788 research outputs found

    Research Challenges of Improved Cluster Chain Power-Efficient Routing Using Natural Computing Methods for Wireless Sensor Network

    Get PDF
    Wireless Sensor Networks (WSNs) primarily operate on batteries, making energy conservation crucial, especially in routing processes. Efficient routing in WSNs is challenging due to the network's distinct attributes. Among various routing protocols, CCPAR is noteworthy as it utilizes a chain between cluster heads to relay data to the base station. This research delves into nature-inspired techniques for energy-efficient routing in WSNs. It introduces the Moth-Dolphin Optimization Algorithm, capitalizing on the communication between moths to enhance routing performance. This innovative method combines the navigational skills of moths and the communicative attributes of dolphins. When benchmarked against other optimization methods, the Moth-Dolphin algorithm offers favorable results. The study then applies this algorithm to improve CCPAR routing, aiming for reduced energy consumption. The modified routing's effectiveness is evaluated against other top-tier algorithms, considering factors like energy consumption, throughput, network longevity, and delay

    Adaptive firefly algorithm for hierarchical text clustering

    Get PDF
    Text clustering is essentially used by search engines to increase the recall and precision in information retrieval. As search engine operates on Internet content that is constantly being updated, there is a need for a clustering algorithm that offers automatic grouping of items without prior knowledge on the collection. Existing clustering methods have problems in determining optimal number of clusters and producing compact clusters. In this research, an adaptive hierarchical text clustering algorithm is proposed based on Firefly Algorithm. The proposed Adaptive Firefly Algorithm (AFA) consists of three components: document clustering, cluster refining, and cluster merging. The first component introduces Weight-based Firefly Algorithm (WFA) that automatically identifies initial centers and their clusters for any given text collection. In order to refine the obtained clusters, a second algorithm, termed as Weight-based Firefly Algorithm with Relocate (WFAR), is proposed. Such an approach allows the relocation of a pre-assigned document into a newly created cluster. The third component, Weight-based Firefly Algorithm with Relocate and Merging (WFARM), aims to reduce the number of produced clusters by merging nonpure clusters into the pure ones. Experiments were conducted to compare the proposed algorithms against seven existing methods. The percentage of success in obtaining optimal number of clusters by AFA is 100% with purity and f-measure of 83% higher than the benchmarked methods. As for entropy measure, the AFA produced the lowest value (0.78) when compared to existing methods. The result indicates that Adaptive Firefly Algorithm can produce compact clusters. This research contributes to the text mining domain as hierarchical text clustering facilitates the indexing of documents and information retrieval processes

    Mining Aircraft Telemetry Data With Evolutionary Algorithms

    Get PDF
    The Ganged Phased Array Radar - Risk Mitigation System (GPAR-RMS) was a mobile ground-based sense-and-avoid system for Unmanned Aircraft System (UAS) operations developed by the University of North Dakota. GPAR-RMS detected proximate aircraft with various sensor systems, including a 2D radar and an Automatic Dependent Surveillance - Broadcast (ADS-B) receiver. Information about those aircraft was then displayed to UAS operators via visualization software developed by the University of North Dakota. The Risk Mitigation (RM) subsystem for GPAR-RMS was designed to estimate the current risk of midair collision, between the Unmanned Aircraft (UA) and a General Aviation (GA) aircraft flying under Visual Flight Rules (VFR) in the surrounding airspace, for UAS operations in Class E airspace (i.e. below 18,000 feet MSL). However, accurate probabilistic models for the behavior of pilots of GA aircraft flying under VFR in Class E airspace were needed before the RM subsystem could be implemented. In this dissertation the author presents the results of data mining an aircraft telemetry data set from a consecutive nine month period in 2011. This aircraft telemetry data set consisted of Flight Data Monitoring (FDM) data obtained from Garmin G1000 devices onboard every Cessna 172 in the University of North Dakota\u27s training fleet. Data from aircraft which were potentially within the controlled airspace surrounding controlled airports were excluded. Also, GA aircraft in the FDM data flying in Class E airspace were assumed to be flying under VFR, which is usually a valid assumption. Complex subpaths were discovered from the aircraft telemetry data set using a novel application of an ant colony algorithm. Then, probabilistic models were data mined from those subpaths using extensions of the Genetic K-Means (GKA) and Expectation- Maximization (EM) algorithms. The results obtained from the subpath discovery and data mining suggest a pilot flying a GA aircraft near to an uncontrolled airport will perform different maneuvers than a pilot flying a GA aircraft far from an uncontrolled airport, irrespective of the altitude of the GA aircraft. However, since only aircraft telemetry data from the University of North Dakota\u27s training fleet were data mined, these results are not likely to be applicable to GA aircraft operating in a non-training environment

    Spatio-Temporal Deforestation Measurement Using Automatic Clustering

    Get PDF
    Deforestation is one of the crucial issues in Indonesia. In 2012, deforestation rate in Indonesia reached 0.84 million hectares, exceeding Brazil. According to the 2009 Guinness World Records, Indonesia's deforestation rate was 1.8 million hectares per year between 2000 and 2005. An interesting view is the fact that Indonesia government denied the deforestation rate in those years and said that the rate was only 1.08 million hectares per year in 2000 and 2005. The different problem is on the technique how to deal with the deforestation rate. In this paper, we proposed a new approach for automatically identifying the deforestation area and measuring the deforestation rate. This approach involves differential image processing for detecting Spatio-temporal nature changes of deforestation. It consists series of important features extracted from multiband satellite images which are considered as the dataset of the research. These data are proceeded through the following stages: (1) Automatic clustering for multiband satellite images, (2) Reinforcement Programming to optimize K-Means clustering, (3) Automatic interpretation for deforestation areas, and (4) Deforestation measurement adjusting with elevation of the satellite. For experimental study, we applied our proposed approach to analyze and measure the deforestation in Mendawai, South Borneo. We utilized Landsat 7 to obtain the multiband images for that area from the year 2001 to 2013. Our proposed approach is able to identify the deforestation area and measure the rate. The experiment with our proposed approach made a temporal measurement for the area and showed the increasing deforestation size of the area 1.80 hectares during those years

    Development of a R package to facilitate the learning of clustering techniques

    Get PDF
    This project explores the development of a tool, in the form of a R package, to ease the process of learning clustering techniques, how they work and what their pros and cons are. This tool should provide implementations for several different clustering techniques with explanations in order to allow the student to get familiar with the characteristics of each algorithm by testing them against several different datasets while deepening their understanding of them through the explanations. Additionally, these explanations should adapt to the input data, making the tool not only adept for self-regulated learning but for teaching too.Grado en Ingeniería Informátic

    On the Use of Fuzzy and Permutation Entropy in Hand Gesture Characterization from EMG Signals: Parameters Selection and Comparison

    Get PDF
    The surface electromyography signal (sEMG) is widely used for gesture characterization; its reliability is strongly connected to the features extracted from sEMG recordings. This study aimed to investigate the use of two complexity measures, i.e., fuzzy entropy (FEn) and permutation entropy (PEn) for hand gesture characterization. Fourteen upper limb movements, sorted into three sets, were collected on ten subjects and the performances of FEn and PEn for gesture descriptions were analyzed for different computational parameters. FEn and PEn were able to properly cluster the expected numbers of gestures, but computational parameters were crucial for ensuring clusters' separability and proper gesture characterization. FEn and PEn were also compared with other eighteen classical time and frequency domain features through the minimum redundancy maximum relevance algorithm and showed the best predictive importance scores in two gesture sets; they also had scores within the subset of the best five features in the remaining one. Further, the classification accuracies of four different feature sets presented remarkable increases when FEn and PEn are included as additional features. Outcomes support the use of FEn and PEn for hand gesture description when computational parameters are properly selected, and they could be useful in supporting the development of robotic arms and prostheses myoelectric control

    Information Warfare-Worthy Jamming Attack Detection Mechanism for Wireless Sensor Networks Using a Fuzzy Inference System

    Get PDF
    The proposed mechanism for jamming attack detection for wireless sensor networks is novel in three respects: firstly, it upgrades the jammer to include versatile military jammers; secondly, it graduates from the existing node-centric detection system to the network-centric system making it robust and economical at the nodes, and thirdly, it tackles the problem through fuzzy inference system, as the decision regarding intensity of jamming is seldom crisp. The system with its high robustness, ability to grade nodes with jamming indices, and its true-detection rate as high as 99.8%, is worthy of consideration for information warfare defense purposes
    • …
    corecore