11). Based on this approach alternative to a pre-
defined library, the sparse regression is applied on a dynamic set of functions
generated from the genetic programming. The advantage of this method is
clearly its ability to generate an explorative library consisting of an extensive
space of functions derived from the captured data. Moreover, this alternation225

between the explorative step 1 and the exploitative step 2, allows a reduction
in the number of terms for regression.
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(a) (b)

(c) (d)

Figure 6: Illustration of the genetic programming crossover (a) First parent before crossover
with a randomly selected branch (b) Second parent before crossover with a randomly selected
branch (c) First offspring after crossover (d) Second offspring after crossover

(a) (b)

Figure 7: Illustration of the genetic programming mutation (a) Parent before mutation with
a randomly selected branch (b) Offspring after mutation
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Algorithm ESparse Algorithm

Require: Time-varying measurement data: q
n×p

, q̇
n×p

and u
n×1

. Population size

r, number of generations k and probabilities of crossover and mutation.
1: procedure
2: Initialize the population of size r randomly
3: for i = 0 : k do
4: Construct dictionary A

n×m
based on the individuals

5: Solve the regression problem:

ξ∗EN = arg min
ξ
‖Aξ − q̇‖22 + λ1 ‖ξ‖1 + λ2 ‖ξ‖22

6: Compute the fitness function: Mean square error
7: Generate new population using crossover and mutation
8: end for
9: end procedure

5. Results and discussion

In this section, the ability of identifying the correct form of the Duffing
equation using the method from section 4.2 in case of both numerical and noisy230

experimental datasets is analyzed. Both sets of data are captured from the Duff-
ing oscillator described in section 2, as a nonlinear dynamic system benchmark.
In case of experimental data we are specifically looking for the identification of
the state space including the friction term as in Eq. 7. We also investigated the
robustness of the algorithm with respect to noise in the data. By changing the235

level of added noise in simulation and how the accuracy of the identified model
is affected by that noise provides a means to assess the robustness.

5.1. Numerical Duffing

When applying the ESparse algorithm on the captured input/output dataset
from Duffing oscillator simulations (Fig. 5), the state space equation is identified.240

The first 16000 samples (the head of the arrow) are selected for validation while
the remainder are used for identification. For the numerical analysis to follow,
the parameters in Eq. 3 are assumed to have the values: m = 0.49(kg), k =
487(N.m−1), k3 = 1.07e6(N.m−3) and c = 1.8(N.s.m−1). The evolutionary
parameters and values are presented in Table 1. Moreover q, q̇ and z̈ are the245

inputs of the GP denoted as X0, X1 and X2. The theoretical ODE equation
together with the identified model for different levels of signal to noise ratio
(SNR) are shown in Table 2. The associated error percentage is calculated
using validation data.

5.1.1. Robustness analysis250

To demonstrate the robustness of the algorithm, various levels of Gaussian
white noise with zero mean were added to the data set. Fig. 8 presents the tree
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Table 1: Evolutionary parameters for the numerical Duffing

Evolutionary parameter Value

Population size 80
Crossover rate 0.9
Mutation rate 0.1
Number of generations 30
Basis functions plus, minus, times, abs, sgn

Table 2: Identified models by the ESparse algorithm, numerical Duffing

Identified ODE equation % error

Theoretical reference q̈ = −3.67q̇ − 993.88q − 2.18e6q3 − z̈ -
SNR = 20 dB q̈ = −3.67q̇ − 994.19q − 2.18e6q3 − z̈ 0.7
SNR = 19.5 dB q̈ = −3.67q̇ − 994.81q − 2.19e6q3 − 0.99z̈ 1.9
SNR = 19 dB q̈ = −3.67q̇ − 984.64q − 2.15e6q3 − z̈ 3.7
SNR = 18.5 dB q̈ = −3.73q̇ − 867.83q − 1.72e6q3 − 1.02z̈ 11.2

of the identified equation in case of SNR = 19.5 dB. Moreover, the comparison
between actual and identified validation data for SNR = 19.5 dB and SNR =
18.5 dB is presented in Fig. 9a and Fig. 9b respectively.255

A more general assessment for large ranges of signal to noise ratio (SNR) were
performed and the results are presented in Fig. 10. Each data point in this figure
corresponds to the mean of the accuracy percentage of 20 identification runs.
Error bars are as well depicted that relate to the standard deviation. The results
suggests that the proposed algorithm possesses the capability to reveal both the260

structure of the governing equation as well as the parameter values of the Duffing
system. For SNR values from 20 to approximately 17 dB that correspond to
increasing noise level, the accuracy of the identified parameter values decreases
and ultimately the accuracy of the identification procedure itself. However no
additional terms appear in the discovered model indicating the robustness of265

the presented algorithm. As can be observed in the Fig. 10, for low SNR (lower
than approximately 17 dB) more terms are added to the equations. This clearly
indicates that the data becomes overfitted by the identified model ultimately
resulting in deteriorated accuracies.
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Figure 8: Tree presentation of the identified numerical Duffing with SNR = 19.5 dB

5.2. Experimental Duffing270

Similar to the numerical Duffing data, the ESparse is applied onto exper-
imental Duffing data with the purpose to identify the Duffing equation. We
conducted three experiments with the same input acceleration profile under
the same conditions, resulting in data presented in Fig. 11. In all cases, the
first 90000 data samples of the control input and the output are selected for275

validation and the rest are used for training.

Table 3: Evolutionary parameters for the experimental Duffing

Evolutionary parameter Value

Population size 150
Crossover rate 0.8
Mutation rate 0.2
Number of generations 40
Basis functions plus, minus, divide, times, abs, sgn

The evolutionary parameters of the genetic programming are given in Ta-
ble 3. Table 4 summarizes the identified model obtained from the three exper-
iments using the ESparse algorithm. Additionally, Fig. 12 presents the tree of
the identified equation with 5.6 % error. The terms appearing in these equations280

are well supported by the theoretical model from Eq. (7) that includes Coulomb
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(a) SNR = 19.5 dB

(b) SNR = 18.5 dB

Figure 9: Comparison of the actual and identified numerical Duffing for (a) SNR = 19.5 dB
(b) SNR = 18.5 dB

Figure 10: Mean and standard deviation of the identification accuracy for various levels of
SNR.
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(a)

(b)

Figure 11: Experimental data: (a) The input, the acceleration of the shaking table z̈ (b) The
output, the relative acceleration between the mass and shaking table q̈

friction. The results demonstrate the ability of the algorithm to identify non-
polynomial nonlinearities. Comparison between the actual and identified output
acceleration data is illustrated in Fig. 13. A clear correlation between the two
sets of data can be observed from Fig. 13b.285

Table 4: Identified models by the ESparse algorithm, Noisy experimental Duffing

Exp. Identified Duffing % error

1: q̈ = −1.10q̇ − 691.92q − 2.37e6q3 − 2.93sgnq̇ − 7.63e3q2sgn(q̇)− 1.02z̈ 3.9
2: q̈ = −1.23q̇ − 714.60q − 2.24e6q3 − 4.11sgnq̇ − 8.23e3q2sgn(q̇)− 1.04z̈ 5.6
3: q̈ = −1.22q̇ − 716.11q − 2.35e6q3 − 3.81sgnq̇ − 8.26e3q2sgn(q̇)− 1.04z̈ 4.7

16



Figure 12: Tree presentation of the identified experimental Duffing 5.6 % error

5.3. Comparison to other available methods

To substantiate the advantages of the proposed ESparse algorithm, a com-
parison to other available methods with respect to performance measures run
time and % error are drawn in Table 5. Sparse regression (see Section 3) and
genetic programming (see Section 4.1) are applied on the same dataset. For the290

purpose of having a fair comparison, crossover and mutation probabilities as
well as the employed basis functions applied for genetic programming are same
as those employed in the ESparse algorithm (Table 3). However to achieve the
correct model of the system using genetic programming, the population size and
number of generations have to increase to 250 and 80 respectively. As suggested295

by the results, ESparse algorithm is capable of converging to the model with
the same level of accuracy with much less computational effort. As for sparse
regression method, we had to manually include the sign function as being part
of the library of (non-)linear terms (coming from knowledge gained with the
ESparse algorithm) since otherwise the model structure cannot be discovered,300

whereas the ESparse algorithm automatically builds the proper library using
genetic programming.
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(a)

(b)

Figure 13: Comparison of the actual and identified experimental Duffing: (a) comparison over
time (b) actual acceleration versus identified

18



Table 5: Comparison of performance measures, experimental Duffing

Method Run time (s) % error

Genetic programming (exp. 1) 449.411 5.7
Genetic programming (exp. 2) 425.884 5.3
Genetic programming (exp. 3) 539.042 4.1
Sparse regression (exp. 1) 2.092 3.9
Sparse regression (exp. 2) 2.563 4.6
Sparse regression (exp. 3) 2.677 5.2
ESparse algorithm (exp. 1) 12.626 3.9
ESparse algorithm (exp. 2) 12.171 5.6
ESparse algorithm (exp. 3) 12.125 4.7

5.4. Advantages and limitations of the method

5.4.1. Advantages

The proposed methodology has major benefits in comparison to sparse re-305

gression and genetic programming based methods for non-parametric identifi-
cation. The evolutionary based sparse regression requires lower computational
effort relative to genetic programming based algorithms. For GP based algo-
rithms to converge to the true solution, large populations with high number
of generations are typically required. Nonetheless, the presented ESparse algo-310

rithm has the ability to converge to the correct model with less computational
effort and having a balanced model complexity since ESparse alternates between
exploration (genetic programming) and exploitation (sparse regression). There-
for, the algorithm can discover the system equation with fewer generations and
smaller populations.315

As for the sparse regression method, the strict model assumptions prior
to identification can limit the model complexity while the dynamic library of
functions in evolutionary based sparse regression allows for discovery of more
complex models by extending the search space and replacing the need for user
knowledge for the construction of the library with data driven GP step.320

5.4.2. Limitations

Although the proposed algorithm allows to identify more complex non-
polynomial terms in the equation such as friction terms, the basic building
blocks are required to be included in the pool of the basic functions of the GP
algorithm. Otherwise the identified system will only be composed of available325

blocks which may not represent the nature of the system accurately.

6. Conclusion

In this paper, an evolutionary based sparse regression algorithm for dis-
covering both the structure and the parameter values of the system has been
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proposed. The methodology is used for the purpose of identifying the Duffing330

oscillator system using both numerical and noisy experimental data. In case of
numerical Duffing, the data is polluted with different levels of noise to study
the robustness of the algorithm. Furthermore the approach is challenged to
discover governing dynamics that include non-polynomial nonlinear Coulomb
friction terms, from noisy experimental Duffing data. As shown by the percent-335

age of the identification error, the algorithm is effective in unveiling the physical
nature of the Duffing oscillator. The proposed method has possible applications
to other nonlinear systems such as in mechatronics, robotics and electronics.
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