262 research outputs found

    Fuzzy C-ordered medoids clustering of interval-valued data

    Get PDF
    Fuzzy clustering for interval-valued data helps us to find natural vague boundaries in such data. The Fuzzy c-Medoids Clustering (FcMdC) method is one of the most popular clustering methods based on a partitioning around medoids approach. However, one of the greatest disadvantages of this method is its sensitivity to the presence of outliers in data. This paper introduces a new robust fuzzy clustering method named Fuzzy c-Ordered-Medoids clustering for interval-valued data (FcOMdC-ID). The Huber's M-estimators and the Yager's Ordered Weighted Averaging (OWA) operators are used in the method proposed to make it robust to outliers. The described algorithm is compared with the fuzzy c-medoids method in the experiments performed on synthetic data with different types of outliers. A real application of the FcOMdC-ID is also provided

    Fuzzy clustering of spatial interval-valued data

    Get PDF
    In this paper, two fuzzy clustering methods for spatial intervalvalued data are proposed, i.e. the fuzzy C-Medoids clustering of spatial interval-valued data with and without entropy regularization. Both methods are based on the Partitioning Around Medoids (PAM) algorithm, inheriting the great advantage of obtaining non-fictitious representative units for each cluster. In both methods, the units are endowed with a relation of contiguity, represented by a symmetric binary matrix. This can be intended both as contiguity in a physical space and as a more abstract notion of contiguity. The performances of the methods are proved by simulation, testing the methods with different contiguity matrices associated to natural clusters of units. In order to show the effectiveness of the methods in empirical studies, three applications are presented: the clustering of municipalities based on interval-valued pollutants levels, the clustering of European fact-checkers based on interval-valued data on the average number of impressions received by their tweets and the clustering of the residential zones of the city of Rome based on the interval of price values

    Fuzzy clustering of spatial interval-valued data

    Get PDF
    In this paper, two fuzzy clustering methods for spatial interval-valued data are proposed, i.e. the fuzzy C-Medoids clustering of spatial interval-valued data with and without entropy regularization. Both methods are based on the Partitioning Around Medoids (PAM) algorithm, inheriting the great advantage of obtaining non-fictitious representative units for each cluster. In both methods, the units are endowed with a relation of contiguity, represented by a symmetric binary matrix. This can be intended both as contiguity in a physical space and as a more abstract notion of contiguity. The performances of the methods are proved by simulation, testing the methods with different contiguity matrices associated to natural clusters of units. In order to show the effectiveness of the methods in empirical studies, three applications are presented: the clustering of municipalities based on interval-valued pollutants levels, the clustering of European fact-checkers based on interval-valued data on the average number of impressions received by their tweets and the clustering of the residential zones of the city of Rome based on the interval of price values

    Fuzzy clustering with entropy regularization for interval-valued data with an application to scientific journal citations

    Get PDF
    In recent years, the research of statistical methods to analyze complex structures of data has increased. In particular, a lot of attention has been focused on the interval-valued data. In a classical cluster analysis framework, an interesting line of research has focused on the clustering of interval-valued data based on fuzzy approaches. Following the partitioning around medoids fuzzy approach research line, a new fuzzy clustering model for interval-valued data is suggested. In particular, we propose a new model based on the use of the entropy as a regularization function in the fuzzy clustering criterion. The model uses a robust weighted dissimilarity measure to smooth noisy data and weigh the center and radius components of the interval-valued data, respectively. To show the good performances of the proposed clustering model, we provide a simulation study and an application to the clustering of scientific journals in research evaluation

    Fuzzy spectral clustering methods for textual data

    Get PDF
    Nowadays, the development of advanced information technologies has determined an increase in the production of textual data. This inevitable growth accentuates the need to advance in the identification of new methods and tools able to efficiently analyse such kind of data. Against this background, unsupervised classification techniques can play a key role in this process since most of this data is not classified. Document clustering, which is used for identifying a partition of clusters in a corpus of documents, has proven to perform efficiently in the analyses of textual documents and it has been extensively applied in different fields, from topic modelling to information retrieval tasks. Recently, spectral clustering methods have gained success in the field of text classification. These methods have gained popularity due to their solid theoretical foundations which do not require any specific assumption on the global structure of the data. However, even though they prove to perform well in text classification problems, little has been done in the field of clustering. Moreover, depending on the type of documents analysed, it might be often the case that textual documents do not contain only information related to a single topic: indeed, there might be an overlap of contents characterizing different knowledge domains. Consequently, documents may contain information that is relevant to different areas of interest to some degree. The first part of this work critically analyses the main clustering algorithms used for text data, involving also the mathematical representation of documents and the pre-processing phase. Then, three novel fuzzy versions of spectral clustering algorithms for text data are introduced. The first one exploits the use of fuzzy K-medoids instead of K-means. The second one derives directly from the first one but is used in combination with Kernel and Set Similarity (KS2M), which takes into account the Jaccard index. Finally, in the third one, in order to enhance the clustering performance, a new similarity measure S∗ is proposed. This last one exploits the inherent sequential nature of text data by means of a weighted combination between the Spectrum string kernel function and a measure of set similarity. The second part of the thesis focuses on spectral bi-clustering algorithms for text mining tasks, which represent an interesting and partially unexplored field of research. In particular, two novel versions of fuzzy spectral bi-clustering algorithms are introduced. The two algorithms differ from each other for the approach followed in the identification of the document and the word partitions. Indeed, the first one follows a simultaneous approach while the second one a sequential approach. This difference leads also to a diversification in the choice of the number of clusters. The adequacy of all the proposed fuzzy (bi-)clustering methods is evaluated by experiments performed on both real and benchmark data sets

    Informational Paradigm, management of uncertainty and theoretical formalisms in the clustering framework: A review

    Get PDF
    Fifty years have gone by since the publication of the first paper on clustering based on fuzzy sets theory. In 1965, L.A. Zadeh had published “Fuzzy Sets” [335]. After only one year, the first effects of this seminal paper began to emerge, with the pioneering paper on clustering by Bellman, Kalaba, Zadeh [33], in which they proposed a prototypal of clustering algorithm based on the fuzzy sets theory

    Clustering of nonstationary data streams: a survey of fuzzy partitional methods

    Get PDF
    YesData streams have arisen as a relevant research topic during the past decade. They are real‐time, incremental in nature, temporally ordered, massive, contain outliers, and the objects in a data stream may evolve over time (concept drift). Clustering is often one of the earliest and most important steps in the streaming data analysis workflow. A comprehensive literature is available about stream data clustering; however, less attention is devoted to the fuzzy clustering approach, even though the nonstationary nature of many data streams makes it especially appealing. This survey discusses relevant data stream clustering algorithms focusing mainly on fuzzy methods, including their treatment of outliers and concept drift and shift.Ministero dell‘Istruzione, dell‘Universitá e della Ricerca

    Fuzzy clustering of ordinal time series based on two novel distances with economic applications

    Full text link
    Time series clustering is a central machine learning task with applications in many fields. While the majority of the methods focus on real-valued time series, very few works consider series with discrete response. In this paper, the problem of clustering ordinal time series is addressed. To this aim, two novel distances between ordinal time series are introduced and used to construct fuzzy clustering procedures. Both metrics are functions of the estimated cumulative probabilities, thus automatically taking advantage of the ordering inherent to the series' range. The resulting clustering algorithms are computationally efficient and able to group series generated from similar stochastic processes, reaching accurate results even though the series come from a wide variety of models. Since the dynamic of the series may vary over the time, we adopt a fuzzy approach, thus enabling the procedures to locate each series into several clusters with different membership degrees. An extensive simulation study shows that the proposed methods outperform several alternative procedures. Weighted versions of the clustering algorithms are also presented and their advantages with respect to the original methods are discussed. Two specific applications involving economic time series illustrate the usefulness of the proposed approaches

    Copula-based fuzzy clustering of spatial time series

    Get PDF
    This paper contributes to the existing literature on the analysis of spatial time series presenting a new clustering algorithm called COFUST, i.e. COpula-based FUzzy clustering algorithm for Spatial Time series. The underlying idea of this algorithm is to perform a fuzzy Partitioning Around Medoids (PAM) clustering using copula-based approach to interpret comovements of time series. This generalisation allows both to extend usual clustering methods for time series based on Pearson’s correlation and to capture the uncertainty that arises assigning units to clusters. Furthermore, its flexibility permits to include directly in the algorithm the spatial information. Our approach is presented and discussed using both simulated and real data, highlighting its main advantages

    Clustering Data of Mixed Categorical and Numerical Type with Unsupervised Feature Learning

    Get PDF
    Mixed-type categorical and numerical data are a challenge in many applications. This general area of mixed-type data is among the frontier areas, where computational intelligence approaches are often brittle compared with the capabilities of living creatures. In this paper, unsupervised feature learning (UFL) is applied to the mixed-type data to achieve a sparse representation, which makes it easier for clustering algorithms to separate the data. Unlike other UFL methods that work with homogeneous data, such as image and video data, the presented UFL works with the mixed-type data using fuzzy adaptive resonance theory (ART). UFL with fuzzy ART (UFLA) obtains a better clustering result by removing the differences in treating categorical and numeric features. The advantages of doing this are demonstrated with several real-world data sets with ground truth, including heart disease, teaching assistant evaluation, and credit approval. The approach is also demonstrated on noisy, mixed-type petroleum industry data. UFLA is compared with several alternative methods. To the best of our knowledge, this is the first time UFL has been extended to accomplish the fusion of mixed data types
    • 

    corecore