
Universidad de Alcalá
Escuela Politécnica Superior

Grado en Ingenieŕıa Informática

Bachelor’s Thesis

Development of a R package to facilitate the learning of

clustering techniques

Author: Eduardo Ruiz Sabajanes

Advisor: Juan José Cuadrado Gallego

2023

UNIVERSIDAD DE ALCALÁ
ESCUELA POLITÉCNICA SUPERIOR

Grado en Ingenieŕıa Informática

Bachelor’s Thesis

Development of a R package to facilitate the learning of

clustering techniques

Author: Eduardo Ruiz Sabajanes

Advisor: Juan José Cuadrado Gallego

Tribunal:

President: .

1st Vocal: .

2nd Vocal: .

Deposit date: September 25th, 2023

Abstract

This project explores the development of a tool, in the form of a R package, to ease the process of

learning clustering techniques, how they work and what their pros and cons are. This tool should provide

implementations for several different clustering techniques with explanations in order to allow the student

to get familiar with the characteristics of each algorithm by testing them against several different datasets

while deepening their understanding of them through the explanations. Additionally, these explanations

should adapt to the input data, making the tool not only adept for self-regulated learning but for teaching

too.

Keywords: R, Clustering, Machine Learning, Data Science, Teaching.

vi

Contents

Abstract v

Contents vii

List of Figures ix

List of Algorithms xi

List of Acronyms xvi

1 Introduction 1

1.1 Motivation . 1

1.1.1 Massive amounts of data . 1

1.1.2 Hands-on learning . 2

1.1.3 Self-regulated learning . 2

1.1.4 Problem: A-priori knowledge . 3

1.2 Project proposition . 3

1.3 Objectives . 3

1.3.1 General objectives . 3

1.3.2 Specific objectives . 4

1.4 Structure of the document . 4

2 State of the Art 5

2.1 Partitional Clustering . 6

2.1.1 Hard/Crisp . 7

2.1.1.1 Square Error . 7

2.1.1.2 Model-based Clustering . 8

2.1.1.3 Graph-theoretic Clustering . 9

2.1.1.4 Density-based Clustering . 10

2.1.1.5 Subspace Clustering . 11

2.1.1.6 Search-based Clustering . 11

viii CONTENTS

2.1.2 Mixture Resolving Algorithms . 14

2.1.2.1 Expectation Maximization . 14

2.2 Hierarchical Clustering . 15

2.2.1 Agglomerative Clustering . 16

2.2.2 Divisive Clustering . 17

2.2.3 Implementations that Improve on Hierarchical Clustering 19

3 Implementation 21

3.1 Developing R packages . 21

3.2 Algorithms . 22

3.2.1 K-Means . 22

3.2.2 DBSCAN . 26

3.2.3 Gaussian Mixture . 28

3.2.4 Agglomerative Hierarchical Clustering . 30

3.2.5 Divisive Hierarchical Clustering . 33

3.3 Automatic explanations . 35

4 Results 37

4.1 Toy Datasets . 37

4.2 Algorithm Characteristics . 37

4.2.1 K-Means . 38

4.2.2 DBSCAN . 39

4.2.3 Gaussian Mixture . 39

4.2.4 Agglomerative Hierarchical Clustering . 40

4.2.5 Divisive Hierarchical Clustering . 41

4.3 Algorithm comparison . 43

4.4 Automatic explanations . 45

4.5 Uploading a package to CRAN . 47

5 Conclusions and Future Work 49

Bibliography 51

Appendix A Source Code Listings 61

A.1 K-Means . 61

A.2 DBSCAN . 66

A.3 Gaussian Mixture Model with Expectation Maximization 71

A.4 Agglomerative Hierarchical Clustering . 76

A.5 Divisive Hierarchical Clustering . 80

A.6 Auxiliary functions . 84

List of Figures

2.1 Taxonomy of clustering algorithms [27] . 5

2.2 A partition with n = 500 and k = 4 . 6

2.3 Density-based clusterization example . 10

2.4 Mixture resolving clusterization example . 15

2.5 Dendrogram representation for the hierarchical clustering of eight objects 16

3.1 Package development workflow with devtools . 22

4.1 Toy Datasets . 38

4.2 K-Means - Drawbacks . 39

4.3 DBSCAN - Pros & Cons . 40

4.4 GMM with EM - Characteristics . 41

4.5 Agglomerative Hierarchical Clustering - Linkage strategies 42

4.6 Clusterization of every toy dataset with every algorithm 44

4.7 Automatic explanation for AHC (Part 1) . 46

4.8 Automatic explanation for AHC (Part 2) . 46

4.9 Automatic explanation for AHC (Part 3) . 47

4.10 Automatic explanation for AHC (Part 4) . 47

x LIST OF FIGURES

List of Algorithms

3.1 K-Means . 23

3.2 K-Means - Random initialization . 24

3.3 K-Means - K-Means++ initialization . 24

3.4 Density-Based Spatial Clustering of Applications with Noise 26

3.5 DBSCAN - expand procedure . 27

3.6 Gaussian Mixture Expectation Maximization . 29

3.7 Agglomerative Hierarchical Clustering . 32

3.8 Divisive Hierarchical Clustering . 34

xii LIST OF ALGORITHMS

List of Source Codes

A.1 R implementation of the K-Means algorithm . 66

A.2 R implementation of the DBSCAN algorithm . 71

A.3 R implementation of the GMM with EM algorithm . 76

A.4 R implementation of the AHC algorithm . 80

A.5 R implementation of the DHC algorithm . 84

A.6 Auxiliary functions to log the explanations . 85

xiv LIST OF SOURCE CODES

List of Acronyms

ABC Artificial Bee Colony Optimization Algorithm.

ACO Ant Colony Optimization.

AHC Agglomerative Hierarchical Clustering.

BEA Bacterial Evolutionary Algorithm.

BFS Breadth First Search.

BIC Bayesian Information Criterion.

BIRCH Balanced Iterative Reducing and Clustering Using Hierarchies.

CF Cluster Features.

CLICK Cluster Identification via Connectivity Kernels.

CRAN Comprehensive R Archive Network.

CURE Clustering Using Representative.

DBSCAN Density Based Spatial Clustering of Applications with Noise.

DCPSO Dynamic Clustering Particle Swarm Optimization.

DE Differential Evolution.

DENCLUE Density-based Clustering.

DHC Divisive Hierarchical Clustering.

DIVFRP Reference-point-based dissimilarity measure.

DTG Delaunay Triangulation Graph.

EM Expectation Maximization.

FA Firefly Algorithm.

FC Flow Cytometry.

FGKA Fast Genetic K-Means Algorithm.

GA Genetic Algorithm.

xvi List of Acronyms

GGA Genetically Guided Algorithm.

GKA Genetic K-Means Algorithm.

GMM Gaussian Mixture Model.

GMM with EM Gaussian Mixture Model with Expectation Maximization.

HGCUDF Hierarchical grid clustering using data field.

IDE Integrated Development Environment.

IDPSO Improved particle optimizer.

IGKA Incremental Genetic K-means Algorithm.

IWO Invasive Weed Optimization.

K-NN K Nearest Neighbor.

MCA Multiple Correspondence Analysis.

MDA Maximum Dependency of Attributes.

MGR Mean Gaian Ratio.

MLE Maximum Likelihood Estimation.

MMR Min-Min-Roughness.

MNN Mutual Nearest Neighbors.

MNV Mutual Neighborhood Value.

MVP Minimum Viable Product.

OPTICS Ordering Points To Identify the Clustering Structure.

PSO Particle Swarm Optimization.

SI Swarm Intelligence.

SOS Symbiotic Organisms Search.

SWIFT Scalable Weighted Iterative Flow-clustering Technique.

TR Total Roughness.

TS Tabu Search.

TWCV Total Within Cluster Variation.

VNS Variable Neighborhood Search.

Chapter 1

Introduction

Cluster analysis or clustering is the task of assigning instances to classes that are not defined a priori and

that are supposed to somehow reflect the underlying structure of the entities that the data represents

i.e. grouping a set of objects in such a way that objects in the same group (called a cluster) are more

similar to each other than to those in other groups (clusters) [1]. This subfield of data science, is used

in many fields of study like pattern recognition, image analysis, information retrieval, bioinformatics,

data compression, computer graphics and machine learning; and is now deeply rooted in our daily lives,

from recommendation engines like those of online stores, to ocular disease detection systems [2]. In this

chapter, we will discuss the motivation behind this work, the problem statement, the objectives and the

structure of the document.

1.1 Motivation

1.1.1 Massive amounts of data

We live in the age of information. Everyday, millions of new data points like scientific articles, blog

posts, discussions, social network comments, etc. are generated. Having the capability to go through

that amount of data and classify it, would enable us to study the relations between the different data

points and classes, effectively extracting knowledge from that data. This has turned clusterization into a

thriving field of study, with many different algorithms being developed and improved every day.

In addition to this, there are many public datasets composed of synthetic or real-world data. Some

of these datasets can be found in the UCI Machine Learning Repository [3] and among the most popular

we can find the following: “Online Retail II”, a real online retail transaction data set of two years [4]

(1067371 points, 8 dimensions); “US Census Data (1990)”, a data set containing a one percent sample

of the Public Use Microdata Samples (PUMS) person records drawn from the full 1990 census sample

[5] (2458285 points, 68 dimensions); or “Obesity”, a dataset including data for the estimation of obesity

levels in individuals from the countries of Mexico, Peru and Colombia, based on their eating habits and

physical condition [6]. These are some of the datasets professionals of the data science sector use to test

the performance of clustering algorithms, and are used as a benchmark to compare different algorithms.

Additionally, since these datasets are open to the public, they can also be used by practitioners to improve

their algorithm and hyper-parameter choice-making before applying them to real world problems.

All of this comes to prove that there is no problem when it comes to the amount of data. On the one

hand there is a clear need for data analysts who can extract knowledge from the data, and on the other

2 Chapter 1. Introduction

hand there are many datasets available to test and improve the algorithms. This is why we believe that

this is a good time to study the field of clustering and to develop new algorithms that can help us extract

this knowledge.

1.1.2 Hands-on learning

In traditional classes, students may understand concepts incorrectly which would lead into misinterpreting

them i.e. correct transfer of knowledge can not be guaranteed. One of the ways in which this problem

can be solved is by using hands-on learning.

Hands-on is a way of teaching where students have resources for testing what they have learned i.e.

students learn by doing [7]. It is also defined as learning with materials where students modify, handle

and test the learning with materials [7]. It is based on the idea that the best way to learn something

is through experience. The hands-on approach to teaching brings lab tasks to classrooms or vice-versa,

where students get to use, change and test materials and observe the working modules of their learning

[8]. In traditional teaching, the teacher is at the center of the learning process i.e. the teacher stands at

the front of the room imparting and transferring their knowledge to students, while in hands-on learning,

the students are the ones at the center i.e. students are actively involved trying out what they have

learned, with the objective of creating interest in the students and promoting critical thinking [8].

On one hand, students develop a greater interest towards the course they are taking when the course

implements hands-on teaching [9]. Interest can be defined as the students-subject relationship that is

generated during the student’s interaction with the subject [10], [11]. Student interest is an important

factor which can determine learning quality and evaluation results [12]. Students also feel that hands-on

sessions are more interesting than teacher instructions, watching videos or listening to audios [13].

On the other hand, the interest generated in hands-on can be varying, depending mainly on the

student’s involvement which is based on their positive cognition and emotions [10], [14]. This means

that, as long as the students have a joyful experience, the interest towards the course will be higher.

However, may they have a unsatisfactory experience (e.g. students are unable to complete the tasks),

this will take a toll on the overall interest [11].

1.1.3 Self-regulated learning

Self-regulation is a system of conscious, personal management that involves the process of guiding one’s

own thoughts, behaviours and feelings to reach goals. It consists of several stages. In these stages,

individuals must function as contributors to their own motivation, behaviour and development within a

network of reciprocally interacting influences.

Self-regulated learning is one of the domains of self-regulation, and is aligned most closely with edu-

cational aims [15]. It refers to learning that is guided by meta-cognition (thinking about one’s thinking),

strategic action (planning, monitoring and evaluating personal progress against a standard), and moti-

vation to learn [16]–[20]. A self-regulated learner “monitors, directs and regulates actions toward goals

of information acquisition, expanding expertise and self-improvement” [21].

Self-regulated learners are cognizant of their academic strengths and weaknesses, and they have a

repertoire of strategies they appropriately apply to tackle the day-to-day challenges of academic tasks.

These learners hold incremental beliefs about intelligence (as opposed to entity, or fixed views of intelli-

gence) and attribute their successes or failures to factors (e.g., effort expended on a task, effective use of

1.2 Project proposition 3

strategies) within their control [22]. Additionally, self-regulated learners take on challenging tasks, prac-

tice their learning, develop a deep understanding of subject matter, and exert effort towards academic

success [18].

1.1.4 Problem: A-priori knowledge

Over the past years, dozens of data clustering techniques have been proposed and implemented to solve

data clustering problems [23], [24]. Although these techniques have proved to be very effective and

efficient, they generally depend on providing prior knowledge or information of the exact number of

clusters for each dataset to be clustered and analyzed [25]. More so, when dealing with real-world

datasets, it is normal not to expect or have any prior information regarding the number of naturally

occurring groups in the data objects [26].

For the reasons we just mentioned, it seems obvious that in order for a practitioner or professional

to succeed they must have a deeper knowledge of the different methods they might use. This includes

things like: being aware of the shortcomings present in the different clustering algorithms i.e. knowing

what characteristics the data must have in order for a specific algorithm to do a good clustering job, be

acquainted with the available techniques to determine hyper-parameters like the number of clusters, etc.

1.2 Project proposition

This project seeks to propose a cluster analysis learning tool which allows the user to know what kinds of

clustering techniques exist, how they work and which will give better results for a specific situation. To

do this, the tool should rely on hands-on learning techniques, to ensure the understanding of the topics

is as deep as possible; and self-regulated learning techniques, to free the user of the need of a teacher in

order to understand the information presented by this tool.

Throughout the proposal, there will be mention of different clustering algorithms. A taxonomy

for these clustering techniques will be presented. This taxonomy will later be used to select distinct

algorithms. This selection will aim to representing as many different techniques as possible in the most

meaningful way. The selected algorithms will be explained in detail to give an understanding on how

they work and how they can be implemented in R. In order to reinforce the presented taxonomy, these

explanations will try to expose the core principles behind each technique.

There are two main reasons behind the use of the R language to carry out this project. On the

one hand, the R programming language is extensively used in data science being the second most used

language, only bested by Python. On the other hand, thanks to the fact that the R programming

language is dynamically typed, interpreted and has syntax similar to that of the most common languages

(C, C++, Java, Python, etc.) it is really easy to learn and is often used for this very purpose. Given

these reasons, the R programming language is considered a good choice to develop such learning tool.

1.3 Objectives

1.3.1 General objectives

The objective of this project is to develop a R package which implements several different clustering

algorithms to give a good overview of the existing clustering techniques, how they compare to each other

and what they do specifically to cluster data. Additionally, the package must work as a tool to better

4 Chapter 1. Introduction

explain and understand the inner workings of the algorithms it implements i.e. it must help the process

of learning clustering techniques.

1.3.2 Specific objectives

To achieve the previously mentioned objective, the following requirements are proposed:

• Explore the different clustering techniques used in the state-of-the-art and propose a taxonomy.

• Make a selection from the most common techniques, making sure to pick algorithms from different

categories i.e. algorithms which solve the clustering problem with completely distinct methods.

• Write a R package which implements the selected techniques.

• Whenever possible prioritize ease of understanding over computational cost. Ideally, the code should

be easily modifiable by anyone using this package.

• Have the implementations explain (if asked) the step-by-step process the algorithm follows when

clustering a specific dataset.

• Generate toy datasets with which to test the different implementations.

• Document the methods implemented in the package, providing an explanation on how the algo-

rithms work.

1.4 Structure of the document

This document is divided in five chapters. These chapters can be summarized as:

• In Chapter 1 this project is introduced, the reasons behind its development are evaluated. Among

these we can find the massive amount of data generated by the internet and the benefits provided by

learning techniques such as hands-on and self-regulated learning. The problem to solve is presented

as well as the objectives of the project, both general and specific, and the structure of the document

is explained.

• In Chapter 2 context for the current state of the clustering field of study is given. The concept

of clustering is explained, a taxonomy of clustering algorithms is presented, and several of the

categories mentioned in the taxonomy are explained in further detail, often giving examples of

algorithms following such structure.

• In Chapter 3 the development of the project is contextualized. A typical workflow for developing

R packages is presented, the implemented algorithms are defined in detail, notes on how the actual

implementations differ from the algorithms are given, and the way in which the package helps the

user learn the inner workings of the chosen clustering techniques is explained.

• In Chapter 4 a way to test the implementations is presented. The datasets implemented in the

package are introduced, the pros and cons of the algorithms are explained and showcased using the

aforementioned datasets, and the explanations the implementations provide are shown.

• In Chapter 5 a summary of the development of this project is provided, drawing conclusions from

this process, and some of the possible lines of work to be explored in the future are presented.

Chapter 2

State of the Art

Several algorithms have been proposed in the literature to perform clustering. In this chapter, we will

present some of the most relevant ones as presented in [27] by rewriting and summarizing parts of said

article. The algorithms will be divided into two main categories: partitional clustering and hierarchical

clustering [28]–[39]. The former is subdivided into Hard/Crisp, Mixture resolving and Fuzzy clustering

while the latter is subdivided into agglomerative and divisive clustering. Additionally the Hard/Crisp

method is subdivided into Square-error, Model-based, Graph-theoretic, Density-based, Subspace-based,

Search-based and Miscellaneous. A complete taxonomy for these clustering methods is shown in Figure

2.1. Note that, since they do not play a big role in the development of the package, fuzzy and miscellaneous

clustering techniques will not be introduced in this chapter.

Figure 2.1: Taxonomy of clustering algorithms [27]

6 Chapter 2. State of the Art

2.1 Partitional Clustering

In partitional clustering algorithms, data is organized into a sequence of groups with no hierarchical

structure whatsoever [40], [41]. [42] says that the partitioning method is best suited for clustering

problems with large datasets for which the construction of a dendrogram is too expensive in terms

of computational cost. Figure 2.2 illustrates the clustering pattern representation of the partitional

clustering method.

Figure 2.2: A partition with n = 500 and k = 4

When using partitional methods, the dataset of n objects is iteratively partitioned into a predeter-

mined k number of distinct subsets through the process of optimization of a criterion function [43]. One

of the most commonly used criteria is the squared error criterion. The general objective is to find the

partition for which a fixed number of clusters minimizes the square error. In this case, the patterns are

a collection of k spherically shaped clusters represented by the deviations of the patterns from a set of k

centroids. The target cost function ζ which can be minimized is given in Equation 2.1:

ζ =

n∑
i=1

∥di − Cj∥q (2.1)

where the variable n denotes the number of elements in the data set, Cj is defined as the center of the

jth cluster and is the center nearest to the data object di, while q is an integer that defines the nature of

the distance function (Minkowski distance where q = 2 is equivalent to Euclidean distance) as discussed

in [43].

In some algorithms, the square error criterion makes the k generated clusters as compact and separated

as possible. This criterion function is cheaper in computational terms when compared to other criteria

[40]. Since algorithms based on the square error criterion can converge to local minima, altering the initial

partitions may result in different output clusters, especially if the initial points are not well separated

[37]. According to [40], partitional techniques are frequently used in engineering applications where

single partitions are most important and appropriate for efficient representation and compression of large

databases. It has also been observed that partitional algorithms are preferred in pattern recognition due

to the nature of the available data [41]. The partitional clustering method is a local search technique [44]

2.1 Partitional Clustering 7

and local convergence. Therefore the optimal global solution cannot be guaranteed [45].

Partition-based clustering is an NP-hard optimization problem where the standard approach is to find

an approximate solution [46]. According to [42] “the combinatorial search of the set of possible labelings

for an optimum value of a criterion function is computationally prohibitive”. For this reason, partitional

clustering algorithms usually run a number of times with varying initial conditions returning the best

clustering output of all the runs as the optimal solution [42]. One of the major disadvantages this algo-

rithms can have is the need for predefined user values for parameter k, which is usually nondeterministic

[42], [47]. This arbitrary choice of k leads to wrong clustering outputs [38].

Partitional clustering algorithms can be categorized based on the various techniques adopted in gener-

ating the clusters and the nature of the resultant clusters produced. These include Hard/Crisp Clustering,

Fuzzy clustering, and Mixture Resolving Clustering.

2.1.1 Hard/Crisp

In a Hard/Crisp clustering algorithm each data object is assigned to a single cluster. The cluster-

ing methods under this category include Square-error, Model-based, Graph-theoretic, Density-based,

Subspace-based, Search-based and Miscellaneous.

2.1.1.1 Square Error

The square error clustering method assigns data points into a fixed number of clusters based on the sum

of square error criterion functions. This function computes the squared differences between each data

point in a group and its estimated center value. This sum may sometimes equal to zero meaning the

members in the group are identical. The formula for Sum of Square Error is:

Sum of Square Error =

n∑
i=1

(xi − x̄)
2

(2.2)

where n represents the number of data points and xi represents the ith data point in the group and x̄

is the center object relative to the group. The K-Means clustering algorithm is the best know squared

error-based clustering algorithm [28].

K-Means Clustering The K-Means clustering algorithm is a partitioning technique which distributes

the data points into a specified number of k clusters. In order to distribute the data points an objective

function which assesses the quality of a partition is optimized. This guarantees that the similarity of data

points within a cluster (intra-cluster similarity) is higher compared to that of data points in different

clusters (inter-cluster similarity). K-Means is a centroid-based technique i.e. each cluster is represented

by a centroid. K-Means uses the mean of the data points in a cluster as the centroids of each cluster.

Initially, k data points are randomly selected from a set of the existing data points as the centroids of the

k clusters. Then, the pairwise Euclidean distance between all data points and each centroid is computed.

From this distances each data point is assigned to the cluster with the closest centroid. The centroids are

then recomputed as the average of the data points in its cluster. This last two steps are repeated several

times until stability is achieved.

As we previously mentioned, to partition the data points K-Means optimizes an objective function.

This objective function is the sum of squares function. The minimization of this function for Euclidean

8 Chapter 2. State of the Art

distances produces compact and well-separated clusters [31], [48], [49]. The sum of square function for

the Euclidean distances for the K-Means algorithm is given as:

dik =

m∑
j=1

(xij − ckj)
2

(2.3)

where dik is the Euclidean distance, xij is the jth data point for ith cluster and ckj is the centroid for the

jth cluster.

Among the problems with K-Means, one of the worst is that of the initial definition of the number

of clusters k, since no efficient and universal method which solves this problem exists. K-Means is very

sensitive to the initial centroid selection to the point where may they be wrongfully chosen, a suboptimal

solution may be produced [50]. This also means that there is no guarantee that the algorithm will

converge to the global optimum. Another problem with K-Means is that, given that the centroids are

computed as the mean of the data points in the cluster, the K-Means algorithm’s application is limited to

data objects with numerical variables [28]. The K-Means algorithm is sensitive to outliers [36]. It works

on the assumption that the variance of the distribution of each attribute is spherical and thus produces a

roughly equal number of observations. Additionally, it is expensive in terms of memory and the number of

iterations needed for the algorithm to converge is undetermined. Despite all this problems, the K-Means

algorithm is still popular and widely used today [31]. This is due to the simplicity of implementation and

its low computation complexity [41].

K-Means is arguably the most popular clustering method but is plagued with drawbacks such as

poor scalability, sensitivity to initialization and outliers, assumed knowledge of cluster count, and local

production rather than the global optimum. There are some extensions on the K-Means algorithm which

seek to advance the state-of-the-art in addressing these issues. For example, the G-means [51] and the

X-means algorithms [52].

2.1.1.2 Model-based Clustering

Model-based clustering makes the assumption that there is some underlying probability distribution or

model the data follows [53], where clusters are represented by each of the components of the distribution.

The principle of model-based clustering is to recover the underlying model and build clusters of similar

data points using it to determine which data points satisfy said model. Model-Based clustering tries to

optimize a predefined models fitness concerning the given data. Since clusters are generated using the

given data, the number of clusters can be automatically found thus making it easy to identify outliers. In

Model-based clustering, a mixture model is used in representing data, and the components of the model

correspond to the different clusters.

[53] reported two ways to formulate models for cluster composition: the classification likelihood

approach and the mixture likelihood approach. Model parameters can be calculated by means of the the

Bayesian Information Criterion (BIC) [53]–[55] or the Maximum Likelihood Estimation (MLE) criterion

[45]. The BIC can also determine between two clusters which is most likely to contain a data point [56].

There are two major approaches using this method: the statistical approach and the neural network

approach [45]. Examples of the Model-Based Clustering method includes Expectation Maximization

(EM) [53], [57], [58], SOM and COBWEB. A parametric mixture distribution for a random vector A can

be written as:

f(θ) =

B∑
b=1

πbfb (a|θb) (2.4)

2.1 Partitional Clustering 9

where πb > 0; such that
∑B

b=1 πb = 1 are regarded as the mixing proportions. The fb (a|θb) is the bth

component density with the parameter vectors of the distribution represented as θ = (π, θ1, . . . , θb) with

π = (π1, . . . , πb). The f(θ) is called the B-component finite mixture density. f1 (θ1) , . . . , fb (θ1) represent

the distribution components, that is, the clusters of the parametric mixture distribution. The distribution

components are the same type for all the b. A knowledge-based clustering scheme was proposed by [59]

introducing the notion of conceptual cohesiveness as a precise enough way to be adopted for semantic

grouping of related objects based on cohesion forests. In order to give meaning to the generated clusters,

the authors presented a set of axioms that should be satisfied.

2.1.1.3 Graph-theoretic Clustering

A graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense

related. The objects correspond to mathematical abstractions called vertices, nodes or points; and each of

the related pairs of vertices are is called an edge, link or line [60]. Graphs can be used to represent feature

relationships between data objects and list relevant features. In graph-theoretic clustering, clusters are

represented by graphs [36] where the nodes correspond to the different data points which are connected

by edges reflecting the proximity between pairs of data points [28]. The criterion function seeks to make

the edge density across clusters smaller than the edge density within clusters [36]. If an edge has a weight

substantially larger than that of its nearby edges, it is said to be inconsistent. Nodes are grouped into

clusters based on the graph topology so that the resulting clusters have high intra-connectivity and low

inter-connectivity among the generated clusters. While representing clusters in graphs is convenient, it

does not help when handling outliers.

Graph theory can be used to obtain both hierarchical and non-hierarchical clusters. Graph methods

which directly deal with connectivity graphs can be used in linkage metrics-based hierarchical clustering

as long as the N ×N connectivity matrix is sparse [40], [61]. This clustering method uses the topological

properties of a network of data objects to build clusters. Finding the maximally connected sub-graphs in

a graph is equivalent to the single linkage hierarchical clustering. Likewise, finding maximally complete

sub-graphs in a graph is the same as the complete linkage hierarchical clustering [40]. The K Nearest

Neighbor (K-NN) graph model was used to develop Chameleon (an agglomerative hierarchical clustering

algorithm) [28]. Using the K-NN graph approach, Chameleon constructs a sparse graph where the weight

of each edge indicates the similarity (distance) between the corresponding vertices. The K-NN graph

is partitioned into several sub-clusters using a graph partitioning algorithm in order to minimize the

weight of the edges to be cut. The clustering process eliminates the edges whose vertices are not within

the k closest points concerning each other and uses an agglomerative hierarchical clustering algorithm

to merge similar sub-clusters. Another graph representation of hierarchical clustering is the Delaunay

Triangulation Graph (DTG) that uses a hyper-graph where more than two vertices are connected to an

edge [62].

Zahn’s clustering algorithm [63] is an example of graph-theoretic non-hierarchical clustering. Uneven

edges in minimum spanning trees are detected and discarded in the bid of connecting components as

clusters [40]. However, in order to select the proper heuristic to identify irregular edges, there is a need

for prior knowledge of the cluster’s shape. Cluster Identification via Connectivity Kernels (CLICK) is

another such example. In CLICK, clusters are generated by performing the minimum weight division

[32], [64]. The specification of suitable parameters and criterion properties is a problem to be addressed

[40]. According to [40], “no theory exists for choosing among the various properties of graphs to select

the best clustering method for a particular application”.

10 Chapter 2. State of the Art

2.1.1.4 Density-based Clustering

In density-based clustering, clusters are looked for in the pattern space where dense regions separated

by low density regions are viewed as clusters. These high density regions (a.k.a. modes) are related to

cluster centers, while the objects in the sparse areas separating the clusters are considered to be noise or

outliers [46]. Figure 2.3 presents the clustering pattern of the density-based clustering method.

(a) Initial dataset (b) Cluster assignation

Figure 2.3: Density-based clusterization example

In density-based algorithms, a histogram is constructed by dividing the space into non-overlapping

regions which help find the modes. For each of these regions the frequency with which a data point falls

into them is measured. The regions with high-frequency counts form the potential modes while the ones

with low-frequency counts form the boundaries between the clusters. With this, the cluster centers are

identified and the data points are added to clusters with the closest center. One of the major drawbacks

of using a histogram to measure the density function is that the pattern space must be large enough to

identify the sections correctly [40]. Additionally, clusters that are small in size are usually very noisy

since their boundaries are defined loosely. On the other hand, gargantuan clusters have loosely defined

cluster properties because of the member patterns’ varied properties. It is also troublesome to locate the

precise values for the histogram’s peaks and valleys.

Several works proposing the general concept for mode identification has been reported in the literature

[40]. This clustering method has been used extensively in engineering, mostly in remote sensing applica-

tions [65]. In some other cases, clusters are formed based on the data points density within a region. Data

points are added to the cluster until the neighborhood’s density is less than a given threshold. In this case,

a cluster in the neighborhood of a given radius must contain a minimum number of objects concerning

the specified threshold. Generation of the cluster this way enables the building of clusters with arbitrary

shapes. Outliers or noisy data points are naturally eliminated. Examples include Density Based Spatial

Clustering of Applications with Noise (DBSCAN), Ordering Points To Identify the Clustering Structure

(OPTICS), Density-based Clustering (DENCLUE). The DBSCAN has a well-defined cluster model with

fairly low complexity [46]. OPTICS solved the DBSCAN’s problem of choosing an appropriate value for

the range parameter producing a hierarchical output similar to linkage clustering [46].

The use of the spatial index in finding data point’s neighborhood has been reported as improving the

complexity of the model from O(n2) to O(n log n) compare with other methods [37]. The density-based

2.1 Partitional Clustering 11

clustering method is reported as resistant to outliers, insensitive to data object ordering, ability to form

arbitrary shape clusters, and no need for pre-stating the number of clusters [45]. However, they are not

ideal for large data sets due to dimensionality. The low-density areas as noise make the algorithms based

on this clustering method unable to detect intrinsic cluster structure common in real-life data. There is

also the problem of cluster border detection because there is the need to have data point’s density drop

to show the demarcation between clusters [46].

2.1.1.5 Subspace Clustering

Subspace clustering is an extension of the traditional clustering algorithm where the clusters are searched

for in the different subspaces in which a dataset exists. When it comes to large dimensional datasets, it

is often better to describe them through the subspaces they exist in rather than using them as a whole

[66]. In this way, the subspace clustering technique helps discover hidden knowledge in datasets with

high dimensionality. Clusters existing in multiple overlapping subspaces are easily identifiable through

subspace clustering. Subspace clustering removes redundant and irrelevant dimensions by means of

feature selection, leaving only relevant dimensions that the clustering algorithm will use to find the

clusters.

Subspace clustering algorithms are categorized into two subsections: the top-down and bottom-up

approaches. The bottom-up subspace method uses an a priori style approach to leverage the density’s

downward closure property to reduce the search space. The density’s downward closure property holds

that dense units found in a k-dimensional subspace S, will also be found in any (k − 1)-dimensional

projection of S. Based on this, the bottom-up method creates a histogram for each dimension and selects

dimensions whose density is above a given threshold. Examples of bottom-up subspace clustering include

(but are not limited to) CLIQUE [67], ENCLUS [68], MAFIA [69], CBF [70], CLTree [68] and DOC [71]

are examples of clustering methods that use this subspace clustering approach.

In the top-down approach, an initial approximation of the clusters in the whole feature space with

equally weighted dimensions is first found. In the next step, a weight is assigned for each subspace size

in each cluster using a sampling technique to improve the algorithm’s performance. There is a need to

specify the subspace sizes and the number of clusters beforehand, which is the first bottleneck of this

approach. Dealing with outliers in the dataset is yet another bottleneck. Parameter tuning must be

performed to achieve a meaningful result. Examples of top-down subspace clustering include (but are

not limited to) PROCLUS [72], ORCLUS [73], FINDIT [74], COSA [75] and δ-Clusters [76].

2.1.1.6 Search-based Clustering

Traditional algorithms tend to have an additional burden placed on them as they need to be provided with

a priori information on the number of clusters [31]. A fundamental problem of clusterization is that of

determining the best estimate of cluster number. This is usually called the “automatic clustering problem”

[77]. This is more pronounced when working on real-world data as these datasets are characterized by

their high density and dimensionality. The lack of domain knowledge beforehand makes it difficult to

figure cluster numbers, especially if the data has high dimensionality and its clusters vary in shape,

size and density while sometimes overlapping. In such scenarios it is astoundingly difficult to determine

the optimal number of clusters, and so is providing such information to a data clustering algorithm.

Search-based clustering algorithms emerge as a solution to the need to provide the traditional clustering

algorithms with this vital information [31]. They are nature-inspired metaheuristic approaches, where

the structure and number of clusters in a dataset is spontaneously determined without prior information

on the dataset’s attributes values [78].

12 Chapter 2. State of the Art

Automatic clustering techniques where such a requirement is out of the question are a better suited

for real-world data sets such as those we previously mentioned. Automatic clustering algorithms produce

the same results as their traditional counterparts without the need of any background information on the

datasets [31], [40], [78], [79]. These algorithms have also been found to be able to handle automatic clas-

sification and identification of unlabeled data points in real-world datasets. Unlike traditional clustering

algorithms which are mostly local search algorithms whose solutions are greatly influenced by the initial

conditions, automatic clustering algorithms have a higher probability of reaching optimal global solu-

tions. In contrast with traditional clustering algorithms, the nature-inspired clustering algorithms have

demonstrated more flexibility in handling clustering problems rather than being mostly problem-specific

and lacking continuity [80]. Automatic clustering algorithms treat clustering problems as optimization

problems with a focus on the minimization of intra-cluster distance and maximization of inter-cluster

distance [31], [81].

On one hand, finding the optimal solution of a cluster analysis problem is classified as an NP-hard

problem whenever k > 3 (the number of clusters is greater than three) [82]. This means that, for

moderately sized problems, clustering tasks could be computationally prohibitive. On the other hand,

nature-inspired metaheuristic algorithms designed to be able to handle high-dimensional, complex real-

world data clustering problems [83]. Moreover, their higher heuristic search capability makes them,

while balancing intensification and diversification in the search, look for the most promising solution.

Therefore, since most metaheuristic techniques are cheap in terms of computing power needed, they

are suitable for solving clusterization problems [81], and so they became the most applied techniques

for implementing automatic clustering algorithms [77]. These nature-inspired meta-heuristic algorithms

have solved a wide range of continuous and discrete combinatorial optimization problems, particularly

the Genetic Algorithm (GA), Differential Evolution (DE), Particle Swarm Optimization (PSO), Firefly

Algorithm (FA) and Invasive Weed Optimization (IWO) [31]. Automatic clustering algorithms are far

superior in performance compared with their traditional counterparts in terms of convergence speed

(speed to reach a solution) and their ability to produce good quality solutions.

Some of the search-based nature-inspired techniques that have been tested as clustering algorithms

include GA [40], [84], [85], DE [86], [87], Artificial Bee Colony Optimization Algorithm (ABC) [81],

[88], Ant Colony Optimization (ACO), PSO [89], [90], IWO [91], Symbiotic Organisms Search (SOS),

Bacterial Evolutionary Algorithm (BEA) [92], Variable Neighborhood Search (VNS), FA [93] and Tabu

Search (TS).

The metaheuristics-based clustering algorithms can be classified into two: Evolutionary and Swarm

Intelligence algorithms. The GA and DE algorithms come under the former group, while the rest fall

under the latter. These two groups have several common design steps: they start by randomly initializing

the population, then evaluating said population to identify suitable population members which represent

the solution [83], from which a new population will be generated by modifying the individual-specific

variation operators. The second and third steps are repeated iteratively, updating which candidate

individual is best fitted in terms of the defined objective function of the problem. We will now expand

on GA, ACO, ABC and PSO as they are the most commonly used algorithms under this category.

Genetic Algorithm-Based Clustering Techniques The Genetic Algorithm is a single objective

evolutionary computation method developed by [94] which has been used for automatic clustering. The

inspiration for this algorithm comes from Charles Darwin’s principle of evolution by natural selection,

constructing a robust search algorithm with minimal problem information [95]. The algorithm performs

a search in large, complex multimodal landscapes and in the process obtains a near-optimal solution for

the fitness function. In GA-based clustering techniques, the characteristics of GAs are applied to figure

2.1 Partitional Clustering 13

out the proper number of clusters through evolution, providing appropriate clustering [95].

The search space parameters are represented by means of strings called chromosomes which encode a

combination of cluster centroids. A collection of chromosomes forms the algorithm’s population. Initially,

a random population representing different search space solutions is created. Additionally, there is an

objective or fitness function which measures how good the solutions represented by each chromosome are.

In accordance to the principle of survival of the fittest, the chromosomes representing the best solutions

are selected to ‘give birth’ to the next generation of chromosomes by means of two biologically inspired

breeding operators: the crossover and mutation operators. The selection and breeding operations are

iteratively repeated until a stopping criterion is met (e.g. until a given number of generations has been

bred, a fitness score has been reached, etc.) [96]. In GA-based clustering techniques, the selection controls

the search direction, while the breeding generates expands the search into new regions.

There have been several attempts at developing GA-based clustering algorithms. [97] researched the

capabilities of GAs in the context of clustering problems. [98] proposed Genetic K-Means Algorithm

(GKA), a GA to find a globally optimized partition of a given dataset into a specified number of clusters

which uses a one-step K-Means to accelerate crossover operations. GKA searches faster than K-Means

and converges to the global optimum, thus minimizing Total Within Cluster Variation (TWCV) [98]. [99]

developed Fast Genetic K-Means Algorithm (FGKA), a variation of GKA featuring several improvements

over it. Other GA-based clustering algorithms include Incremental Genetic K-means Algorithm (IGKA)

[100], GA-clustering [101] and Genetically Guided Algorithm (GGA) [102]. [31], [77], [95] provide other

references on further works on GA-based clustering. [77] discussed four categories of GA-based automatic

clustering algorithms based on their chromosome encoding scheme: the centroid-based encoding of vari-

able length, the centroid-based encoding of fixed length, the label-based encoding, and the binary-based

encoding.

Ant Colony Optimization Clustering Algorithm Swarm Intelligence (SI) is a paradigm in ar-

tificial intelligence which takes inspiration from the emergent behavior in decentralized, self-organized

systems. SI techniques try to imitate this emergent behavior applying it to the search of solutions in

hard computational problems. They generally have a simple design, good scalability and are robust. The

ACO algorithm is a stochastic metaheuristic, classified under SI, for combinatorial optimization [103].

The Ant-based clustering methods are directly modeled on ant’s social behavior [103]. It is the most

popular kind of SI clustering algorithm. There are two major approaches to this kind of clustering: those

that are tightly bound to ants’ behavioral nature and those whose loosely follow this nature. The former

considers the gathering and occasional sorting of items observed in the nest and brood care of ants [104].

This behavior is directly imitated in the clustering of abstract data where the clustering objective has to

be defined implicitly. The latter, which is loosely inspired by nature, handles clustering tasks as an opti-

mization task using the ant-based optimization method to generate near-optimal clusters. This approach

allows the explicit specification of the objective function, therefore offering a better understanding and

prediction of the clustering performance. The ACO clustering algorithm falls under this second group.

It is inspired by the foraging behavior of mass recruiting ants. The ants use pheromones to mark areas

of promising forage and potential food sources [103], [105]. [106], [107] carried out some research on the

ACO-based clustering algorithms. An ant-based clustering algorithm was also presented by [108], which

finds the adequate number of clusters and initializes the Fuzzy C-Means algorithm. [109] worked on

adaptive time-dependent transporter ant for clustering.

Particle Swarm Optimization The PSO is another general-purpose optimization metaheuristic. PSO

is inspired by unsophisticated agents that interact locally among the neighboring individuals and their

14 Chapter 2. State of the Art

environment. The collective behaviour of these is complex enough that it is actually valuable for solving

optimization problems [77], [110]. PSO was introduced as a population-based search algorithm where

there is a swarm which is a population of particles each of which represents a complete solution. During

the optimization process, this swarm of particles moves cooperatively in the region defined as the objective

function. The particles move according to a set of forces directed towards good positions in the search

space which has already been explored by the swarm. According to [77], “the particles explore the search

space by adjusting their trajectories iteratively according to self-experience and neighboring particles”.

Initially the swarm has several particles placed at random positions in the search space with randomly

assigned velocities. At every iteration, each particle will evaluate the objective function at its position,

updating its position, velocity, and memory for its individual best position [111].

The first applications of PSO for solving clustering problems used a fixed number of clusters. PSO was

given a new use in searching for the clusters’ optimal centroids assigning the data points to whichever was

the closest centroid. This applications were further extended in the presentation of the Dynamic Clus-

tering Particle Swarm Optimization (DCPSO) [77], [112]. Another PSO-based segmentation algorithm

for automatically grouping image pixels into different regions was proposed by [113]. Other researches on

PSO-based clustering algorithms can be found in [81], [114]–[121]. It has been observed that PSO-based

clustering algorithms give excellent results in quality clustering to find the correct cluster number. The

PSO basic algorithmic form is characterized by extreme simplicity. It is mostly used to optimize the

functions of continuous variables.

2.1.2 Mixture Resolving Algorithms

The Mixture Resolving Algorithm or mixture-based algorithm makes the assumption that a set of data

points emanates from a mixture of instances of multiple probabilistic clusters. This means that, to gener-

ate the data points, a probabilistic cluster was chosen according to the cluster’s probabilities and with it

a sample was generated (following its probability density function) and added to the set. Therefore, when

clustering, the data set is assumed to be a mixture of different cluster groups with varying proportions.

The mixture likelihood-based approach to clustering is model-based since there is a beforehand require-

ment for the specification of each component density of observation. [122] stated that a statistical model

to be used must be stated or known ahead in the clustering of samples from a population. Given the

relationship between these two algorithms, it is possible to conduct estimation analysis and hypothesis

testing of clustering methods based on mixture models using standard statistical theory. [123], in support

of this, had stated that the mixture likelihood-based approach “is about the only clustering technique that

is entirely satisfactory from the mathematical point of view”. It makes use of well-defined mathematical

models, investigating them with well-defined statistical techniques and gives a measure of significance

for the results. Furthermore, determining what the best number of clusters is can be easily done in a

Mixture-based algorithm as it has a clear probabilistic foundation. [124] stated that providing an ef-

fective clustering of various data sets under various experimental designs is one of the mixture model’s

usefulness. However, very strong assumptions are made on the data distribution; clusters are represented

by a single simple distribution, limiting the cluster’s shape [125]; and the algorithm is computationally

expensive. Figure 2.4 shows an clusterization example with this algorithm.

2.1.2.1 Expectation Maximization

The Expectation Maximization (EM) algorithm is a framework that employs two major steps in ap-

proaching the maximum likelihood of estimates of parameters in a statistical model: the Expectation

2.2 Hierarchical Clustering 15

(a) Initial dataset (b) Mixture model (c) Cluster assignment

Figure 2.4: Mixture resolving clusterization example

Step (or E-step) and the Maximization Step (or M-step). Initially, the probabilistic distribution param-

eters (such as the mean and standard deviation) are selected e.g. the values are randomly assigned. In

the E-step, the data points are assigned to clusters based on the probabilistic clusters’ parameters i.e.

each object’s likelihood to belong to each distribution is computed. In the M-step, a new clustering that

maximizes the expected likelihood is found i.e. the probabilistic distribution parameters are adjusted to

maximize each cluster object’s expected likelihood. The E-step and the M-step are iteratively executed

until the probabilistic distribution parameters converge i.e. the change is null or almost null. Thus,

each iteration of the EM algorithm requires several computations. The product of the number of data

points and the number of mixture components scales linearly with this iterative computation, limiting

the applicability of this algorithm in large-scale applications [126]. Furthermore, the algorithm’s output

is highly dependant on the initial parameters. Nevertheless, the EM algorithm is easy to implement, and

there is no need to set any parameters that will influence the optimization algorithm [126].

2.2 Hierarchical Clustering

The hierarchical clustering method partitions data into levels, building a hierarchy. Clusters are itera-

tively merged or split to generate a dendrogram depicting the formulated clusters’ hierarchical structure

[36]. This clustering method allows exploring data on different levels of granularity. A dendrogram

representation for the hierarchical clustering method is displayed in Figure 2.5.

The hierarchical clustering algorithms can easily handle any similarity measure and flexible level of

granularity [50]. As a result, they apply to any attribute type. However, these algorithms can be afflicted

with irreversible splits or merges such that wrongly constructed clusters cannot be revisited. Additionally,

their application in large-scale datasets is limited because it has high computational complexity. On that

note, most of the hierarchical clustering has at least a computational complexity of O
(
N2

)
[36]. Apart

from these, there is also the problem of the vagueness of termination criteria and lack of robustness due

to its sensitivity to noise and outliers. It has also been reported that algorithms which rely on the use

of euclidean distances, tend to form spherical shapes. One last drawback, which affects agglomerative

methods, is that those that are practical in terms of time efficiency require memory usage proportional

to the square of the number of groups in the initial partition.

16 Chapter 2. State of the Art

Figure 2.5: Dendrogram representation for the hierarchical clustering of eight objects

2.2.1 Agglomerative Clustering

In the agglomerative clustering method, clusters are constructed from N clusters containing a single

data point each, which are iteratively merged into larger clusters that form the hierarchy’s various levels

until the entire object includes a single cluster or until the stopping criterion is met. The final cluster,

containing all data points is the root of the hierarchy. When merging, the two closest objects, according

to the similarity measure, are the ones to be combined. It requires at most, N − 1 iterations to complete

the clustering operation since every iteration merges two clusters into a single one, reducing the total

amount of clusters by one.

The merging of clusters is based on a proximity measure or linkage metric that generalizes the distance

between individual points to the distance between subsets of points. This method utilizes a N × N

similarity matrix with which the linkage metrics used for the clustering are constructed. The construction

of this matrix is achieved by finding the similarity between each pair of data points. From this matrix,

the linkage criterion can be calculated by finding the pairwise distance between clusters. There are three

basic linkage metrics: single-linkage, complete-linkage and average-linkage [36], [42], [127], [128].

The single-linkage metric, a.k.a. nearest neighbor, minimum or connectedness metric, measures the

nearest distance from any member of one cluster to any other cluster member. It has a chaining effect

with the tendency of producing elongated clusters [50].

The complete-linkage metric, a.k.a. the maximum, diameter or farthest neighbor metric, determines

the distance between two clusters by measuring the longest distance from any member of one cluster to

any member of the other cluster. Its clusters are more compact and tightly bound than single-linkage

clustering [40].

The average-linkage metric is also regarded as the minimum-variance linkage [36], [40]. It finds the

mean or median of the distances among all the data points between clusters [50].

These three linkage metrics consider all the points of a pair of clusters. [129]–[131] implemented

SLINK, CLINK and the Vorhees’ method which are the implementations of the single-linkage, complete-

linkage and average-linkage hierarchical clustering algorithms, respectively.

2.2 Hierarchical Clustering 17

Ward’s clustering method [132] implements an agglomerative clustering algorithm based on K-Means’

objective function where the criterion for choosing the pair of clusters to merge at each step is based on the

optimal value of an objective function. Furthermore, it is considered a general agglomerative hierarchical

clustering procedure. This clustering method is most appropriate for quantitative variables and not

binary ones. [133] developed a non-parametric hierarchical, agglomerative clustering algorithm based on

the use of a conventional nearest neighbor to determine the Mutual Neighborhood Value (MNV) and

Mutual Nearest Neighbors (MNN) of a sample point. Their simple, non-deterministic and non-iterative

algorithm requires low storage and can discern non-spherical and spherical clusters. More so, this method

was reported to have the ability to discern mutually homogeneous clusters and applications to a wide

class of data of arbitrary shape, large size, and high dimensionality.

Clustering Using Representative (CURE) is an implementation of the agglomerative hierarchical clus-

tering algorithm intended for large databases. Outliers do not have that much effect on it and it can

identify clusters of different shapes and sizes although with less cluster quality than those of Balanced

Iterative Reducing and Clustering Using Hierarchies (BIRCH). It has a time complexity of O
(
N2 logN

)
and its performance is particularly good on 2-dimensional datasets. CURE solves the scalability problem

with the use of data sampling and partitioning; clusters with fine granularity are first constructed in

partitions. Clusters are represented by a fixed number of points scattered around it. The distance be-

tween two clusters is generated by finding the minimum distance between the two clusters’ representative

points. The use of scattered representative points enables CURE to identify clusters of diverse sizes and

shapes. The scattered representative points are shrunk to the cluster’s geometric centroid as the clus-

tering progresses based on the user-specified factor. The choice of the input parameters for CURE: the

shrink factor, representative point number, sample size, and the number of partitions affect the clustering

output. CURE was developed to work on datasets with numerical attributes [61].

2.2.2 Divisive Clustering

The divisive hierarchical clustering algorithm follows a process opposite of that of the agglomerative

clustering, beginning with every object in a single cluster, dividing every cluster into smaller chunks,

until the required number of clusters is attained [134]–[136]. The standard method of cluster splitting

is to consider every possible bipartition before splitting them into two clusters containing one or more

elements. It should be obvious that the full enumeration process offers a universal optimum at the cost of

being very expensive in terms of computation. For this reason, there have been investigations on various

divisive clustering approaches which do not consider all bipartitions. For example, a method that uses K-

means to split the clusters in order to obtain better results than the traditional K-Means or agglomerative

method was proposed by [137]. [138] proposed an Improved particle optimizer (IDPSO) to determine

the closest optimal partition hyperplane for splitting designated clusters into two smaller ones, which is

both practical and efficient. In another study, [139] investigated a method called Reference-point-based

dissimilarity measure (DIVFRP) combining it with the purpose of divisive clustering: dataset partition.

[140] and [141] used an average dissimilarity between an object and a set of objects to investigate the

iterative divisive procedure.

Divisive clustering can be divided into monothetic and polythetic methods. Monothetic divisive clus-

tering employs a single variable in each splitting, by separating objects with specific values from those

without value [142]. Monothetic is usually a variant of the association analysis method [143] and is pro-

posed for binary data. Various studies have applied monothetic clusters for problem-solving. For instance,

[144], [145] employed a monothetic clustering approach on interval and histogram data. Similarly, [146]

utilized the monothetic clustering method on multi-modal data. However, those monothetic approaches

18 Chapter 2. State of the Art

decrease the number of computations required to identify an optimum bipartition, such that only p (n− 1)

bipartitions are needed for testing to determine the optimum bipartition instead of all
(
2n−1 − 1

)
likely

bipartitions. The larger the number of objects, the possible bipartition number is further decreased by the

monothetic method. Besides, they offer binary questions that facilitate the interpretation of clustering

structures.

The polythetic divisive clustering approach utilizes all variables concurrently via dissimilarity or dis-

tance values. It does not rely on single variable order but depends entirely on distance values, and the

distance values reflect on all variable dissimilarity concurrently [147]. However, large variables (variables

with many dimensions) may lead to scalability issues. [148] proposed a modern divisive clustering al-

gorithm termed Hierarchical grid clustering using data field (HGCUDF). In this approach, hierarchical

grids divide large datasets and their subset’s are clusterized. However, the clustering regions limit the

search scope, minimizing the data space for producing data fields. HGCUDF exhibits rapid execution

and stability, which improves the clustering results on a large automated dataset. In another study, [149]

investigated a model-based clustering technique for high-dimension datasets. This technique is divided

into three steps: multi-modal splitting, iterative weighted sampling, and uni-modality preserving merg-

ing to measure the model-based clustering approach of large high-dimensional datasets. This method of

clustering algorithm solves the problem of small datasets and the effective scaling of the large datasets

when evaluated with synthetic datasets compared with the conventional methods. It is helpful in immune

response jobs and can tremendously regulate rare populations.

For the most part, the clustering algorithms in the literature are focused on binary data. However,

the clustering of categorical data has attracted more researchers in recent years. Many researchers

have proposed different divisive hierarchical clustering algorithms to combat this problem. For instance,

[150] suggested Maximum Dependency of Attributes (MDA) for divisive hierarchical clustering attributes

selection. The maximum dependency of attributes is created by relying on attributes dependency in rough

set theory, which measures the dataset’s attributes dependency. In another study, [151] investigated a bi-

clustering method for choosing two-valued attributes by considering multi-valued attributes and a Total

Roughness (TR) approach. They maintained that high TR attributes attain optimum performance and

are suitable for cluster splitting. [152] developed a Min-Min-Roughness (MMR) metric to resolve the

uncertainty in the categorical data clustering process. However, MMR signifies TR’s reverse and does

not yield clustering algorithms with comparative improvement in complexity or accuracy [150], [153].

[154] investigated a divisive method for categorical data based on Multiple Correspondence Analysis

(MCA). Similarly, [155] implemented information theory-based divisive clustering for categorical data by

employing Mean Gaian Ratio (MGR) to choose clustering attributes and select class equivalents on the

cluster attribute using cluster entropy. Although divisive clustering is appealing based on computational

time, partitioned clusters’ quality is better than a divisive one.

[149] proposed a model-based Scalable Weighted Iterative Flow-clustering Technique (SWIFT) for

high-dimensional large datasets. The model consists of three stages: multimodality splitting, weighted

iterative sampling, and unimodality; preserving. Merging for model-based clustering scaling on high-

dimensional datasets are constructed to be effectively scalable to large datasets, offering a significant

enhancement when compared with the current soft clustering approaches [156], [157]. These three major

SWIFT stages are motivated by two main requirements: scalability to large datasets and rare popu-

lation identification. In SWIFT, multimodality splitting and weighted iterative sampling identify rare

populations. This algorithm is usually met for Flow Cytometry (FC) and finding rare populations. The

multimodality stage plays a vital role in identifying rare subpopulations. When evaluated with synthetic

datasets, the algorithm solves small datasets and can effectively scale large datasets compared to conven-

tional methods. SWIFT may also be employed to represent skewed clusters by LDA-based agglomerative

2.2 Hierarchical Clustering 19

merging, which decreases clusters numbers as it preserves the separate unimodal populations.

The interaction between the merging and multimodality splitting in many clusters uses a reasonable

heuristic (cluster modality). It is more reasonable when compared with knee point in entropy plots for-

mally employed [156], [158]. The algorithm advantageous immune response tasks and efficient scaling on

large FC datasets. Moreover, the soft clustering method utilized in SWIFT is essential for understanding

the overlapping clusters compared to the complex clusters approach like K-Means [159] or spectral clusters

[160]. SWIFT has the power to control the tremendously rare populations. SWIFT is partially synony-

mous with flowPeaks [157] since both depend on unimodality criterion. Thus, flowPeaks focuses on the

significant peaks without modality splitting and leans in missing tiny overlapping clusters. Consequently,

one of the limitations of SWIFT is that it is restricted to a specific clustering task [149].

2.2.3 Implementations that Improve on Hierarchical Clustering

Over time, several improvements have been made on the traditional algorithm in order to overcome

the deficiencies of hierarchical methods. One enhancement that takes hierarchical clustering’ scalability

limitation (performance on large datasets) into consideration is the Balanced Iterative Reducing and

Clustering Using Hierarchies (BIRCH) clustering algorithm [161]. BIRCH is based on the use of Cluster

Features (CF). CF is a triple that summarizes the information maintained about a cluster. This triple

contains the cluster objects total number n, the linear sum of attribute values of the cluster objects LS,

and the sum of squares of the attribute’s values of the cluster object SS, CF (n,LS, SS) [38]. The CF

triples are kept in a tree form, and only the tuples are kept in the main memory.

The BIRCH algorithm consists of 4 phases, the 2nd and 4th of which are not mandatory [38]. Phase

1 handles the scanning of the entire dataset and the construction of the CF tree. The information stored

in this tree is prepared carefully in order to properly reflect as much information as possible in the

dataset while adjusting to the limitation imposed by the limited amount of memory with crowded data

points grouped as fine sub-clusters. During this phase, outliers are treated as sparse data points and are

removed from the dataset. This process ensures no other input–output operation will be required in the

following phases, thus reducing the computation time for the remaining steps. Additionally, the clustering

is performed on smaller sub-datasets of each sub-cluster in the entries of leaves of the CF tree since these

are built by incrementally updating the CF [38]. The leaf ordering in the initial tree construction produces

a better data locality, enhancing the clustering output. The BIRCH algorithm has proved to be able to

handle outliers, large datasets, and produce a good clustering output that is not affected by order of input

data. It is reported to be computationally efficient, achieving O(N) computational complexity [37]. The

efficiency of is, however, dependent on proper parameter setting. It is also biased towards non-spherical

clusters due to the use of diameter/radius to control the cluster boundary. Evaluation of BIRCH using

both synthetic and real datasets showed that it returns a better result in computational time complexity,

the robustness of the approach, and cluster quality.

20 Chapter 2. State of the Art

Chapter 3

Implementation

In this chapter we will take a look at both how to develop R packages, how where the algorithms in the

package implemented, what problems did those implementations come across, how where those problems

dealt with, and how do the implementations manage to explain the step-by-step process of each algorithm.

The package implements five algorithms: K-Means, DBSCAN, GMM with EM, AHC, DHC.

The aim of each of the implementations is to provide a Minimum Viable Product (MVP) i.e. functions

that works fairly fast for the typical use cases of a learning environment, which is able to generate a step-

by-step explanation of what is happening at any given time during the execution. The former grants

that a student can experiment with any method to get an intuition for its pros and cons, while the latter

allows the student to develop a deeper understanding of the methods by allowing them to peek at its

working mechanism.

3.1 Developing R packages

A package is a convention for organizing files into directories. R packages commonly have five parts:

DESCRIPTION and NAMESPACE, two files containing matadata i.e. the name of the package, a descrip-

tion, the funcions to export, etc.; R/, a directory containing all the source code files of the package;

tests/, which holds tests files to verify the correction of the code; man/ and vignettes/, where the

documentation, tutorials and how-tos are stored; and data/, to include datasets within the package.

While there are multiple packages useful to package development the most common one is the devtools

package. This package’s aim is to make package development easier by providing R functions that simplify

and expedite common tasks.

All the functions provided by this package accept a path as an argument. If no path is provided,

the current working directory is used instead. Therefore, whenever we are to develop a new package we

can create a RStudio project with all the necessary files with create package(). This project can be

handled with the git version manager with use git() and this repository can be uploaded to github

with use github().

Once the package project is in place, the devtools functions we will be using the most are:

load all(), which loads the package code; document(), which rebuilds the documentation and the

NAMESPACE file; test(), which runs the unitary tests; and check(), which does a full check of the

package looking for any possible errors in it. These functions define a workflow where the code can be

edited and used thanks to load all(), if there are any tests they can check the validity of any new

code with test(), the documentation files can be regenerated when the roxygen is modified, and the

https://devtools.r-lib.org/

22 Chapter 3. Implementation

Figure 3.1: Package development workflow with devtools

package can be checked for errors with check() to ensure the new version can be commited to the git

repository. An diagram showing this workflow can be seen in Figure 3.1.

Packages can also be tested against different systems with check win() and check rhub(). These

are the same systems CRAN uses before submission. If all the checks have succeeded the release()

function makes sure everything is OK with the package, then builds and uploads the package to the

CRAN repositories so it is widely available.

In addition to the devtools package, there is yet another very commonly used tool when working with

the R programming language: RStudio. RStudio is an Integrated Development Environment (IDE) for

R. It is available in two formats: RStudio Desktop, which is a regular desktop application; and RStudio

Server, a remote server with allows accessing RStudio using a web browser. The developers of RStudio

also develop many packages (like the devtools package) and integrate them in their IDE, making the

development faster and more comfortable to the user.

3.2 Algorithms

3.2.1 K-Means

K-Means (Algorithm 3.1) is a partitional, centroid-based clustering method which aims to partition the

data points into k groups such that the sum of squares from points to the assigned cluster centers is

minimized. At the minimum, all cluster centroids are at the mean of their Voronoi sets (the set of data

points which are nearest to the centroid). The algorithm follows a 2 to n step process:

1. The first step can be subdivided into 3 steps:

(a) Selection of the number of clusters k, into which the data is going to be grouped and of which

the centroids will be representatives. This includes the selection of k centroids.

(b) Computation of the pairwise distances between the data objects and the centroids.

(c) Assignment of each observation to a cluster. The observations are assigned to the cluster

represented by the centroid to which they are the closest.

2. The next steps are just like the first but the first sub-step is replaced with the computation of the

new centroids. The centroid of each cluster is computed as the mean of the observations assigned

to said cluster.

https://posit.co/download/rstudio-desktop/

3.2 Algorithms 23

The algorithm stops once the centroids in step n + 1 are identical to those of step n. However, this

convergence does not always take place. For this reason, the algorithm also stops once a maximum

number of iterations is reached.

Algorithm 3.1: K-Means

Input:
data. A matrix with n rows, one per observation.
centers. The number of clusters.
max iterations. The maximum number of iterations.
initialization. The initialization method.

Output: An object containing:
cluster. A label for each observation indicating its cluster.
centers. The centroids the algorithm converged to.
metrics. Some metrics evaluating how good the clustering is.

1 begin
// Variable initialization ...

2 centroids ← initialization(data, centers)
3 old centroids ← null
4 iterations ← 0
5 while old centroids ̸= centroids ∧ iterations < max iterations do

// Keep track of the old centers and the current iteration
6 old centroids ← centroids
7 iterations ← iterations + 1

// Label observations with the id of the closest centroid
8 distances ← dist(centroids, data)
9 foreach obs ∈ data do

10 cluster[obs] ← argmin(distances[, obs])

// Compute the new centroids as the mean of the observations with
the id of the centroid as its label

11 foreach c ∈ centroids do
12 observations ← filter(data, obs → cluster[obs] = c)
13 c ← mean(observations)

// Label observations with the cluster they belong to
14 distances ← dist(centroids, data)
15 foreach obs ∈ data do
16 cluster[obs] ← argmin(distances[, obs])

// Compute the metrics
17 metrics ← evaluate(data, cluster, centroids) return cluster,

centroids, metrics

K-Means is very sensitive to the initial centroid selection to the point where may they be wrongfully

chosen, a sub-optimal solution may be produced. To solve this problem, several initialization algorithms

have been proposed in the literature. In this implementation we focus on two of them:

• random. A set of k observations is chosen at random from the data as the initial centers.

• K-Means++ [162]. This algorithm guarantees to find a solution that is O (log k) competitive to

the optimal K-Means solution. The algorithm can be described as a k step process:

1. The first centroid is chosen at random from the data.

2. The next centroid is chosen from the remaining observations with probability proportional

to the square distance to the closest centroid. This step repeats until k centroids have been

chosen.

24 Chapter 3. Implementation

Algorithm 3.2: K-Means - Random initialization

Input:
data. A matrix with n rows, one per observation.
k. The number of clusters.

Output:
centers. A matrix with k rows, each of which is an observation from data

1 begin
// Choose k random observations from data

2 n ← rows(data)
3 centers ← data[random(n, k),]
4 return centers

Algorithm 3.3: K-Means - K-Means++ initialization

Input:
data. A matrix with n rows, one per observation.
centers. The number of clusters.

Output:
centers. A matrix with k rows, each of which is an observation from data

1 begin
// Assign an equal probability to every observation

2 foreach obs ∈ data do
3 prob[obs] ← 1 / rows(data)

4 for c = 1 to centers do
// Choose a random observation from data according to their

probabilities
5 centers[c,] ← sample(data, prob)

// Recompute the probabilities
6 distances ← dist(centers, data)
7 foreach obs ∈ data do
8 prob[obs] ← min(distances[, obs])

9 prob ← prob / sum(prob)

10 return centers

3.2 Algorithms 25

This algorithm was implemented in the kmeans function. This function is written after Algorithm

3.1. The complete source code can be found in Appendix A.1. The kmeans function accepts four or

more arguments. The first argument, data, is a set of observations, presented as a matrix-like ob-

ject where every row is a new observation e.g. a matrix or data.frame. The second argument,

centers, is either the number of clusters, in which case the centroids are chosen according to the

initialization parameter; or, unlike Algorithm 3.1, a set of initial cluster centers. The third argu-

ment, max iterations, is the maximum number of iterations the algorithm is allowed to perform. The

fourth argument, initialization, specifies the initialization method to be used. initialization

can be one of "random" or "kmeans++", where the latter is the default. Any additional arguments

other than those four are used in any call this function does to proxy::dist.

Initially, the function takes these arguments and makes sure they make sense e.g. max iterations

is a positive integer. Then, it checks to see if the centroids have to be initialized. If they have to,

there will be another round of checks to make sure the amount of centroids makes sense i.e. it is a

positive integer smaller than the amount of observations. If it does, contrary to what we see in Line 2

where initialization is used as a function, the kmeans function expects initialization to be

a string. This string is converted to a number indicating the initialization method to use. This is done

with the grep function to allow sub-strings of the method names as valid initialization values e.g. "km"

is equivalent to "kmeans++" as it is a sub-string of "kmeans++" not present in "random". Once

initialization is an integer one of two functions is selected and with it the centroids are finally

initialized.

The random init function implements the "random" initialization method. This method samples

k random observations from the data. It is written after Algorithm 3.2. The kmeanspp init func-

tion implements the "kmeans++" initialization method. This method makes use of a vector with the

probabilities to sample any specific point as a centroid. Initially all the elements in the vector have the

same probability. Then k iterations are performed in which a centroid is sampled and stored and the

probabilities recomputed for every observation. This includes those which have already been chosen as

centroids. However, no observation will be picked twice since the centroids are closest to themselves

with a squared distance of zero, meaning their probability to be chosen will be null. It is written after

Algorithm 3.3.

With the centroids initialized, the function heads into the algorithms main loop. At every iteration,

the algorithm updates the number of iterations it has gone through and the centroids obtained in the

previous iteration. Then, the pairwise distances between the centroids and the observations are computed.

All distance computations are performed with the proxy::dist function. This is a fast substitute to

R’s default dist which allows computing distances between a dataset and itself as well as two different

datasets. With these distances, every observation is assigned the cluster corresponding to the centroid it

is closest to.

From the cluster assignments, the new centroids are be computed as the mean of the observations

assigned to it. However, this operation may leave some centroids as undetermined. This is due to the

fact that centroids can be assigned no observations. In this case, the centroid is simply not updated.

When the new centroids have been computed, they are compared with the centroids from the previous

iteration to see if they are identical. If they are, the algorithm has converged and the function exits the

main loop.

Finally, the observations are assigned a cluster one last time using the distances to the latest centroids.

This is the cluster assignment the funtion returns. Additionally, some metrics on the performance of the

clusterization are computed. The cluster assignments, centroids and metrics are put together inside a

kmeans structure, which is native to R, and the structure is returned.

26 Chapter 3. Implementation

3.2.2 DBSCAN

Density Based Spatial Clustering of Applications with Noise (DBSCAN) is a density-based clustering

technique (Algorithms 3.4 - 3.5). This algorithm aims to partition a dataset into clusters such that the

points in a cluster are close to each other and the points in different clusters are far away from each other.

The clusters are defined as dense regions of points separated by regions of low density. This algorithm

follows a two step process:

1. For each observation/point, the neighborhood of radius eps is computed. If the neighborhood

contains at least minpts points, then the point is considered a core point. Otherwise, the point is

considered an outlier.

2. The second step is itself a two step process:

(a) For each core point, if the core point is not already assigned to a cluster, a new cluster is

created and the core point is assigned to it.

(b) The neighborhood of the core point is explored. If a point in the neighbourhood is a core

point then the neighborhood of that point is also explored. This process is repeated until all

points in the neighborhood have been explored. If a point in the neighborhood is not already

assigned to a cluster, then it is assigned to the cluster of the core point.

Whatever points are unassigned after this step, are considered outliers.

Algorithm 3.4: Density-Based Spatial Clustering of Applications with Noise

Input:
data. A matrix with n rows, one per observation.
eps. The distance within which an observation’s neighbors are found.
min pts. The amount of neighbors an observation needs to have to be dense.

Output: An object containing:
cluster. A label for each observation indicating its cluster (or 0 if it is an outlier).

1 begin
// Variable initialization ...

2 cluster[data] ← UNCLASSIFIED
3 cluster id ← next id(NOISE)

// Traverse the observations in a BFS fashion ...
4 foreach obs ∈ data do
5 if cluster[obs] = UNCLASSIFIED then

// When expanding a node, if a cluster is created update the
cluster id ...

6 if expand(data, obs, cluster, cluster id, eps, min pts) then
7 cluster id ← next id(NOISE)

8 return cluster

This algorithm was implemented in the dbscan function. This function is written after Algorithms

3.4 - 3.5. The complete source code can be found in Appendix A.2. The dbscan function accepts three

or more arguments. The first argument, data, is a set of observations, presented as a matrix-like object

e.g. a matrix or data.frame, where every row is a new observation. The second argument, eps, is

a number determining how close two observations have to be in order to be considered neighbors. The

third argument, min pts, is an integer determining the minimum amount of neighbors an observation

needs to have within eps to be considered core i.e. a dense region. Any additional arguments are passed

to the proxy::dist function any time it is called.

3.2 Algorithms 27

Algorithm 3.5: DBSCAN - expand procedure

Input:
data. A matrix with n rows, one per observation.
obs. A row from data.
cluster. A label for each observation indicating its cluster.
cluster id. The id of the cluster to be created.
eps. The distance within which an observation’s neighbors are found.
min pts. The amount of neighbors an observation needs to have to be dense.

Output: An object containing:
new cluster. A boolean indicating whether a new cluster was created or not.

1 begin
// Neighbor search ...

2 neighbors ← region query(data, obs, eps)
3 if size(neighbors) < min pts then
4 cluster[obs] ← NOISE
5 return False

6 cluster[neighbors] ← cluster id
7 neighbors ← remove(neighbors, obs)
8 while size(neighbors) ̸= 0 do
9 frontier ← pop(neighbors)

10 new neighbors ← region query(data, frontier, eps)
11 if size(new neighbors) < min pts then
12 foreach neig ∈ new neighbors do
13 if cluster[neig] ∈ [UNCLASSIFIED, NOISE] then
14 if cluster[neig] = UNCLASSIFIED then
15 push(neighbors, neig)

16 cluster[neig] ← cluster id

17 return True

28 Chapter 3. Implementation

Initially, the algorithm labels every observation as unexplored/unclassified. Additionally, the imple-

mentation computes the pairwise distances between the observations in data. This distances are later

passed to the expand and query region sub-functions. The reason behind this is that, while the

original algorithm (and the pseudo-code for that matter) assumes data is a structure like a kd-tree or

a R*-Tree with which the neighbors within eps can be computed in O(log n) time, making the total

execution time O(n log n) with only O(n) memory. However, the implementation doesn’t count with

such a structure and uses the matrix of pairwise distances instead. This makes looking for the neighbors

within eps a O(n) time operation and the overall algorithm O(n2) time using O(n2) memory. While this

means the implementation is really bad in comparison (in terms of computational cost), it also means it

is easier to understand as it removes the need to know about these tree data structures and their inner

workings.

Once the necessary variables are initialised the algorithm starts to traverse the observations. The

algorithm loops over every observation and, if it has not yet been expanded, it is expanded by calling

expand over it. The expand sub-function expands an observations neighborhood by traversing a graph

where the nodes are the observations in data and there are edges directed from every dense observation

to its neighbors within eps. This traversal is done in a Breadth First Search (BFS) fashion, which results

in every node of the graph being expanded exactly once.

Since non-dense observations cannot have outward pointing edges, any call of expand over a non-

dense observation returns False immediately as it cannot create new clusters. However, calls over dense

observations explore the neighborhood of the observation assigning every visited observation to the same

cluster and returning True. Since expands only returns True when it assigns observations to a cluster,

the algorithm uses this as a signal to change cluster id and thus assign points to a new cluster the

next time an observation is expanded.

Once the loop has gone through every observation, cluster has a label other than UNASSIGNED

for every observation. This labels determine to which cluster every observation belongs. Therefore, this

structure is what the algorithm has to return. The dbscan function i.e. the R implementation of the

algorithm, complements this structure with the eps and min pts used to cluster data as well as the

size of each cluster.

3.2.3 Gaussian Mixture

Gaussian Mixture Model with Expectation Maximization (GMM with EM) (Algorithm 3.6) is a model-

based and mixture-resolving hybrid technique which aims to partition a dataset into clusters such that

the dataset is represented by a probabilistic model where each component of the model represents a

cluster. In the case of this specific algorithm, each cluster is represented by a Gaussian distribution. The

algorithm follows a two to n step process:

1. Initially, a model is randomly generated. Since the model is a mixture of Gaussian distributions

and these can be represented by their mean, covariance matrix and weight; as many of these three

parameters are generated as clusters are needed.

2. The current model is optimized with the EM algorithm. This algorithm consists of two steps:

E. During the E-Step, the probabilities of each observation belonging to each cluster are com-

puted i.e. for every observation and cluster we compute how strongly should we Expect the

observation to belong to the cluster.

3.2 Algorithms 29

M. During the M-Step, each of the models components’ parameters are recalculated for them to

maximize the probabilities obtained in the E-Step e.g. the mean of a component is computed as

the weighted average of the observations where the weight of any observation is its probability

to belong to said component (which we computed in the E-Step).

These two steps are performed iteratively until a certain amount of repetitions is hit or until the

changes are sufficiently small.

Algorithm 3.6: Gaussian Mixture Expectation Maximization

Input:
data. A matrix with n rows, one per observation.
k. The number of clusters the mixture model considers.
max iter. The maximum number of iterations of the EM algorithm.

Output: An object containing:
cluster. A label for each observation indicating its cluster (or 0 if it is an outlier).
model. The mixture model found by the algorithm.

1 begin
// Initialize the mixture model with random parameters

2 model ← initialize(data, k)
// The fitness of the model will be measured with the log likelihood

3 q ← loglik(data, model)
4 q old ← q + 2e-6
5 iter ← 0
6 while q - q old ≥ 1e-6 ∧ iter < max iter do

// E-Step
7 foreach obs ∈ data do
8 foreach comp ∈ model do
9 mean ← comp.mean

10 covar ← comp.covar
11 weight ← comp.weight
12 prob[obs, comp] ← dnorm(obs, mean, covar) * weight

13 prob[obs,] ← prob[obs,] / sum(prob[obs,])

// M-Step
14 foreach comp ∈ model do
15 comp.mean ← weighted mean(data, prob[, comp])
16 comp.covar ← weighted covar(data, prob[, comp])
17 comp.weight ← sum(prob[, comp]) / rows(data)

// Update metrics
18 q old ← q
19 q ← loglik(data, model)
20 iter ← iter + 1

21 foreach obs ∈ data do
22 foreach comp ∈ model do
23 mean ← comp.mean
24 covar ← comp.covar
25 weight ← comp.weight
26 prob[obs, comp] ← dnorm(obs, mean, covar) * weight

27 cluster[obs] ← argmax(prob[obs,])

28 return cluster, model

This algorithm was implemented in the gaussian mixture function. This function is written after

Algorithm 3.6. The complete source code can be found in Appendix A.3. The gaussian mixture

function accepts three or more arguments. The first argument, data, is a set of observations, presented

30 Chapter 3. Implementation

as a matrix-like object e.g. a matrix or data.frame, where every row is a new observation. The

second argument, k, is an integer representing the number of clusters. The third argument, max iter, is

an integer representing the maximum number of iterations the EM algorithm is allowed to perform. Any

additional arguments are passed to the kmeans function, which we previously explained in Subsection

3.2.1, whenever the gaussian mixture function calls it.

Initially, the algorithm builds the k components of the probabilistic model. The model used is a

Gaussian Mixture Model (GMM). This model is represented by Equation 3.1 where the model GMM is

the sum of its components Ci and each component is a weighted Gaussian distribution parameterized by

its mean µi, its covariance matrix Σi and its weight λi. Algorithm 3.6 initializes the model randomly.

This could be done by randomly splitting the observations into k partitions of equal size and using the

observations in partition i to compute the µi as the mean of the observations Σi as the covariance matrix

of the observations and λi as 1/k. However, the gaussian mixture function takes a similar yet different

approach where, instead of partitioning the observations randomly, the observations are partitioned with

a call to kmeans. This is done like this since it is a computationally cheap way to obtain a good starting

model.

GMM =

k∑
i=1

Ci =

k∑
i=1

λiN (µi,Σi) (3.1)

Once the model is initialized an initial fitness metric is computed for it. The metric used by this

algorithm is the log likelihood which can be computed as described in Equation 3.2. This metric will

change as we optimize the model with the subsequent E and M steps. Whenever the metric changes slow

down below a threshold, we can assume the model has reached (or is about to reach) a local maximum.

This is therefore used as a stopping signal. In addition to this, the number of iterations of the EM

algorithm is also used as a stopping signal.

loglik =

k∑
i=1

∑
obs∈data

log (Ci (obs)) =

k∑
i=1

∑
obs∈data

log (λi) + log (N (obs, µi,Σi)) (3.2)

With the model initialized and its fitness metric computed, the algorithm starts optimizing the model

with iterations of the EM algorithm. During the E-Step, the probability of each observation belonging

to each component is computed. These probabilities are min-maxed for every observation so that the

probabilities of any specific observation belonging to each component add up to 1. During the M-Step,

these probabilities are used again to compute the parameters of each component e.g. the mean of each

component is computed as the weighted mean of the observations where the weight of each observation

is its probability to belong to the component in question. After each M-Step, a new model is obtained

and its log likelihood is computed.

When any of the stopping criteria is met, the last obtained model is the optimized version which

the algorithm returns. In addition to the model, the algorithm also returns a label for each observation,

indicating to which cluster they belong. To compute these labels, another E-Step is performed and, with

the probabilities retrieved from the E-Step, each observation is assigned the label of the cluster to which

it is more likely to belong.

3.2.4 Agglomerative Hierarchical Clustering

The Agglomerative Hierarchical Clustering (AHC) algorithm (Algorithm 3.7) performs a hierarchical

cluster analysis of n observations by grouping them up into incrementally larger clusters, thus building a

3.2 Algorithms 31

hierarchy. To do this, the algorithm follows a n step process, which repeats until a single cluster remains:

1. Initially, each object is assigned to its own cluster. The matrix of distances between clusters is

computed.

2. The two clusters which are closest to each other i.e. the two clusters with smaller proximity, are

joined together into a new larger cluster and the proximity matrix is updated. This is done according

to the specified proximity definition. This step is repeated until a single cluster containing every

object remains.

Additionally, to completely understand the algorithm we also need to define how to compute the

proximity between two clusters. There are several possible definitions but we are going to consider three

possibilities:

1. The single function defines the proximity between two clusters as the distance between the closest

objects among the two clusters as seen in Equation 3.3. It produces clusters where each object is

closest to at least one other object in the same cluster. It is known as SLINK, single-link and

minimum-link [129].

min{d(x, y) : x ∈ A, y ∈ B} (3.3)

2. complete. The complete function defines the proximity between two clusters as the distance

between the furthest objects among the two clusters as seen in Equation 3.4. It is known asCLINK,

complete-link and maximum-link [130].

max{d(x, y) : x ∈ A, y ∈ B} (3.4)

3. average. The complete function defines the proximity between two clusters as the average

distance between every pair of objects, one from each cluster, as seen in Equation 3.5. It is known

as UPGMA and average-link [131].

1

|A| · |B|
∑
x∈A

∑
y∈B

d(x, y) (3.5)

This algorithm was implemented in the agglomerative clustering function. This function is

written after Algorithm 3.7. The complete source code can be found in Appendix A.4. This function

accepts two or more arguments. The first argument, data, is a set of observations, presented as a matrix-

like object e.g. a matrix or data.frame, where every row is a new observation. The second argument,

proximity, is the proximity definition to be used. It has to be one of "single" (minimum/single

linkage), "complete" (maximum/complete linkage) or "average" (average linkage). Any additional

arguments are passed to the proxy::dist function whenever a distance is to be calculated.

Initially, the list of clusters is initialised with a cluster for each observation. Each of these clusters is

a binary tree with a single observation at the root and the information of at which height the branches

join i.e. what is the proximity between the clusters at each branch. In the implementation, additional

information related to the amount of observations contained in the cluster and a label is stored in these

trees. This information is necessary since this tree structure has to be converted to an hclust object to

make it compatible with other R functions and to accelerate the update of the pairwise proximity matrix.

Additionally, the pairwise proximity matrix is computed. Since at this point clusters are composed of a

32 Chapter 3. Implementation

Algorithm 3.7: Agglomerative Hierarchical Clustering

Input:
data. A matrix with n rows, one per observation.
prox. A function that computes the proximity between two clusters.

Output:
dendro. A binary tree structure representing the cluster hierarchy.

1 begin
// Initialize the list of clusters

2 foreach obs ∈ data do
3 clusters[obs] ← {obs, height = 0}

// Compute the pairwise proximity matrix
4 foreach o1 ∈ clusters do
5 foreach o2 ∈ clusters do
6 proximity[o1, o2] ← prox(o1, o2)

7 while size(clusters) > 1 do
// Find which clusters to join

8 A, B ← argmin(proximity)
9 o1 ← pop(clusters, A)

10 o2 ← pop(clusters, B)
11 p1 ← pop(proximity, A,)
12 p2 ← pop(proximity, B,)
13 pop(proximity, , A)
14 pop(proximity, , B)

// Join the clusters into a new cluster
15 o3 ← {o1, o2, height = proximity[A, B]}
16 push(clusters, o3)
17 p3 ← prox(p1, p2)
18 proximity[o3,] ← p3
19 proximity[, o3] ← p3

20 dendro ← pop(clusters)
21 return dendro

3.2 Algorithms 33

single observation, this matrix is equivalent to the pairwise distance matrix of the observations. In the

implementation this matrix is computed making use of the proxy::dist function.

With all the initial clusters in a list and until a single cluster remains in said list, two clusters are

looked for such that their proximity is the smallest of all proximities in the pairwise proximity matrix.

These clusters are removed from the list of clusters and combined as the branches of a new cluster. This

new cluster is put back into the list of clusters and the pairwise proximity matrix is updated by removing

the rows/columns of the two clusters we just joined together and replacing them with the proximity of

the new cluster to every other cluster.

While the definition of proximity is often described as an operation on the observations of the clusters,

the computation of the proximity can sometimes be accelerated. In our specific case, since we know the

proximity between two clusters A and B to every other cluster D in the list of clusters and given

the proximity definitions we are considering, the proximity between cluster C ≡ A ∪ B and every other

cluster D can be accelerated. Let prox(A,B) be the proximity between two clusters A and B, to compute

prox(C,D) we can combine prox(A,D) and prox(B,D) in some way specific to the proximity definition

we are using.

Doing this for the single-link and complete-link definitions is very straight forward. In the case of

single-link, if the proximity between to clusters is the minimum distance between any two points from

those clusters, when combining two clusters A and B into C it should be obvious that the minimum

distance between clusters C and D, prox(C,D), is min(prox(A,F),prox(B,F)). This is because the

closest point in C to any point in D has to belong to either A or B therefore the minimum proximity

of these two is the proximity we seek. With complete-link the same logic applies replacing the min

function with the max function. The computation with average-link is a tad bit more complicated. In

this case prox(C,D) can be computed as:

|A|prox(A,D) + |B|prox(B,D)

|A|+ |B|

An intuitive way to think about this is that, since prox(A,D) is the average distance between the points

in A and D, this could very well be the actual distance between every pair of points of these two clusters.

Making this assumption we just need to compute the weighted average of prox(A,D) and prox(B,D)

where the weights are the amount of observations in clusters A and B, |A| and |B| respectively.

Once a single cluster remains in the list of clusters, the algorithm simply has to return this last

cluster. However, as we previously mentioned, the implementation still needs to convert this binary tree

to a hclust object. This object represents the dendrogram by labeling every cluster and storing a

two-column matrix where each row contains two of those clusters, indicating which two clusters where

joined at each step. Additionally, it stores the height of each cluster merge in a separate vector too.

3.2.5 Divisive Hierarchical Clustering

The Divisive Hierarchical Clustering (DHC) algorithm (Algorithm 3.8) performs a hierarchical cluster

analysis of n observations by dividing them down into smaller clusters, thus building a hierarchy. To do

this, the algorithm follows a n step process, which repeats until every observation is put into a cluster of

its own:

1. Initially, all objects are assigned to the same unique cluster.

34 Chapter 3. Implementation

2. The cluster which yields the greatest value for a criterion function e.g. the sum of squares function,

is split into two sub clusters which minimize this very criterion function. This step is repeated until

a every cluster contains a single observation i.e. until n clusters remain.

Algorithm 3.8: Divisive Hierarchical Clustering

Input:
data. A matrix with n rows, one per observation.
criterion. The criterion function

Output:
dendro. A binary tree structure representing the cluster hierarchy.

1 begin
// Initialize the clusters

2 dendro ← {data}
3 push(clusters, dendro)
4 while size(clusters) > 0 do

// Split any cluster*
5 C ← pop(clusters)
6 A, B ← split(C)

// Update the cluster we just split as a binary tree with the two
parts as branches

7 C ← {A, B, height = criterion(C)}
// Add the new clusters to the list of clusters to split

8 if size(A) > 1 then
9 push(clusters, A)

10 if size(B) > 1 then
11 push(clusters, B)

12 return dendro

This algorithm was implemented in the divisive clustering function. This function is written

after Algorithm 3.8. The complete source code can be found in Appendix A.5. This function accepts one

or more arguments. The first argument, data, is a set of observations, presented as a matrix-like object

e.g. a matrix or data.frame, where every row is a new observation. Any additional arguments are

passed to the kmeans function, which we previously explained in Subsection 3.2.1, whenever the function

splits a cluster into two.

Initially, a global cluster is initialized as a tree with all the data in the root and no branches. In

the implementation, some extra information is added to the clusters. This information comprises a label

identifying the cluster, the amount of elements contained in the cluster and the value the cluster yields

from the criterion function. In this case, the implementation uses the sum of squares criterion function.

The function needs this extra information to convert the tree structure from Algorithm 3.8 into a hclust

object. Additionally, a list of clusters which have to be split is created and the global cluster is added to

it.

Once the list of clusters to split is initialized, any cluster is taken out of the list and said cluster

is processed. Despite the fact that the algorithm states that the cluster which maximizes the criterion

function is the one which should be split, taking any cluster from the list of clusters on the leaf nodes

of the global cluster, as shown in Line 4 of Algorithm 3.8, is fine. This is due to two reasons. The first

reason is that we are fully expanding the global cluster until leafs contain a single observation, instead of

stopping early once we hit a certain amount of clusters. The second reason is that once a cluster is split

into two, each of the two new clusters will be expanded into a tree completely independent from that of

the other cluster. Therefore, no matter the order in which the clusters are expanded, the end result will

3.3 Automatic explanations 35

be the same.

Once we have selected a cluster to work with, we have to determine how to split it. In Algorithm

3.8 this is done with the split sub-function which could exhaustively check every possible bi-partition

of the cluster in search of the one which minimizes the criterion function. However, since that would be

computationally prohibitive, this implementation splits the clusters into two using the kmeans function.

This is done like so because the K-Means algorithm is very fast, and allows us to choose the amount

of partitions we want. That is also the reason why the criterion function used is the sum of squares,

since that is the function the K-Means algorithm optimizes. Therefore, this implementation of the DHC

resembles a Bisecting K-Means algorithm. Nevertheless, this approach is not without its problems. One

of the possible problems is that the K-Means algorithm may sometimes yield a single cluster instead of the

two we need, meaning we will need to tune the algorithm to adapt to this situations. Another problem

with this approach is that the implementation will inherit some of the shortcomings of the K-Means

algorithm. Once the cluster has been split into two, the old cluster is updated to reflect this division.

In addition, the split clusters are added to the list of clusters which have to be divided, if they

contain more than a single observation and can therefore be split. When no clusters remain in the list

of clusters to split, the algorithm returns the global cluster. In the case of the R implementation, this

tree has to be converted to a hclust object. In this case, since the splits have not been performed in

decreasing order of values yielded by the criterion function, the order of the cluster “merges” also has

to be sorted. This makes this conversion process more convoluted than the corresponding process of the

agglomerative clustering function.

3.3 Automatic explanations

While we have now explained in some detail how each of these algorithms work and how the implementa-

tions differ from the algorithms, a student using this package will (most likely) not be able to read these

explanations. Instead, for each implemented method the package provides the option to log to the console

details about the steps the method in question is taking to cluster the input data. These explanations

are articulated through two additional parameters: details, which determines whether or not these

details should be logged or not; and waiting, which determines whether or not user input should be

waited for before continuing with the next step of the algorithm.

In general, the explanations follow the same steps for each of the implementations. Initially, the

algorithm is explained in natural language, usually giving a list of steps, so that the student knows what

to expect of the coming logs. Once the algorithm has been explained, the actual execution starts. During

the execution, after any of the steps given in the natural language explanation happens, the relevant

information about the step is logged along with some details of what is being logged. Finally, once the

algorithm terminates, some extra logs explaining the results are given. After each of these logs, the

execution may (depending on the value of the waiting parameter) halt and wait for some user input

before continuing.

In order to make the logs as readable as possible, a color code is used. With the default RStudio

theme, the explanations and details of each step are logged in red, the relevant information and specific

data about certain steps is logged in black, and the prompts to wait for user input are logged in blue.

To get this result, different functions are used, some of which can be found in Appendix A.6. On one

hand, the custom function console.log uses the native R function message which prints in red. On

the other hand, both print and cat properly print matrices and vectors in black color. Finally, the

readline function can print a prompt in blue. And of course, these colors change with the IDE theme.

36 Chapter 3. Implementation

These color codes help make the explanation easier to follow, since it gives a visual key as to what the

user is looking at.

Chapter 4

Results

In this chapter we will have a look at the pros and cons of the implemented clustering algorithms and

compare them by clustering six toy datasets included in the package and looking a the results each

algorithm yields. Additionally, the automatic explanations provided by the implementations will be

showcased with an example.

4.1 Toy Datasets

The techniques explored and implemented in this project are clustering algorithms. As such, they always

take some data as input, and return some classification of the data as output. Therefore, to put the

implementations to the test, we will need some input data.

A toy dataset is a small dataset meant for testing purposes. The R programming language ships with

some very famous toy datasets like Edgar Anderson’s Iris Data [163], a dataset with some measurements

for 50 flowers from each of 3 species of iris: setosa, versicolor and virginica. While these datasets are

alright, they are not meant for clustering specifically and may require some treatment of the data before

hand.

Instead of relying on R’s toy datasets, this project implements its own datasets based on scikit-

learn’s [164] datasets with noise from its clustering methods overview. These datasets are considered

better for several reasons. On one side, they are meant specifically for clustering e.g. they don’t have

predefined classes like R’s iris does. On the other side, they are designed to highlight different features

of the clustering algorithms, allowing the user to better understand them. Additionally, although all of

the implementations from this project are designed to work on n dimensional data, these datasets are

bidimensional which is easier to plot and thus understand. Figure 4.1 shows these toy datasets.

4.2 Algorithm Characteristics

In this section we will discuss each of the algorithm’s characteristics, both positive and negative, and use

both the implementations and the toy datasets to visually see some of these characteristics in action.

Before diving into the characteristics of any specific algorithm, a brief summary of how the algorithm

work will be given. This is due to the fact that some of their flaws and qualities are directly derived from

from some specific mechanism used by the algorithm in question.

38 Chapter 4. Results

Figure 4.1: Toy Datasets

4.2.1 K-Means

The K-Means algorithm clusters data by trying to separate samples in k groups such that they minimize

some criterion function, specifically, the within-cluster sum-of-squares. The within-cluster sum-of-squares

can be recognized as a measure of how internally coherent clusters are. Given this criterion function, a

cluster can be represented by the mean of the observations in that cluster i.e. the cluster centroid. On

one hand, among the virtues of this algorithm we can find the following:

• This algorithm is relatively simple to understand and implement.

• Since it converges quickly, it can handle a large number of observations efficiently.

• When clusters are well-separated and of similar size, it tends to perform well.

On the other hand, it algorithm also suffers from various drawbacks:

• The target number of clusters needs to be provided in advance which may not always be clear,

specially in real-world scenarios (Figure 4.2).

• The initial placement of the centroids can negatively affect the convergence, leading to sub-optimal

solutions.

• If there are outliers present in the data, they can heavily influence the centroid placement.

• Due to the fact that this algorithm optimizes the within-cluster sum-of-squares, the clusters are

assumed to be convex, isotropic and of similar size and density. If clusters are of different shapes,

size or density; the algorithm might struggle (Figure 4.2).

• Once again, due to the fact that this algorithm optimizes the within-cluster sum-of-squares, the

topology of the data is not considered. Therefore, clusters with complex shapes may not be captured

(Figure 4.2).

• When clustering very high-dimensional data, the Euclidean distances tend to be inflated. This is

called the “curse of dimensionality”. The “curse of dimensionality” hinders the performance of the

algorithm.

4.2 Algorithm Characteristics 39

Figure 4.2: K-Means - Drawbacks

4.2.2 DBSCAN

The DBSCAN algorithm views clusters as areas of high density separated by areas of low density. Due

to this rather generic view, clusters found by DBSCAN can be any shape, as opposed to K-Means which

assumes that clusters are convex shaped. The central component to the DBSCAN is the concept of core

samples, which are samples that are in areas of high density. A cluster is therefore a set of core samples,

each close to each other and a set of non-core samples that are close to a core sample. This algorithm

has many features which make it attractive to use:

• It can identify clusters of arbitrary shapes (Figure 4.3).

• Unlike K-Means, DBSCAN does not require to know the number of clusters beforehand. It can

automatically determine the number of clusters based on the data and its density characteristics

(Figure 4.3).

• It is robust to noise and outliers, labeling them as noise instead of assigning them to a cluster

(Figure 4.3).

However, it too has its drawbacks:

• Unless it makes use of data structures like kd-trees or B*-trees, it can be time and memory intensive

hindering its scaling capabilities.

• It may struggle when dealing with clusters of varying densities (Figure 4.3).

• It might not perform properly when clusters are close to each other.

• Like other clustering algorithms, it can face challenges in high-dimensional spaces due to the “curse

of dimensionality”.

4.2.3 Gaussian Mixture

The Gaussian Mixture method clusters data by trying to model the data samples with a Gaussian Mixture

Model. This model is optimized for log-likelihood using the Expectation Maximization algorithm. The

40 Chapter 4. Results

Figure 4.3: DBSCAN - Pros & Cons

log likelihood can be interpreted as a measure of how likely is for a probability distribution to produce

a set of observations. This algorithm, represents clusters as observations from a Gaussian Model. This

way to cluster data brings along many benefits:

• A GMM can model clusters with shapes more flexible than those of K-Means. They do not need

to be isotropic, but can now be elongated (Figure 4.4).

• Cluster assignments are soft i.e. observations are assigned a probability to belong to each cluster.

This can be more realistic than the hard assignment of K-Means in some scenarios.

• Clusters are not assumed to have similar sizes or densities, making it suitable for datasets with such

characteristics (Figure 4.4).

However, as with every other clustering algorithm, GMM with EM has some problems:

• Just like with K-Means, GMM with EM is sensitive to the initial value of the model. Poor initial-

ization can lead to sub-optimal solutions (Figure 4.4).

• This algorithm involves iterative optimization, which can be computationally intensive and time-

consuming. For this reason, it is almost impossible to scale.

• It can struggle with high-dimensional data due to the increased complexity of estimating multivari-

ate Gaussian distributions accurately.

• The clusters modeled by GMM with EM need to follow a Gaussian distribution. Therefore, it is

not as flexible as DBSCAN when it comes to cluster shapes (Figure 4.4).

4.2.4 Agglomerative Hierarchical Clustering

The AHC algorithm builds a cluster hierarchy by creating a cluster for each observation and merging

clusters together into increasingly bigger clusters until a single cluster remains. This hierarchy is repre-

sented as a tree (or dendrogram) where the root of the tree is the cluster containing all samples and the

leaves are the clusters containing a single sample. On the positive side, this algorithm has the following

characteristics:

4.2 Algorithm Characteristics 41

Figure 4.4: GMM with EM - Characteristics

• It produces a hierarchy which can be used to gain insight onto the structure of the data at different

levels of granularity.

• It does not require the user to specify the number of clusters in advance. Instead, the hierarchy

can be explored to determine the number of clusters that best fits the data.

• It is not sensitive to initialization as it always produces the same outcome for the same inputs

(unlike K-Means).

• Different distance metrics can be used to measure the similarity between clusters or data points,

allowing the it to adapt to different types of data (Figure 4.5).

Meanwhile, on the negative side, this algorithm has the following hurdles to overcome:

• It can be computationally intensive, as the time complexity is at best quadratic (and the memory

complexity is not good either). Therefore, it does not scale well.

• It is sensitive to noise and outliers, potentially leading to erroneous merges (Figure 4.5).

• Once a merge is done, it cannot be undone. This can lead to sub-optimal results if an early merging

decision is incorrect.

• Determining the optimal number of clusters from the hierarchy can be subjective and depends on

the specific problem (Figure 4.5).

4.2.5 Divisive Hierarchical Clustering

The DHC algorithm builds a cluster hierarchy by creating a cluster which contains every single obser-

vation and dividing it into sub-clusters until the clusters contain a single observation. This hierarchy is

represented as a tree (or dendrogram) where the root of the tree is the cluster containing all samples

and the leaves are the clusters containing a single sample. On the positive side, this algorithm has the

following characteristics:

42 Chapter 4. Results

Figure 4.5: Agglomerative Hierarchical Clustering - Linkage strategies

4.3 Algorithm comparison 43

• It produces a hierarchy which can be used to gain insight onto the structure of the data at different

levels of granularity.

• It does not require the user to specify the number of clusters in advance. Instead, the hierarchy

can be explored to determine the number of clusters that best fits the data.

• It starts with a single cluster and divides it into smaller clusters based on the internal structure of

the data, which potentially leads to more meaningful and natural cluster divisions.

• Different distance metrics can be used to measure the similarity between clusters or data points,

allowing the it to adapt to different types of data.

Meanwhile, on the negative side, this algorithm has the following hurdles to overcome:

• It can be computationally expensive, specially for large datasets, as it repeatedly divides the data,

optimizing a metric, until individual data points become clusters. Therefore, it does not scale well.

• It is sensitive to noise and outliers, potentially leading to sub-optimal divisions.

• Once a division is done, it cannot be undone. This can lead to sub-optimal results if an early

dividing decision is incorrect.

• Determining the optimal number of clusters from the hierarchy can be subjective and depends on

the specific problem.

• It can be more complex to implement than agglomerative clustering algorithms as it needs recursive

division and handling of the results.

4.3 Algorithm comparison

Having seen the individual characteristics of each of the algorithm, this section will compare every al-

gorithm side by side on all toy datasets. In order for the comparisons to be fair, the best configuration

of each algorithm is chosen for each dataset. Additionally, the time it took for every algorithm to finish

clustering each dataset was measured. All of these results are displayed in Figure 4.6.

The first dataset, db1, contains data resembling two concentric circumferences where each circum-

ference corresponds to a cluster. The second dataset, db2, contains data resembling two semicircles

which are slightly misaligned. In both cases, the observations are subject to some noise. In these sce-

narios, given how the clusters are positioned with respect to each other, we could consider them to have

complicated shapes. For this reason, K-Means, GMM and DHC perform poorly drawing a straight line

through the space an assigning the observations on each side to a different cluster. AHC also has a hard

time solving these scenarios, with complete-linkage and average-linkage producing similarly bad results.

However, both DBSCAN and AHC with single-linkage connect observations which are nearby, success-

fully clustering the complex shapes of db1 and db2. In general, in any situation where the ability of

DBSCAN to connect nearby observations is needed to find the clusters, AHC’s single-linkage will also

produce satisfactory results. Nevertheless, AHC takes a much longer time to do this as it does not only

divide the observations in a few groups but it builds a complete hierarchy.

The third dataset, db3, contains data generated by three different Gaussian distributions. As such,

this scenario is perfect for the GMM algorithm as it clusters using exactly the same probabilistic model. In

this scenario DBSCAN is the worst performer as it classifies many observations as outliers because it does

44 Chapter 4. Results

Figure 4.6: Clusterization of every toy dataset with every algorithm

4.4 Automatic explanations 45

not adapt well to clusters with varying densities. K-Means and DHC follow shortly behind misclassifying

many observations due to the fact that clusters are of different size. Lastly, AHC with average-linkage

gets results comparable to those of GMM. To achieve this results with AHC we need to split the data

into four clusters. Doing this, one of the clusters contains only two observations which we could interpret

as outliers.

The fourth dataset, db4, contains data resembling three diagonally elongated clusters. In this case,

both K-Means and DHC fail to capture the clusters correctly, completely mixing two of the clusters

together. Once again, this is due to the criterion function these algorithms use, which expects clusters to

be convex, isotropic and of similar size and density. DBSCAN and AHC with single-linkage manage to

capture the clusters since, unlike in db3, they are properly separated. In the case of AHC we need to split

the data in six clusters, where three of the clusters are very small (containing up to two observations). We

can consider these small clusters outliers. Additionally, the GMM also manages to correctly identify the

clusters since they can indeed be represented by Gaussian distributions. However, GMM does a better

job than DBSCAN and AHC since it classifies no observations as outliers.

The fifth dataset, db5, contains data resembling three clusters which are convex, isotropic well sepa-

rated and of similar size and density. This time, all algorithms manage to get satisfactory results.

Lastly, the sixth dataset, db6, contains uniformly distributed data forming no obvious clusters. This

scenario is interesting since it somehow allows us to see how the algorithms work internally. On the

one hand, we can see how both K-Means and GMM form all clusters simultaneously since they split the

plane in three similar parts. On the other hand, this scenario makes obvious that DHC splits clusters

into two every time, dividing the data into halves and the halves into fourths. Lastly, it makes obvious

how DBSCAN and AHC with single-linkage work in a somewhat similar way, and how varied the results

obtained with each linkage method can be.

To wrap up, it is also interesting to see how the hierarchical algorithms always take much longer than

their partitional counterparts. As we mentioned before, this is due to the fact that partitional algorithms

only produce a set amount of partitions which is much smaller than the number of observations. However,

hierarchical algorithms have to produce a complete hierarchy i.e. partition the dataset as many times

as there are observations. This makes hierarchical algorithms much more computationally complex than

partitional ones.

4.4 Automatic explanations

To exemplify the automatic explanations we will see the steps they tend to follow with the details of an

AHC. To do this, we will once again resort to one of the toy datasets, in this case db5. However, instead

of using the complete dataset, which contains 500 observations, we will only use a very small fraction of

the data, consisting of the first six observations. This is to make sure the logs will be of data we can fit

in the width of a terminal.

Initially, the algorithm is explained in natural language, usually giving a list of steps, so that the

student knows what to expect of the coming logs. We can see this in Figure 4.7 where an explanation

very similar to that of the documentation is given.

Once the algorithm has been explained, the actual execution starts. During the execution, after any

of the steps given in the natural language explanation happens, the relevant information about the step is

logged along with some details of what is being logged. This is showcased in Figures 4.8 - 4.9, where both

the initial step and the second (nth) step are explained in a fashion similar to that of the explanation

given beforehand.

46 Chapter 4. Results

Figure 4.7: Automatic explanation for AHC (Part 1)

Figure 4.8: Automatic explanation for AHC (Part 2)

4.5 Uploading a package to CRAN 47

Figure 4.9: Automatic explanation for AHC (Part 3)

Finally, once the algorithm terminates, some extra logs explaining the results are given. Figure 4.10

shows the last step where the matrix of pairwise proximities is empty, indicating the algorithm has come to

an end. Right after that, the results for the execution are shown, in this case by plotting the dendrogram

of the hierarchy.

Figure 4.10: Automatic explanation for AHC (Part 4)

4.5 Uploading a package to CRAN

Having checked that the package functions correctly i.e. the algorithms perform within our expectations

and the explanations are satisfactory, the next step in its life-cycle is to upload it to a public repository

for teachers and students to use. The Comprehensive R Archive Network (CRAN) is a network of FTP

and web servers around the world that store identical, up-to-date, versions of code and documentation for

R. The CRAN is maintained by the maintainers of the R language, making it the the official repository

of R packages.

To upload a package to CRAN, the devtools package provides the function release(). This function

48 Chapter 4. Results

asks the developer whether or not they have performed a number of different tests on the package, to

make sure it is up to CRAN’s standards. Once the developer confirms the package passed all tests, it

is sent to the CRAN for revision. The package is tested automatically and in some instances (like the

package being new to CRAN) manually. If all revisions are successful the package is finally uploaded

and can be easily installed from any computer with R and an internet connection with the function

install.packages().

In the specific case of this project, the developed package goes by the name clustlearn. Once all

desired functionality was implemented, some necessary files where created (README.md, which serves

as an introduction to the package and specifies how to install it; NEWS.md, which provides a list of

what features where introduced in each version of the package; and CRAN-COMMENTS, which is a

way for developers to communicate with CRAN’s revision team) and the package was uploaded with the

previously explained release() function. As a result, the results of this project can be found in CRAN

and installed from it.

https://cran.r-project.org/package=clustlearn

Chapter 5

Conclusions and Future Work

To wrap up, the objective of developing a package to ease the process of learning about clustering

techniques and have students get familiar with them can be considered fulfilled. Of the ten distinct

categories of clustering algorithms presented in Chapter 2, at least six can be considered to be covered

by the developed package. The result of all this work is the package clustlearn.

clustlearn improves on other packages which aimed to solve the very same problem like

LearnClust. In this specific case, it does so by fixing several problems LearnClust had like: wrong

input data handling, which sometimes led to exceptions; fixed dimensionality, since it could only handle

two-dimensional data; slow run-times, which made clustering datasets like clustlearn’s toy datasets

unfeasible; and messy explanations, sometimes relying on images the package did not ship.

While clustlearn is a fully functional tool, it could do with some improvements. For instance,

more algorithms could be implemented to provide a broader representation of this field of study, closer to

that of the state-of-the-art (for instance, no automatic clustering functions are included in clustlearn).

Additionally, many of clustlearn’s implementations are not optimized. This could be a problem since

it limits the maximum size a dataset can have before clustering it becomes problematic. While that does

not interfere with the explanations it does limit the student’s capacity to play around with the algorithms

and hinders the process of getting familiar with them.

https://cran.r-project.org/package=clustlearn
https://cran.r-project.org/package=LearnClust

50 Chapter 5. Conclusions and Future Work

Bibliography

[1] U. Von Luxburg, R. C. Williamson, and I. Guyon, “Clustering: Science or art?” In Proceedings

of ICML workshop on unsupervised and transfer learning, JMLR Workshop and Conference Pro-

ceedings, 2012, pp. 65–79.

[2] A. Ghosal, A. Nandy, A. K. Das, S. Goswami, and M. Panday, “A short review on different

clustering techniques and their applications,” Emerging Technology in Modelling and Graphics:

Proceedings of IEM Graph 2018, pp. 69–83, 2020.

[3] D. Dua and C. Graff, UCI machine learning repository, 2017. [Online]. Available: http://

archive.ics.uci.edu/ml.

[4] D. Chen, Online Retail II, UCI Machine Learning Repository, DOI: 10.24432/C5CG6D, 2019.

[5] H. Meek Thiesson, US Census Data (1990), UCI Machine Learning Repository, DOI: 10.24432/

C5VP42.

[6] Estimation of obesity levels based on eating habits and physical condition, UCI Machine Learning

Repository, 2019.

[7] D. L. Haury and P. Rillero, “Perspectives of hands-on science teaching.,” 1994.

[8] A. T. Lumpe and J. S. Oliver, “Dimensions of hands-on science,” The American Biology Teacher,

pp. 345–348, 1991.

[9] D. A. Bergin, “Influences on classroom interest,” Educational psychologist, vol. 34, no. 2, pp. 87–

98, 1999.

[10] A. Krapp, “Basic needs and the development of interest and intrinsic motivational orientations,”

Learning and instruction, vol. 15, no. 5, pp. 381–395, 2005.

[11] U. Schiefele, “Interest, learning, and motivation,” Educational psychologist, vol. 26, no. 3-4,

pp. 299–323, 1991.

[12] S. Hidi and K. A. Renninger, “The four-phase model of interest development,” Educational psy-

chologist, vol. 41, no. 2, pp. 111–127, 2006.

[13] J. W. Renner et al., “Secondary school students’ beliefs about the physics laboratory.,” Science

Education, vol. 69, no. 5, pp. 649–63, 1985.

[14] S. Hebbar, P. Pattar, and V. Golla, “A mobile zigbee module in a traffic control system,” IEEE

Potentials, vol. 35, no. 1, pp. 19–23, 2016.

[15] J. T. Burman, C. D. Green, and S. Shanker, “On the meanings of self-regulation: Digital humanities

in service of conceptual clarity,” Child development, vol. 86, no. 5, pp. 1507–1521, 2015.

[16] D. L. Butler and P. H. Winne, “Feedback and self-regulated learning: A theoretical synthesis,”

Review of educational research, vol. 65, no. 3, pp. 245–281, 1995.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
10.24432/C5CG6D
10.24432/C5VP42
10.24432/C5VP42

52 BIBLIOGRAPHY

[17] P. H. Winne and N. E. Perry, “Measuring self-regulated learning,” in Handbook of self-regulation,

Elsevier, 2000, pp. 531–566.

[18] N. E. Perry, L. Phillips, and L. Hutchinson, “Mentoring student teachers to support self-regulated

learning,” The elementary school journal, vol. 106, no. 3, pp. 237–254, 2006.

[19] B. J. Zimmerman, “Self-regulated learning and academic achievement: An overview,” Educational

psychologist, vol. 25, no. 1, pp. 3–17, 1990.

[20] M. Boekaerts and L. Corno, “Self-regulation in the classroom: A perspective on assessment and

intervention,” Applied psychology, vol. 54, no. 2, pp. 199–231, 2005.

[21] S. G. Paris and A. H. Paris, “Classroom applications of research on self-regulated learning,”

Educational psychologist, vol. 36, no. 2, pp. 89–101, 2001.

[22] C. S. Dweck and E. L. Leggett, “A social-cognitive approach to motivation and personality.,”

Psychological review, vol. 95, no. 2, p. 256, 1988.

[23] Y. Zhou, H. Wu, Q. Luo, and M. Abdel-Baset, “Automatic data clustering using nature-inspired

symbiotic organism search algorithm,” Knowledge-Based Systems, vol. 163, pp. 546–557, 2019.

[24] L. M. Abualigah, A. T. Khader, and E. S. Hanandeh, “A new feature selection method to improve

the document clustering using particle swarm optimization algorithm,” Journal of Computational

Science, vol. 25, pp. 456–466, 2018.

[25] D.-X. Chang, X.-D. Zhang, C.-W. Zheng, and D.-M. Zhang, “A robust dynamic niching genetic

algorithm with niche migration for automatic clustering problem,” Pattern recognition, vol. 43,

no. 4, pp. 1346–1360, 2010.

[26] Y. Liu, X. Wu, and Y. Shen, “Automatic clustering using genetic algorithms,” Applied mathematics

and computation, vol. 218, no. 4, pp. 1267–1279, 2011.

[27] A. E. Ezugwu, A. M. Ikotun, O. O. Oyelade, et al., “A comprehensive survey of clustering al-

gorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future re-

search prospects,” Engineering Applications of Artificial Intelligence, vol. 110, p. 104 743, 2022,

issn: 0952-1976. doi: https : / / doi . org / 10 . 1016 / j . engappai . 2022 . 104743.

[Online]. Available: https : / / www . sciencedirect . com / science / article / pii /

S095219762200046X.

[28] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transactions on neural networks,

vol. 16, no. 3, pp. 645–678, 2005.

[29] S. Singh and S. Srivastava, “Review of clustering techniques in control system: Review of clustering

techniques in control system,” Procedia Computer Science, vol. 173, pp. 272–280, 2020.

[30] K. Djouzi and K. Beghdad-Bey, “A review of clustering algorithms for big data,” in 2019 Inter-

national Conference on Networking and Advanced Systems (ICNAS), IEEE, 2019, pp. 1–6.

[31] A. E. Ezugwu, “Nature-inspired metaheuristic techniques for automatic clustering: A survey and

performance study,” SN Applied Sciences, vol. 2, pp. 1–57, 2020.

[32] D. Xu and Y. Tian, “A comprehensive survey of clustering algorithms,” Annals of Data Science,

vol. 2, pp. 165–193, 2015.

[33] A. C. Benabdellah, A. Benghabrit, and I. Bouhaddou, “A survey of clustering algorithms for an

industrial context,” Procedia computer science, vol. 148, pp. 291–302, 2019.

[34] A. Fahad, N. Alshatri, Z. Tari, et al., “A survey of clustering algorithms for big data: Taxonomy

and empirical analysis,” IEEE transactions on emerging topics in computing, vol. 2, no. 3, pp. 267–

279, 2014.

https://doi.org/https://doi.org/10.1016/j.engappai.2022.104743
https://www.sciencedirect.com/science/article/pii/S095219762200046X
https://www.sciencedirect.com/science/article/pii/S095219762200046X

BIBLIOGRAPHY 53

[35] Z. Dafir, Y. Lamari, and S. C. Slaoui, “A survey on parallel clustering algorithms for big data,”

Artificial Intelligence Review, vol. 54, pp. 2411–2443, 2021.

[36] A. Saxena, M. Prasad, A. Gupta, et al., “A review of clustering techniques and developments,”

Neurocomputing, vol. 267, pp. 664–681, 2017.

[37] A. Nagpal, A. Jatain, and D. Gaur, “Review based on data clustering algorithms,” in 2013 IEEE

conference on information & communication technologies, IEEE, 2013, pp. 298–303.

[38] J. Oyelade, I. Isewon, F. Oladipupo, et al., “Clustering algorithms: Their application to gene

expression data,” Bioinformatics and Biology insights, vol. 10, BBI–S38316, 2016.

[39] K. Bindra and A. Mishra, “A detailed study of clustering algorithms,” in 2017 6th interna-

tional conference on reliability, infocom technologies and optimization (trends and future direc-

tions)(ICRITO), IEEE, 2017, pp. 371–376.

[40] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Prentice-Hall, Inc., 1988.

[41] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern recognition letters, vol. 31, no. 8,

pp. 651–666, 2010.

[42] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,” ACM computing surveys

(CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[43] A. Ahmad and L. Dey, “A k-mean clustering algorithm for mixed numeric and categorical data,”

Data & Knowledge Engineering, vol. 63, no. 2, pp. 503–527, 2007.

[44] K. S. Al-Sultana and M. M. Khan, “Computational experience on four algorithms for the hard

clustering problem,” Pattern recognition letters, vol. 17, no. 3, pp. 295–308, 1996.

[45] K. Sanse and M. Sharma, “Clustering methods for big data analysis,” International Journal of

Advanced Research in Computer Engineering & Technology, vol. 4, no. 3, pp. 642–648, 2015.

[46] H. S. Deshmukh and P. Ramteke, “Comparing the techniques of cluster analysis for big data,”

Int. J. Adv. Res. Comput. Eng. Technol, vol. 4, no. 12, 2015.

[47] R. Suganya, M. Pavithra, and P. Nandhini, “Algorithms and challenges in big data clustering,”

International Journal of Engineering and Techniques, vol. 4, no. 4, pp. 40–47, 2018.

[48] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering algorithm,” Journal of

the royal statistical society. series c (applied statistics), vol. 28, no. 1, pp. 100–108, 1979.

[49] J. MacQueen et al., “Some methods for classification and analysis of multivariate observations,” in

Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Oakland,

CA, USA, vol. 1, 1967, pp. 281–297.

[50] P. Rathore, “Big data cluster analysis and its applications.,” Ph.D. dissertation, University of

Melbourne, Parkville, Victoria, Australia, 2018.

[51] G. Hamerly and C. Elkan, “Learning the k in k-means,” Advances in neural information processing

systems, vol. 16, 2003.

[52] D. Pelleg, “Extending k-means with efficient estimation of the number of clusters in icml,” in

Proceedings of the 17th international conference on machine learning, 2000, pp. 277–281.

[53] C. Fraley and A. E. Raftery, “How many clusters? which clustering method? answers via model-

based cluster analysis,” The computer journal, vol. 41, no. 8, pp. 578–588, 1998.

[54] A. Dasgupta and A. E. Raftery, “Detecting features in spatial point processes with clutter via

model-based clustering,” Journal of the American statistical Association, vol. 93, no. 441, pp. 294–

302, 1998.

54 BIBLIOGRAPHY

[55] S. Mukherjee, E. D. Feigelson, G. J. Babu, F. Murtagh, C. Fraley, and A. Raftery, “Three types

of gamma-ray bursts,” The Astrophysical Journal, vol. 508, no. 1, p. 314, 1998.

[56] J. G. Campbell, C. Fraley, F. Murtagh, and A. E. Raftery, “Linear flaw detection in woven textiles

using model-based clustering,” Pattern Recognition Letters, vol. 18, no. 14, pp. 1539–1548, 1997.

[57] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via

the em algorithm,” Journal of the royal statistical society: series B (methodological), vol. 39, no. 1,

pp. 1–22, 1977.

[58] G. J. McLachlan and T. Krishnan, Wiley series in probability and statistics. the em algorithm and

extensions, 1997.

[59] B. Shekar, M. N. Murty, and G. Krishna, “A knowledge-based clustering scheme,” Pattern recog-

nition letters, vol. 5, no. 4, pp. 253–259, 1987.

[60] R. J. Trudeau, Introduction to graph theory. Courier Corporation, 2013.

[61] P. Berkhin, J. D. Beche, and D. J. Randall, “Interactive path analysis of web site traffic,” in

Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and

data mining, 2001, pp. 414–419.

[62] J.-S. Cherng and M.-J. Lo, “A hypergraph based clustering algorithm for spatial data sets,” in

Proceedings 2001 IEEE International Conference on Data Mining, IEEE, 2001, pp. 83–90.

[63] C. T. Zahn, “Graph-theoretical methods for detecting and describing gestalt clusters,” IEEE

Transactions on computers, vol. 100, no. 1, pp. 68–86, 1971.

[64] R. Sharan and R. Shamir, “Click: A clustering algorithm with applications to gene expression

analysis,” in Proc Int Conf Intell Syst Mol Biol, Maryland, MD, vol. 8, 2000, p. 16.

[65] S. W. Wharton, “A generalized histogram clustering scheme for multidimensional image data,”

Pattern Recognition, vol. 16, no. 2, pp. 193–199, 1983.

[66] L. Parsons, E. Haque, and H. Liu, “Subspace clustering for high dimensional data: A review,”

Acm sigkdd explorations newsletter, vol. 6, no. 1, pp. 90–105, 2004.

[67] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic subspace clustering of high

dimensional data for data mining applications,” in Proceedings of the 1998 ACM SIGMOD inter-

national conference on Management of data, 1998, pp. 94–105.

[68] C.-H. Cheng, A. W. Fu, and Y. Zhang, “Entropy-based subspace clustering for mining numerical

data,” in Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery

and data mining, 1999, pp. 84–93.

[69] H. Nagesh, S. Goil, and A. Choudhary, “Mafia: Efficient and scalable subspace clustering for very

large data sets,” Technical Report 9906–010, 1999.

[70] J.-W. Chang and D.-S. Jin, “A new cell-based clustering method for large, high-dimensional data

in data mining applications,” in Proceedings of the 2002 ACM symposium on Applied computing,

2002, pp. 503–507.

[71] C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. Murali, “A monte carlo algorithm for fast

projective clustering,” in Proceedings of the 2002 ACM SIGMOD international conference on

Management of data, 2002, pp. 418–427.

[72] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park, “Fast algorithms for projected

clustering,” ACM SIGMoD record, vol. 28, no. 2, pp. 61–72, 1999.

BIBLIOGRAPHY 55

[73] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising behavior of distance metrics in

high dimensional space,” in Database Theory—ICDT 2001: 8th International Conference London,

UK, January 4–6, 2001 Proceedings 8, Springer, 2001, pp. 420–434.

[74] K.-G. Woo, J.-H. Lee, M.-H. Kim, and Y.-J. Lee, “Findit: A fast and intelligent subspace clustering

algorithm using dimension voting,” Information and Software Technology, vol. 46, no. 4, pp. 255–

271, 2004.

[75] J. H. Friedman and J. J. Meulman, “Clustering objects on subsets of attributes (with discussion),”

Journal of the Royal Statistical Society Series B: Statistical Methodology, vol. 66, no. 4, pp. 815–

849, 2004.

[76] J. Yang, W. Wang, H. Wang, and P. Yu, “/spl delta/-clusters: Capturing subspace correlation in

a large data set,” in Proceedings 18th international conference on data engineering, IEEE, 2002,

pp. 517–528.

[77] A. José-Garcıa and W. Gómez-Flores, “Automatic clustering using nature-inspired metaheuristics:

A survey,” Applied Soft Computing, vol. 41, pp. 192–213, 2016.

[78] Z. Aliniya and S. A. Mirroshandel, “A novel combinatorial merge-split approach for automatic

clustering using imperialist competitive algorithm,” Expert Systems with Applications, vol. 117,

pp. 243–266, 2019.

[79] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic subspace clustering of high

dimensional data,” Data Mining and Knowledge Discovery, vol. 11, pp. 5–33, 2005.

[80] P. Agarwal, M. A. Alam, and R. Biswas, “Issues, challenges and tools of clustering algorithms,”

arXiv preprint arXiv:1110.2610, 2011.

[81] R.-J. Kuo, Y. Huang, C.-C. Lin, Y.-H. Wu, and F. E. Zulvia, “Automatic kernel clustering with

bee colony optimization algorithm,” Information Sciences, vol. 283, pp. 107–122, 2014.

[82] E. Falkenauer, Genetic algorithms and grouping problems. John Wiley & Sons, Inc., 1998.

[83] A. E. Ezugwu, A. K. Shukla, M. B. Agbaje, O. N. Oyelade, A. José-Garcıa, and J. O. Agushaka,

“Automatic clustering algorithms: A systematic review and bibliometric analysis of relevant liter-

ature,” Neural Computing and Applications, vol. 33, pp. 6247–6306, 2021.

[84] H. He and Y. Tan, “A two-stage genetic algorithm for automatic clustering,” Neurocomputing,

vol. 81, pp. 49–59, 2012.

[85] D. Doval, S. Mancoridis, and B. S. Mitchell, “Automatic clustering of software systems using a

genetic algorithm,” in STEP’99. Proceedings Ninth International Workshop Software Technology

and Engineering Practice, IEEE, 1999, pp. 73–81.

[86] S. Paterlini and T. Krink, “Differential evolution and particle swarm optimisation in partitional

clustering,” Computational statistics & data analysis, vol. 50, no. 5, pp. 1220–1247, 2006.

[87] K. Suresh, D. Kundu, S. Ghosh, S. Das, and A. Abraham, “Data clustering using multi-objective

differential evolution algorithms,” Fundamenta Informaticae, vol. 97, no. 4, pp. 381–403, 2009.

[88] Z.-g. Su, P.-h. Wang, J. Shen, Y.-g. Li, Y.-f. Zhang, and E.-j. Hu, “Automatic fuzzy partitioning

approach using variable string length artificial bee colony (vabc) algorithm,” Applied soft comput-

ing, vol. 12, no. 11, pp. 3421–3441, 2012.

[89] Z. Izakian, M. S. Mesgari, and A. Abraham, “Automated clustering of trajectory data using a

particle swarm optimization,” Computers, Environment and Urban Systems, vol. 55, pp. 55–65,

2016.

56 BIBLIOGRAPHY

[90] A. Abraham, S. Das, and S. Roy, “Swarm intelligence algorithms for data clustering,” in Soft

computing for knowledge discovery and data mining, Springer, 2008, pp. 279–313.

[91] A. Chowdhury, S. Bose, and S. Das, “Automatic clustering based on invasive weed optimization

algorithm,” in Swarm, Evolutionary, and Memetic Computing: Second International Conference,

SEMCCO 2011, Visakhapatnam, Andhra Pradesh, India, December 19-21, 2011, Proceedings, Part

II 2, Springer, 2011, pp. 105–112.

[92] S. Das, A. Chowdhury, and A. Abraham, “A bacterial evolutionary algorithm for automatic data

clustering,” in 2009 IEEE congress on evolutionary computation, IEEE, 2009, pp. 2403–2410.

[93] J. Senthilnath, S. Omkar, and V. Mani, “Clustering using firefly algorithm: Performance study,”

Swarm and Evolutionary Computation, vol. 1, no. 3, pp. 164–171, 2011.

[94] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applica-

tions to biology, control, and artificial intelligence. MIT press, 1992.

[95] R. H. Sheikh, M. M. Raghuwanshi, and A. N. Jaiswal, “Genetic algorithm based clustering: A

survey,” in 2008 first international conference on emerging trends in engineering and technology,

IEEE, 2008, pp. 314–319.

[96] D. E. Goldberg, “Cenetic algorithms in search,” Optimization, Machine Learning, 1989.

[97] R. Krovi, “Genetic algorithms for clustering: A preliminary investigation,” in Proceedings of the

Twenty-Fifth Hawaii International Conference on System Sciences, IEEE, vol. 4, 1992, pp. 540–

544.

[98] K. Krishna and M. N. Murty, “Genetic k-means algorithm,” IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), vol. 29, no. 3, pp. 433–439, 1999.

[99] Y. Lu, S. Lu, F. Fotouhi, Y. Deng, and S. J. Brown, “Fgka: A fast genetic k-means clustering

algorithm,” in Proceedings of the 2004 ACM symposium on Applied computing, 2004, pp. 622–623.

[100] Y. Lu, S. Lu, F. Fotouhi, Y. Deng, and S. J. Brown, “Incremental genetic k-means algorithm and

its application in gene expression data analysis,” BMC bioinformatics, vol. 5, no. 1, pp. 1–10, 2004.

[101] U. Maulik and S. Bandyopadhyay, “Genetic algorithm-based clustering technique,” Pattern recog-

nition, vol. 33, no. 9, pp. 1455–1465, 2000.

[102] L. O. Hall, I. B. Ozyurt, and J. C. Bezdek, “Clustering with a genetically optimized approach,”

IEEE Transactions on evolutionary Computation, vol. 3, no. 2, pp. 103–112, 1999.

[103] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE computational intelli-

gence magazine, vol. 1, no. 4, pp. 28–39, 2006.

[104] J.-L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, and L. Chrétien, “The

dynamics of collective sorting robot-like ants and ant-like robots,” in From animals to animats:

proceedings of the first international conference on simulation of adaptive behavior, 1991, pp. 356–

365.

[105] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization by a colony of cooperating

agents,” IEEE transactions on systems, man, and cybernetics, part b (cybernetics), vol. 26, no. 1,

pp. 29–41, 1996.

[106] T. A. Runkler, “Ant colony optimization of clustering models,” International Journal of Intelligent

Systems, vol. 20, no. 12, pp. 1233–1251, 2005.

[107] S. Saatchi and C. C. Hung, “Hybridization of the ant colony optimization with the k-means

algorithm for clustering,” in Image Analysis: 14th Scandinavian Conference, SCIA 2005, Joensuu,

Finland, June 19-22, 2005. Proceedings 14, Springer, 2005, pp. 511–520.

BIBLIOGRAPHY 57

[108] P. M. Kanade and L. O. Hall, “Fuzzy ant clustering by centroid positioning,” in 2004 IEEE

International Conference on Fuzzy Systems (IEEE Cat. No. 04CH37542), IEEE, vol. 1, 2004,

pp. 371–376.

[109] J. Handl, J. Knowles, and M. Dorigo, “Ant-based clustering and topographic mapping,” Artificial

life, vol. 12, no. 1, pp. 35–62, 2006.

[110] A. P. Engelbrecht, Fundamentals of computational swarm intelligence. John Wiley & Sons, Inc.,

2006.

[111] J. Handl and J. Knowles, “An evolutionary approach to multiobjective clustering,” IEEE trans-

actions on Evolutionary Computation, vol. 11, no. 1, pp. 56–76, 2007.

[112] M. G. Omran, A. P. Engelbrecht, and A. Salman, “Image classification using particle swarm

optimization,” in Recent advances in simulated evolution and learning, World Scientific, 2004,

pp. 347–365.

[113] S. Das, A. Abraham, and S. K. Sarkar, “A hybrid rough set–particle swarm algorithm for im-

age pixel classification,” in 2006 Sixth International Conference on Hybrid Intelligent Systems

(HIS’06), IEEE, 2006, pp. 26–26.

[114] J. Qu, Z. Shao, X. Liu, et al., “Mixed pso clustering algorithm using point symmetry distance,”

2010.

[115] S. Ouadfel, M. Batouche, and A. Taleb-Ahmed, “A modified particle swarm optimization algorithm

for automatic image clustering,” in International Symposium on Modelling and Implementation of

Complex Systems, MISC, vol. 2010, 2010.

[116] T. Cura, “A particle swarm optimization approach to clustering,” Expert Systems with Applica-

tions, vol. 39, no. 1, pp. 1582–1588, 2012.

[117] R. Kuo, Y. Syu, Z.-Y. Chen, and F.-C. Tien, “Integration of particle swarm optimization and

genetic algorithm for dynamic clustering,” Information Sciences, vol. 195, pp. 124–140, 2012.

[118] D. Van der Merwe and A. P. Engelbrecht, “Data clustering using particle swarm optimization,”

in The 2003 Congress on Evolutionary Computation, 2003. CEC’03., IEEE, vol. 1, 2003, pp. 215–

220.

[119] X. Cui, T. E. Potok, and P. Palathingal, “Document clustering using particle swarm optimization,”

in Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005., IEEE, 2005, pp. 185–

191.

[120] X. Cui and T. E. Potok, “Document clustering analysis based on hybrid pso+ k-means algorithm,”

Journal of Computer Sciences (special issue), vol. 27, p. 33, 2005.

[121] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. Piatko, R. Silverman, and A. Y. Wu, “The analysis

of a simple k-means clustering algorithm,” in Proceedings of the sixteenth annual symposium on

Computational geometry, 2000, pp. 100–109.

[122] M. Aitkin and D. B. Rubin, “Estimation and hypothesis testing in finite mixture models,” Journal

of the Royal Statistical Society Series B: Statistical Methodology, vol. 47, no. 1, pp. 67–75, 1985.

[123] F. H. C. Marriott, “The interpretation of multiple observations,” (No Title), 1974.

[124] G. J. McLachlan and K. E. Basford, Mixture models: Inference and applications to clustering. M.

Dekker New York, 1988, vol. 38.

[125] N. Grira, M. Crucianu, and N. Boujemaa, “Unsupervised and semi-supervised clustering: A

brief survey,” A review of machine learning techniques for processing multimedia content, vol. 1,

no. 2004, pp. 9–16, 2004.

58 BIBLIOGRAPHY

[126] J. Verbeek, “Mixture models for clustering and dimension reduction,” Ph.D. dissertation, Univer-

siteit van Amsterdam, 2004.

[127] C. F. Olson, “Parallel algorithms for hierarchical clustering,” Parallel computing, vol. 21, no. 8,

pp. 1313–1325, 1995.

[128] F. Murtagh, “A survey of algorithms for contiguity-constrained clustering and related problems,”

The computer journal, vol. 28, no. 1, pp. 82–88, 1985.

[129] R. Sibson, “Slink: An optimally efficient algorithm for the single-link cluster method,” The com-

puter journal, vol. 16, no. 1, pp. 30–34, 1973.

[130] D. Defays, “An efficient algorithm for a complete link method,” The Computer Journal, vol. 20,

no. 4, pp. 364–366, 1977.

[131] E. M. Voorhees, “Implementing agglomerative hierarchic clustering algorithms for use in document

retrieval,” Information Processing & Management, vol. 22, no. 6, pp. 465–476, 1986.

[132] J. H. Ward Jr, “Hierarchical grouping to optimize an objective function,” Journal of the American

statistical association, vol. 58, no. 301, pp. 236–244, 1963.

[133] K. C. Gowda and G. Krishna, “Agglomerative clustering using the concept of mutual nearest

neighbourhood,” Pattern recognition, vol. 10, no. 2, pp. 105–112, 1978.

[134] D. Boley, “Principal direction divisive partitioning,” Data mining and knowledge discovery, vol. 2,

pp. 325–344, 1998.

[135] S. M. Savaresi, D. L. Boley, S. Bittanti, and G. Gazzaniga, “Cluster selection in divisive clustering

algorithms,” in Proceedings of the 2002 SIAM International Conference on Data Mining, SIAM,

2002, pp. 299–314.

[136] M. Chavent, Y. Lechevallier, and O. Briant, “Divclus-t: A monothetic divisive hierarchical clus-

tering method,” Computational Statistics & Data Analysis, vol. 52, no. 2, pp. 687–701, 2007.

[137] G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning,” in Proceedings of the 36th

annual ACM/IEEE design automation conference, 1999, pp. 343–348.

[138] L. Feng, M.-H. Qiu, Y.-X. Wang, Q.-L. Xiang, Y.-F. Yang, and K. Liu, “A fast divisive clustering

algorithm using an improved discrete particle swarm optimizer,” Pattern Recognition Letters,

vol. 31, no. 11, pp. 1216–1225, 2010.

[139] C. Zhong, D. Miao, R. Wang, and X. Zhou, “Divfrp: An automatic divisive hierarchical clustering

method based on the furthest reference points,” Pattern Recognition Letters, vol. 29, no. 16,

pp. 2067–2077, 2008.

[140] P. Macnaughton-Smith, W. Williams, M. Dale, and L. Mockett, “Dissimilarity analysis: A new

technique of hierarchical sub-division,” Nature, vol. 202, no. 4936, pp. 1034–1035, 1964.

[141] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduction to cluster analysis.

John Wiley & Sons, 2009.

[142] P. H. Sneath, R. R. Sokal, et al., Numerical taxonomy. The principles and practice of numerical

classification. 1973.

[143] W. T. Williams and J. M. Lambert, “Multivariate methods in plant ecology: I. association-analysis

in plant communities,” The Journal of Ecology, pp. 83–101, 1959.

[144] J. Kim, “Dissimilarity measures for histogram-valued data and divisive clustering of symbolic

objects,” Ph.D. dissertation, University of Georgia Athens, GA, USA, 2009.

BIBLIOGRAPHY 59

[145] P. M. Brito and M. Chavent, “Divisive monothetic clustering for interval and histogram-valued

data,” in ICPRAM 2012-1st International Conference on Pattern Recognition Applications and

Methods, 2012, pp. 229–234.

[146] J. Kim and L. Billard, “Dissimilarity measures and divisive clustering for symbolic multimodal-

valued data,” Computational Statistics & Data Analysis, vol. 56, no. 9, pp. 2795–2808, 2012.

[147] J. Kim and L. Billard, “A polythetic clustering process and cluster validity indexes for histogram-

valued objects,” Computational Statistics & Data Analysis, vol. 55, no. 7, pp. 2250–2262, 2011.

[148] S. Wang, J. Fan, M. Fang, and H. Yuan, “Hgcudf: Hierarchical grid clustering using data field,”

Chinese Journal of Electronics, vol. 23, no. 1, pp. 37–42, 2014.

[149] I. Naim, S. Datta, J. Rebhahn, J. S. Cavenaugh, T. R. Mosmann, and G. Sharma, “Swift—scalable

clustering for automated identification of rare cell populations in large, high-dimensional flow

cytometry datasets, part 1: Algorithm design,” Cytometry Part A, vol. 85, no. 5, pp. 408–421,

2014.

[150] T. Herawan, M. M. Deris, and J. H. Abawajy, “A rough set approach for selecting clustering

attribute,” Knowledge-Based Systems, vol. 23, no. 3, pp. 220–231, 2010.

[151] L. Mazlack, A. He, Y. Zhu, and S. Coppock, “A rough set approach in choosing partitioning

attributes,” in Proceedings of the ISCA 13th International Conference (CAINE-2000), Citeseer,

2000, pp. 1–6.

[152] D. Parmar, T. Wu, and J. Blackhurst, “Mmr: An algorithm for clustering categorical data using

rough set theory,” Data & Knowledge Engineering, vol. 63, no. 3, pp. 879–893, 2007.

[153] T. Herawan and M. M. Deris, “A framework on rough set-based partitioning attribute selection,”

in Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intel-

ligence: 5th International Conference on Intelligent Computing, ICIC 2009 Ulsan, South Korea,

September 16-19, 2009 Proceedings 5, Springer, 2009, pp. 91–100.

[154] T. Xiong, S. Wang, A. Mayers, and E. Monga, “A new mca-based divisive hierarchical algorithm

for clustering categorical data,” in 2009 Ninth IEEE International Conference on Data Mining,

IEEE, 2009, pp. 1058–1063.

[155] H. Qin, X. Ma, T. Herawan, and J. M. Zain, “Mgr: An information theory based hierarchical

divisive clustering algorithm for categorical data,” Knowledge-Based Systems, vol. 67, pp. 401–

411, 2014.

[156] K. Lo, R. R. Brinkman, and R. Gottardo, “Automated gating of flow cytometry data via robust

model-based clustering,” Cytometry Part A: the journal of the International Society for Analytical

Cytology, vol. 73, no. 4, pp. 321–332, 2008.

[157] Y. Ge and S. C. Sealfon, “Flowpeaks: A fast unsupervised clustering for flow cytometry data via

k-means and density peak finding,” Bioinformatics, vol. 28, no. 15, pp. 2052–2058, 2012.

[158] G. Finak, A. Bashashati, R. Brinkman, and R. Gottardo, “Merging mixture components for cell

population identification in flow cytometry,” Advances in bioinformatics, vol. 2009, 2009.

[159] R. F. Murphy, “Automated identification of subpopulations in flow cytometric list mode data using

cluster analysis,” Cytometry: The Journal of the International Society for Analytical Cytology,

vol. 6, no. 4, pp. 302–309, 1985.

[160] H. Zare, P. Shooshtari, A. Gupta, and R. R. Brinkman, “Data reduction for spectral clustering to

analyze high throughput flow cytometry data,” BMC bioinformatics, vol. 11, pp. 1–16, 2010.

60 BIBLIOGRAPHY

[161] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: An efficient data clustering method for very

large databases,” ACM sigmod record, vol. 25, no. 2, pp. 103–114, 1996.

[162] D. Arthur and S. Vassilvitskii, “K-means++ the advantages of careful seeding,” in Proceedings of

the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 2007, pp. 1027–1035.

[163] R. A. Fisher, Iris, UCI Machine Learning Repository, DOI: https://doi.org/10.24432/C56C76,

1988.

[164] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine learning in Python,”

Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

Appendix A

Source Code Listings

A.1 K-Means

1 kmeans <- function(

2 data,

3 centers,

4 max_iterations = 10,

5 initialization = "kmeans++",

6 details = FALSE,

7 waiting = TRUE,

8 ...

9) {

10 # Make sure max_iterations is a positive integer

11 if (!is.numeric(max_iterations) || max_iterations < 1)

12 stop("max_iterations must be an integer greater than 0")

13

14 # Get centers

15 if (missing(centers))

16 stop("centers must be a matrix or a number")

17

18 init <- 3

19 if (length(centers) == 1) {

20 if (centers < 1)

21 stop("centers must be a positive integer")

22 if (centers > nrow(data))

23 stop("centers must be less than or equal to the number of observations")

24

25 # Figure out the initialization method

26 init <- grep(

27 tolower(initialization),

28 c("random", "kmeans++"),

29 fixed = TRUE

30)

31

32 if (length(init) != 1)

33 stop("initialization must be one of 'random' or 'kmeans++'")

34 }

35

36 if (details) {

37 hline()

38 console.log("EXPLANATION:")

39 console.log("")

40 console.log("The K-Means algorithm aims to partition a dataset into k groups such

62 Appendix A. Source Code Listings

41 that the within-cluster sum-of-squares is minimized. At the minimum, all cluster

42 centers are at the mean of their Voronoi sets (the set of data points which are

43 nearest to the cluster center).")

44 console.log("")

45 console.log("The K-Means method follows a 2 to n step process:")

46 console.log("")

47 console.log(" 1. The first step can be subdivided into 3 steps:")

48 console.log(" 1. Selection of the number k of clusters, into which the data

49 is going to be grouped and of which the centroids will be the representatives.")

50 console.log(" 2. Computation of the distance from each observation to each

51 centroid.")

52 console.log(" 3. Assignment of each observation to a cluster. Observations

53 are assigned to the cluster represented by the nearest centroid.")

54 console.log(" 2. The next steps are just like the first but for the first sub-step

55 we do the following:")

56 console.log(" 1. Computation of the new centroids The centroid of each cluster

57 is computed as the mean of the observations assigned to said cluster.")

58 console.log("")

59 console.log("The algorithm stops once the centers in step n+1 are the same as the ones

60 in step n. However, this convergence does not always take place. For this reason,

61 the algorithm also stops once a maximum number of iterations is reached.")

62 console.log("")

63

64 if (waiting) {

65 invisible(readline(prompt = "Press [enter] to continue"))

66 console.log("")

67 }

68

69 hline()

70 console.log("STEP: 1")

71 console.log("")

72 console.log("If they are not, k centroids have to be initialized...")

73 console.log("")

74 }

75

76 # Initialize centers ...

77 centers <- switch(

78 init,

79 # ... randomly

80 random_init(as.matrix(data), centers, details, waiting, ...),

81 # ... using the kmeans++ algorithm

82 kmeanspp_init(as.matrix(data), centers, details, waiting, ...),

83 # ... they are already initialized

84 centers

85)

86

87 if (details) {

88 console.log("With this, the k initial centroids are the following:")

89 cat("Centroids:\n")

90 print(centers)

91 console.log("")

92

93 if (waiting) {

94 invisible(readline(prompt = "Press [enter] to continue"))

95 console.log("")

96 }

97 }

98

99 # Update centers while they don't change

100 iter <- 0

101 for (i in seq_len(max_iterations)) {

A.1 K-Means 63

102 iter <- i

103 old_centers <- as.matrix(centers)

104

105 # Compute distances between points and centers

106 distances <- proxy::dist(old_centers, data, ...)

107

108 if (details) {

109 console.log("With these centroids, the matrix of pairwise distances between the

110 observations and the centroids is computed:")

111 cat("Distances:\n")

112 print(round(distances, 3))

113 console.log("")

114

115 if (waiting) {

116 invisible(readline(prompt = "Press [enter] to continue"))

117 console.log("")

118 }

119 }

120

121 # Find which center is closest to each point

122 nearest_centers <- apply(distances, 2, which.min)

123

124 if (details) {

125 console.log("From these distances, the centroid closest to each observation is

126 computed. In this way, we make the following observation-cluster assignments:")

127 cat("Cluster assignments:\n")

128 print(nearest_centers)

129 console.log("")

130

131 if (waiting) {

132 invisible(readline(prompt = "Press [enter] to continue"))

133 console.log("")

134 }

135 }

136

137 # Compute the new centers as the average of it's closest points

138 new_centers <- matrix(

139 sapply(

140 seq_len(nrow(old_centers)),

141 function(n) {

142 temp <- data[nearest_centers == n, , drop = FALSE]

143 if (nrow(temp) > 0)

144 apply(temp, 2, mean)

145 else

146 old_centers[n,]

147 }

148),

149 nrow = ncol(old_centers)

150)

151 centers <- t(new_centers)

152

153 if (details) {

154 hline()

155 console.log(paste("STEP:", iter + 1))

156 console.log("")

157 console.log("With the previous cluster assignments, we compute the new centroids

158 as the mean of the observations assigned to the corresponding cluster:")

159 cat("Centroids:\n")

160 print(centers)

161 console.log("")

162

64 Appendix A. Source Code Listings

163 if (waiting) {

164 invisible(readline(prompt = "Press [enter] to continue"))

165 console.log("")

166 }

167 }

168

169 # If centers aren't updated

170 if (all(centers == old_centers))

171 break

172 }

173

174 # Compute distances between points and centers

175 distances <- proxy::dist(centers, data, ...)

176

177 if (details) {

178 if (iter == max_iterations)

179 console.log("Since we have reached the maximum amount of iterations, these are

180 the last centroids we are going to compute.")

181 else

182 console.log("Since the centroids have not changed with regards to last step,

183 these are the last centroids we are going to compute.")

184 console.log("With these centroids, the matrix of pairwise distances between the

185 observations and the centroids is computed one last time:")

186 cat("Distances:\n")

187 print(round(distances, 3))

188 console.log("")

189

190 if (waiting) {

191 invisible(readline(prompt = "Press [enter] to continue"))

192 console.log("")

193 }

194 }

195

196 # Find which center is closest to each point

197 nearest_centers <- apply(distances, 2, which.min)

198 row.names(centers) <- seq_len(nrow(centers))

199

200 if (details) {

201 console.log("From these distances, observations are assigned the cluster of whichever

202 centroid they are closest to:")

203 cat("Cluster assignments:\n")

204 print(nearest_centers)

205 console.log("")

206

207 if (waiting) {

208 invisible(readline(prompt = "Press [enter] to continue"))

209 console.log("")

210 }

211

212 hline()

213 console.log("")

214 }

215

216 # Total sum of squares

217 center <- apply(data, 2, mean)

218 totss <- sum(apply(data, 1, function(x) x - center)ˆ2)

219

220 # Total within-cluster sum of squares

221 withinss <- sapply(

222 seq_len(nrow(centers)),

223 function(cluster) {

A.1 K-Means 65

224 ccenter <- centers[cluster,]

225 cdata <- data[nearest_centers == cluster, , drop = FALSE]

226 sum(apply(cdata, 1, function(x) x - ccenter)ˆ2)

227 }

228)

229

230 # Total within-cluster sum of squares

231 tot.withinss <- sum(withinss)

232

233 # The between-cluster sum of squares

234 betweenss <- totss - tot.withinss

235

236 # Find the size of each cluster

237 tmp <- factor(nearest_centers, levels = seq_len(nrow(centers)))

238 size <- as.integer(table(tmp))

239

240 structure(

241 list(

242 cluster = nearest_centers,

243 centers = centers,

244 totss = totss,

245 withinss = withinss,

246 tot.withinss = tot.withinss,

247 betweenss = betweenss,

248 size = size,

249 iter = iter,

250 ifault = 0

251),

252 class = "kmeans"

253)

254 }

255

256 random_init <- function(data, k, details, waiting, ...) {

257 if (details) {

258 console.log("In this case, the k centroids are chosen randomly from the observations...")

259 console.log("")

260 }

261

262 smp <- sample(nrow(data), size = k, replace = FALSE)

263 data[smp, , drop = FALSE]

264 }

265

266 kmeanspp_init <- function(data, k, details, waiting, ...) {

267 if (details) {

268 console.log("In this case, the k centroids are chosen using the kmeans++ algorithm...")

269 console.log("")

270 }

271

272 centers <- matrix(0, nrow = k, ncol = ncol(data))

273 probs <- rep(1 / nrow(data), nrow(data))

274 for (i in seq_len(k)) {

275 # Choose a center with probability proportional to its square distance to

276 # the closest center

277 smp <- sample(nrow(data), size = 1, replace = FALSE, prob = probs)

278 centers[i,] <- data[smp,]

279

280 if (details) {

281 console.log(paste0("--- kmeans++ step #", i, " ---\n"))

282 console.log("A centroid is chosen according to the following probabilities:")

283 cat("Probs:\n")

284 print(round(probs, 3))

66 Appendix A. Source Code Listings

285 console.log("The chosen centroid is:")

286 cat(paste0("Observation #", smp, ":\n"))

287 print(centers[i,])

288 cat("With probability:\n")

289 print(probs[[smp]])

290 if (i < k)

291 console.log("With this new centroid the probabilities are updated...")

292 else

293 console.log("With this new centroid we already have k centroids...")

294 console.log("")

295

296 if (waiting) {

297 invisible(readline(prompt = "Press [enter] to continue"))

298 console.log("")

299 }

300 }

301

302 # Update the probabilities

303 distances <- proxy::dist(centers[seq_len(i), , drop = FALSE], data, ...) ˆ 2

304 probs <- apply(distances, 2, min)

305 probs <- probs / sum(probs)

306

307 # Replace NAs and NaNs with the remaining probability

308 tmp <- sum(probs[is.finite(probs)])

309 probs[!is.finite(probs)] <- (1 - tmp) / sum(!is.finite(probs))

310 }

311 centers

312 }

Code A.1: R implementation of the K-Means algorithm

A.2 DBSCAN

1 dbscan <- function(

2 data,

3 eps,

4 min_pts = 4,

5 details = FALSE,

6 waiting = TRUE,

7 ...

8) {

9 if (details) {

10 hline()

11 console.log("EXPLANATION:")

12 console.log("")

13 console.log("The data given by data is clustered by the DBSCAN method, which aims

14 to partition the points into clusters such that the points in a cluster are close

15 to each other and the points in different clusters are far away from each other.

16 The clusters are defined as dense regions of points separated by regions of low

17 density.")

18 console.log("")

19 console.log("The DBSCAN method follows a 2 step process:")

20 console.log("")

21 console.log(" 1. For each point, the neighborhood of radius eps is computed. If

22 the neighborhood contains at least min_pts points, then the point is considered a

23 core point. Otherwise, the point is considered an outlier.")

24 console.log(" 2. For each core point, if the core point is not already assigned

25 to a cluster, a new cluster is created and the core point is assigned to it. Then,

A.2 DBSCAN 67

26 the neighborhood of the core point is explored. If a point in the neighborhood is

27 a core point, then the neighborhood of that point is also explored. This process

28 is repeated until all points in the neighborhood have been explored. If a point

29 in the neighborhood is not already assigned to a cluster, then it is assigned to

30 the cluster of the core point.")

31 console.log("")

32 console.log("Whatever points are not assigned to a cluster are considered outliers.")

33 console.log("")

34

35 if (waiting) {

36 invisible(readline(prompt = "Press [enter] to continue"))

37 console.log("")

38 }

39 }

40

41 # Precompute neighbors

42 distances <- as.matrix(proxy::dist(data, ...))

43 neighbors <- distances <= eps

44

45 if (details) {

46 hline()

47 console.log("STEP 1:")

48 console.log("")

49 console.log("The pairwise distances between observations are precomputed in order to

50 later determine which of them are core observations. The distance matrix is:")

51 cat("Distances:\n")

52 print(round(distances, 3))

53 console.log("")

54

55 if (waiting) {

56 invisible(readline(prompt = "Press [enter] to continue"))

57 console.log("")

58 }

59 }

60

61 # Initialize clusters

62 cluster_id <- new.env()

63 cluster_id$data <- data

64 cluster_id$current <- 1

65 cluster_id$of <- rep(-1, nrow(data))

66

67 if (details) {

68 hline()

69 console.log("STEP 2:")

70 console.log("")

71 console.log("Every observation is labeled as UNVISITED. We are now going to loop over

72 every observation and, if it is not already assigned to a cluster, we will try to

73 expand a new cluster around it...")

74 console.log("")

75

76 if (waiting) {

77 invisible(readline(prompt = "Press [enter] to continue"))

78 console.log("")

79 }

80 }

81

82 # Each loop finds a new cluster around a core point

83 for (idx in seq_len(nrow(data))) {

84 if (cluster_id$of[idx] != -1)

85 next

86 if (expand_cluster(neighbors, cluster_id, idx, min_pts, details, waiting))

68 Appendix A. Source Code Listings

87 cluster_id$current <- cluster_id$current + 1

88 }

89

90 if (details) {

91 hline()

92 console.log("RESULTS:")

93 console.log("")

94 console.log("Having gone through every observation the following clusters have been found:")

95 cat("CLUSTER #0 (NOISE):\n")

96 print(cluster_id$data[cluster_id$of == 0,])

97 for (i in seq_len(max(cluster_id$of))) {

98 console.log("")

99 cat(paste0("CLUSTER #", i, ":\n"))

100 print(cluster_id$data[cluster_id$of == i,])

101 }

102 console.log("")

103

104 if (waiting) {

105 invisible(readline(prompt = "Press [enter] to continue"))

106 console.log("")

107 }

108 hline()

109 }

110

111 # Compute cluster sizes

112 size <- as.integer(table(cluster_id$of))

113

114 # Return a dbscan object

115 structure(

116 list(

117 cluster = cluster_id$of,

118 eps = eps,

119 min_pts = min_pts,

120 size = size

121),

122 class = "dbscan"

123)

124 }

125

126 expand_cluster <- function(

127 neighbors,

128 cluster_id,

129 point,

130 min_pts,

131 details,

132 waiting

133) {

134 # Get the point's neighbors (including itself)

135 seeds <- region_query(neighbors, point)

136

137 if (length(seeds) < min_pts) {

138 if (details) {

139 hline()

140 console.log("NOISE:")

141 console.log("")

142 console.log("An UNVISITED observation is labeled as NOISE:")

143 cat(paste0("Observation #", point, " [UNVISITED -> NOISE]\n"))

144 # print(cluster_id$data[point,])

145 console.log("")

146

147 # console.log("With neighborhood:")

A.2 DBSCAN 69

148 # for (i in seeds) {

149 # tmp <- if (cluster_id$of[i] == -1) {

150 # "UNVISITED"

151 # } else if (cluster_id$of[i] == 0) {

152 # "NOISE"

153 # } else {

154 # paste0("CLUSTER #", cluster_id$of[i])

155 # }

156 # ifelse(cluster_id$of[i] == -1, "UNVISITED", "NOISE")

157 # cat(paste0("Observation #", i, " [", tmp, "]\n"))

158 # print(cluster_id$data[i,])

159 # }

160 # console.log("")

161

162 if (waiting) {

163 invisible(readline(prompt = "Press [enter] to continue"))

164 console.log("")

165 }

166 }

167

168 # If it is not a core point, it is noise

169 cluster_id$of[point] <- 0

170 FALSE

171 } else {

172 if (details) {

173 hline()

174 console.log(paste0("CLUSTER #", cluster_id$current, ":"))

175 console.log("")

176 console.log("A new cluster is going to be expanded around an UNVISITED core observation:")

177 cat(paste0("Observation #", point, " [UNVISITED -> CLUSTER #", cluster_id$current, "]\n"))

178 # print(cluster_id$data[point,])

179 console.log("")

180

181 # console.log("With neighborhood:")

182 # for (i in seeds) {

183 # tmp <- if (cluster_id$of[i] == -1) {

184 # "UNVISITED"

185 # } else if (cluster_id$of[i] == 0) {

186 # "NOISE"

187 # } else {

188 # paste0("CLUSTER #", cluster_id$of[i])

189 # }

190 # ifelse(cluster_id$of[i] == -1, "UNVISITED", "NOISE")

191 # cat(paste0("Observation #", i, " [", tmp, "]\n"))

192 # print(cluster_id$data[i,])

193 # }

194 # console.log("")

195

196 if (waiting) {

197 invisible(readline(prompt = "Press [enter] to continue"))

198 console.log("")

199 }

200 }

201

202 # Otherwise, we can expand the cluster

203 frontier <- setdiff(seeds, point)

204

205 if (details) {

206 console.log("The cluster is also expanded around the neighbors of the core observation:")

207 for (i in frontier) {

208 tmp1 <- ifelse(cluster_id$of[i] == -1, "UNVISITED", "NOISE")

70 Appendix A. Source Code Listings

209 tmp2 <- paste0("CLUSTER #", cluster_id$current)

210 cat(paste0("Observation #", i, " [", tmp1, " -> ", tmp2, "]\n"))

211 # print(cluster_id$data[i,])

212 }

213 console.log("")

214

215 console.log("All of these observations are added to the cluster.")

216 console.log("")

217

218 if (waiting) {

219 invisible(readline(prompt = "Press [enter] to continue"))

220 console.log("")

221 }

222 }

223

224 cluster_id$of[seeds] <- cluster_id$current

225

226 # Loop until there are no more neighbors in the frontier

227 while (length(frontier) > 0) {

228 current_point <- frontier[1]

229

230 # Get current_point's neighbors

231 result <- region_query(neighbors, current_point)

232

233 # If current_point is a core point, expand the cluster

234 if (length(result) >= min_pts) {

235 # Add non visited neighbors to the frontier

236 not_visited <- cluster_id$of[result] == -1

237 frontier <- c(frontier, result[not_visited])

238

239 # Add not clustered neighbors to the cluster

240 noise <- cluster_id$of[result] == 0

241

242 if (details) {

243 console.log("***")

244 console.log("")

245 console.log("The following core observation is expanded:")

246 cat(paste0("Observation #", current_point, " [CLUSTER #", cluster_id$current, "]\n"))

247 # print(cluster_id$data[current_point,])

248 console.log("")

249

250 console.log("It's neighborhood is:")

251 for (i in result) {

252 tmp <- if (cluster_id$of[i] == -1) {

253 "UNVISITED"

254 } else if (cluster_id$of[i] == 0) {

255 "NOISE"

256 } else {

257 paste0("CLUSTER #", cluster_id$of[i])

258 }

259 ifelse(cluster_id$of[i] == -1, "UNVISITED", "NOISE")

260 cat(paste0("Observation #", i, " [", tmp, "]\n"))

261 # print(cluster_id$data[i,])

262 }

263 console.log("")

264

265 if (length(result[not_visited | noise]) > 0) {

266 console.log("Upon doing it, the following observations are added to the cluster:")

267 for (i in result[not_visited | noise]) {

268 tmp1 <- ifelse(cluster_id$of[i] == -1, "UNVISITED", "NOISE")

269 tmp2 <- paste0("CLUSTER #", cluster_id$current)

A.3 Gaussian Mixture Model with Expectation Maximization 71

270 cat(paste0("Observation #", i, " [", tmp1, " -> ", tmp2, "]\n"))

271 # print(cluster_id$data[i,])

272 }

273 } else {

274 console.log("Upon doing it, no observations are added to the cluster...")

275 }

276 console.log("")

277

278 if (length(result[not_visited]) > 0) {

279 console.log("Additionally, these observations are also expanded:")

280 for (i in result[not_visited]) {

281 cat(paste0("Observation #", i, " [CLUSTER #", cluster_id$current, "]\n"))

282 # print(cluster_id$data[i,])

283 }

284 } else {

285 console.log("Additionally, no other observations are expanded...")

286 }

287 console.log("")

288

289 if (waiting) {

290 invisible(readline(prompt = "Press [enter] to continue"))

291 console.log("")

292 }

293 }

294

295 cluster_id$of[result][not_visited | noise] <- cluster_id$current

296 }

297

298 # Remove current_point from the frontier

299 frontier <- frontier[-1]

300 }

301 TRUE

302 }

303 }

304

305 region_query <- function(

306 neighbors,

307 idx

308) {

309 # Return the indices of the neighbors of idx

310 which(neighbors[idx,])

311 }

Code A.2: R implementation of the DBSCAN algorithm

A.3 Gaussian Mixture Model with Expectation Maximization

1 gaussian_mixture <- function(

2 data,

3 k,

4 max_iter = 10,

5 details = FALSE,

6 waiting = TRUE,

7 ...

8) {

9 data <- as.matrix(data)

10

11 if (details) {

72 Appendix A. Source Code Listings

12 hline()

13 console.log("EXPLANATION:")

14 console.log("")

15 console.log("The Gaussian Mixture Model with Expectation Maximization (GMM with EM)

16 algorithm aims to model the data as a Gaussian Mixture Model i.e. the weighted

17 sum of several Gaussian distributions, where each component i.e. each Gaussian

18 distribution, represents a cluster.")

19 console.log("")

20 console.log("The Gaussian distributions are parameterized by their mean vector (mu),

21 covariance matrix (sigma) and mixing proportion (lambda). Initially, the mean

22 vector is set to the cluster centers obtained by performing a k-means clustering

23 on the data, the covariance matrix is set to the covariance matrix of the data

24 points belonging to each cluster and the mixing proportion is set to the proportion

25 of data points belonging to each cluster. The algorithm then optimizes the GMM

26 using the EM algorithm.")

27 console.log("")

28 console.log("The EM algorithm is an iterative algorithm that alternates between two steps:")

29 console.log("")

30 console.log(" 1. Expectation step. Compute how much is each observation expected

31 to belong to each component of the GMM.")

32 console.log(" 2. Maximization step. Recompute the GMM according to the expectations

33 from the E-step in order to maximize them.")

34 console.log("")

35 console.log("The algorithm stops when the changes in the expectations are sufficiently

36 small or when a maximum number of iterations is reached.")

37 console.log("")

38

39 if (waiting) {

40 invisible(readline(prompt = "Press [enter] to continue"))

41 console.log("")

42 }

43 }

44

45 # Perform k-means to get initial values for mu, sigma and pi

46 members <- kmeans(data, k, ...)

47 mu <- members$centers

48 sigma <- array(0, dim = c(k, ncol(data), ncol(data)))

49 for (i in seq_len(k)) {

50 sigma[i, ,] <- as.matrix(cov(data[members$cluster == i, , drop = FALSE]))

51 }

52 lambda <- members$size / nrow(data)

53

54 if (details) {

55 hline()

56 console.log("INITIALIZATION:")

57 console.log("")

58 console.log("The GMM is initialized by calling kmeans. The initial components are:")

59 for (i in seq_len(k)) {

60 console.log(paste0("*** Component #", i, " ***\n"))

61 cat("mu:\n")

62 print(mu[i,])

63 cat("sigma:\n")

64 print(as.matrix(sigma[i, ,]))

65 cat("lambda:\n")

66 print(lambda[i])

67 console.log("")

68 }

69 console.log("These initial components are then optimized using the EM algorithm.")

70 console.log("")

71

72 if (waiting) {

A.3 Gaussian Mixture Model with Expectation Maximization 73

73 invisible(readline(prompt = "Press [enter] to continue"))

74 console.log("")

75 }

76 }

77

78 # EM algorithm

79 # Starting values of expected value of the log likelihood

80 q <- c(

81 sum_finite(

82 sapply(

83 seq_len(k),

84 function(i) {

85 log(lambda[i]) + log(dmnorm(data, mu[i,], as.matrix(sigma[i, ,])))

86 }

87)

88),

89 0

90)

91 it <- 0

92 if (details) {

93 hline()

94 console.log("EM ALGORITHM:")

95 console.log("")

96 console.log("To measure how much the expectations change at each step we will

97 use the log likelihood. The log likelihood is the sum of the logarithm of the

98 probability of the data given the model. The higher the log likelihood, the

99 better the model.")

100 console.log("")

101 console.log("The current log likelihood is:")

102 cat("loglik:\n")

103 print(q[1])

104 console.log("")

105

106 if (waiting) {

107 invisible(readline(prompt = "Press [enter] to continue"))

108 console.log("")

109 }

110 }

111 while (abs(diff(q[1:2])) >= 1e-6 && it < max_iter) {

112 # E step

113 comp <- sapply(

114 seq_len(k),

115 function(i) lambda[i] * dmnorm(data, mu[i,], as.matrix(sigma[i, ,]))

116)

117 comp_sum <- rowSums_finite(comp)

118 p <- comp / comp_sum

119

120 if (details) {

121 hline()

122 console.log(paste0("STEP #", it, ":"))

123 console.log("")

124 console.log("E-STEP:")

125 console.log("")

126 console.log("The expectation of each observation to belong to each component of

127 the GMM is the following:")

128 cat("Expectation:\n")

129 print(round(p, 3))

130 console.log("")

131

132 if (waiting) {

133 invisible(readline(prompt = "Press [enter] to continue"))

74 Appendix A. Source Code Listings

134 console.log("")

135 }

136 }

137

138 # M step

139 lambda <- sapply(

140 seq_len(k),

141 function(i) sum_finite(p[, i]) / nrow(data)

142)

143 for (i in seq_len(k)) {

144 mu[i,] <- colSums_finite(p[, i] * data) / sum_finite(p[, i])

145 }

146 for (i in seq_len(k)) {

147 tmp <- wtcov_finite(data, wt = p[, i], center = mu[i,])$cov

148 sigma[i, ,] <- as.matrix(tmp)

149 }

150

151 if (details) {

152 console.log("M-STEP:")

153 console.log("")

154 console.log("The new components are:")

155 for (i in seq_len(k)) {

156 console.log(paste0("*** Component #", i, " ***\n"))

157 cat("mu:\n")

158 print(mu[i,])

159 cat("sigma:\n")

160 print(as.matrix(sigma[i, ,]))

161 cat("lambda:\n")

162 print(lambda[i])

163 console.log("")

164 }

165

166 if (waiting) {

167 invisible(readline(prompt = "Press [enter] to continue"))

168 console.log("")

169 }

170 }

171

172 # Compute new expected value of the log likelihood

173 q <- c(sum(log(comp_sum)), q)

174 it <- it + 1

175

176 if (details) {

177 console.log("The new log likelihood is:")

178 cat("loglik:\n")

179 print(q[1])

180 console.log("")

181

182 if (waiting) {

183 invisible(readline(prompt = "Press [enter] to continue"))

184 console.log("")

185 }

186 }

187 }

188

189 comp <- sapply(

190 seq_len(k),

191 function(i) lambda[i] * dmnorm(data, mu[i,], as.matrix(sigma[i, ,]))

192)

193 cluster <- apply(comp, 1, which.max)

194 size <- as.integer(table(factor(cluster, levels = seq_len(k))))

A.3 Gaussian Mixture Model with Expectation Maximization 75

195

196 if (details) {

197 hline()

198 console.log("FINAL RESULTS:")

199 console.log("")

200 if (it == max_iter)

201 console.log("The algorithm stopped because the maximum number of iterations was

202 reached.")

203 else

204 console.log("The algorithm stopped because the change in the log likelihood was

205 smaller than 1e-6.")

206 console.log("")

207 console.log("With the current GMM every observation is assigned to the cluster it

208 is most likely to belong to. The final clusters are:")

209 cat("Cluster assignments:\n")

210 print(cluster)

211 console.log("")

212

213 hline()

214 console.log("")

215 }

216

217 structure(

218 list(

219 cluster = cluster,

220 mu = mu,

221 sigma = sigma,

222 lambda = lambda,

223 loglik = q[2],

224 all.loglik = rev(q[-1])[-1],

225 iter = it,

226 size = size

227),

228 class = "gaussian_mixture"

229)

230 }

231

232 dmnorm <- function(x, mu, sigma) {

233 k <- ncol(sigma)

234

235 x <- as.matrix(x)

236 diff <- t(t(x) - mu)

237

238 num <- exp(-1 / 2 * diag(diff %*% solve(sigma) %*% t(diff)))

239 den <- sqrt(((2 * pi)ˆk) * det(sigma))

240 num / den

241 }

242

243 # Finite versions of sum, rowSums, colSums and cov.wt i.e. versions that

244 # replace NA, NaN and Inf values with 1e-300 (ignoring them would lead to

245 # numerical errors)

246 sum_finite <- function(x) {

247 x[!is.finite(x)] <- 1e-300

248 sum(x)

249 }

250

251 rowSums_finite <- function(x) {

252 x[!is.finite(x)] <- 1e-300

253 rowSums(x)

254 }

255

76 Appendix A. Source Code Listings

256 colSums_finite <- function(x) {

257 x[!is.finite(x)] <- 1e-300

258 colSums(x)

259 }

260

261 wtcov_finite <- function(x, wt, center) {

262 wt[!is.finite(wt)] <- 1e-300

263 cov.wt(x, wt = wt, center = center)

264 }

Code A.3: R implementation of the GMM with EM algorithm

A.4 Agglomerative Hierarchical Clustering

1 agglomerative_clustering <- function(

2 data,

3 proximity = "single",

4 details = FALSE,

5 waiting = TRUE,

6 ...

7) {

8 # Function needed to calculate the avg distance between two clusters

9 avg <- function(m1, m2) function(d1, d2) (d1 * m1 + d2 * m2) / (m1 + m2)

10

11 # Figure out the proximity definition

12 proximity <- grep(

13 tolower(proximity),

14 c("single", "complete", "average"),

15 value = TRUE,

16 fixed = TRUE

17)

18

19 # Exactly one proximity definition should be found

20 if (length(proximity) != 1)

21 stop("Invalid proximity method")

22

23 if (details) {

24 hline()

25 console.log("EXPLANATION:")

26 console.log("")

27 console.log("The Agglomerative Hierarchical Clustering algorithm defines a clustering

28 hierarchy for a dataset following a `n` step process, which repeats until a single

29 cluster remains:")

30 console.log("")

31 console.log(" 1. Initially, each object is assigned to its own cluster. The matrix

32 of distances between clusters is computed.")

33 console.log(" 2. The two clusters with closest proximity will be joined together

34 and the proximity matrix updated. This is done according to the specified proximity.

35 This step is repeated until a single cluster remains.")

36 console.log("")

37 console.log("The definitions of proximity considered by this function are:")

38 console.log("")

39 console.log(" 1. `single`. Defines the proximity between two clusters as the distance

40 between the closest objects among the two clusters. It produces clusters where each

41 object is closest to at least one other object in the same cluster. It is known as

42 SLINK, single-link or minimum-link.")

43 console.log(" 2. `complete`. Defines the proximity between two clusters as the

44 distance between the furthest objects among the two clusters. It is known as CLINK,

A.4 Agglomerative Hierarchical Clustering 77

45 complete-link or maximum-link.")

46 console.log(" 3. `average`. Defines the proximity between two clusters as the average

47 distance between every pair of objects, one from each cluster. It is also known as

48 UPGMA or average-link.")

49 console.log("")

50

51 if (waiting) {

52 invisible(readline(prompt = "Press [enter] to continue"))

53 console.log("")

54 }

55 }

56

57 # Prepare the data structure which will hold the final answer

58 ans <- structure(

59 list(

60 merge = numeric(0),

61 height = NULL,

62 order = NULL,

63 labels = rownames(data),

64 method = proximity,

65 call = NULL,

66 dist.method = "euclidean"

67),

68 class = "hclust"

69)

70

71 # Create a list with the initial clusters

72 cl <- lapply(

73 seq_len(nrow(data)),

74 function(data) {

75 structure(

76 data,

77 label = -data,

78 members = 1

79)

80 }

81)

82 tmp <- sapply(cl, function(x) attr(x, "label"))

83

84 if (details) {

85 hline()

86 console.log("STEP 1:")

87 console.log("")

88 console.log("Initially, each object is assigned to its own cluster. This leaves us with

89 the following clusters:")

90 for (i in seq_len(length(cl))) {

91 cat(paste0(

92 "CLUSTER #", attr(cl[[i]], "label"),

93 " (size: ", attr(cl[[i]], "members"), ")", "\n"

94))

95 print(data[cl[[i]], , drop = FALSE])

96 }

97 console.log("")

98

99 if (waiting) {

100 invisible(readline(prompt = "Press [enter] to continue"))

101 console.log("")

102 }

103 }

104

105 # Compute the distances between each point

78 Appendix A. Source Code Listings

106 d <- as.matrix(proxy::dist(data, ...))

107 d <- mapply(

108 "[<-",

109 data.frame(d),

110 seq_len(nrow(data)),

111 sample(Inf, nrow(data), TRUE),

112 USE.NAMES = FALSE

113)

114 method <- attr(d, "method")

115 ans$dist.method <- if (is.null(method)) "Euclidean" else method

116 dimnames(d) <- list(tmp, tmp)

117

118 if (details) {

119 console.log("The matrix of distances between clusters is computed:")

120 cat("Distances:\n")

121 print(as.dist(round(d, 3)))

122 console.log("")

123

124 if (waiting) {

125 invisible(readline(prompt = "Press [enter] to continue"))

126 console.log("")

127 }

128 }

129

130 for (i in seq_len(length(cl) - 1)) {

131 # Look for the minimum distance between two clusters

132 md <- which.min(d) - 1

133 md <- sort(c(md %% nrow(d), md %/% nrow(d)) + 1)

134

135 # Join the clusters into a new one

136 c1 <- cl[[md[1]]]

137 m1 <- attr(c1, "members")

138 c2 <- cl[[md[2]]]

139 m2 <- attr(c2, "members")

140 c3 <- structure(

141 list(c1, c2),

142 label = i,

143 members = m1 + m2

144)

145

146 if (details) {

147 hline()

148 console.log(paste0("STEP ", i + 1, ":"))

149 console.log("")

150 console.log("The two clusters with closest proximity are identified:")

151 cat("Clusters:\n")

152 cat(paste0("CLUSTER #", attr(c1, "label"), " (size: ", m1, ")", "\n"))

153 cat(paste0("CLUSTER #", attr(c2, "label"), " (size: ", m2, ")", "\n"))

154 cat("Proximity:\n")

155 print(d[md[1], md[2]])

156 console.log("")

157

158 if (waiting) {

159 invisible(readline(prompt = "Press [enter] to continue"))

160 console.log("")

161 }

162 }

163

164 if (details) {

165 console.log("They are merged into a new cluster:")

166 cat(paste0(

A.4 Agglomerative Hierarchical Clustering 79

167 "CLUSTER #", attr(c3, "label"), " (size: ", attr(c3, "members"), ")

168 [", "CLUSTER #", attr(c1, "label"), " + CLUSTER #", attr(c2, "label"), "]\n"

169))

170 console.log("")

171

172 if (waiting) {

173 invisible(readline(prompt = "Press [enter] to continue"))

174 console.log("")

175 }

176 }

177

178 # Add the merged clusters to the answer

179 ans$merge <- c(ans$merge, attr(c1, "label"), attr(c2, "label"))

180 ans$height <- c(ans$height, d[md[1], md[2]])

181 cl <- c(cl, list(c3))

182 cl <- cl[-md]

183 tmp <- sapply(cl, function(x) attr(x, "label"))

184

185 # Recompute the distances (proximity)

186 d1 <- d[, md[1]]

187 d2 <- d[, md[2]]

188 d3 <- mapply(

189 switch(

190 proximity,

191 single = min,

192 complete = max,

193 average = avg(m1, m2)

194),

195 d1,

196 d2

197)

198 d3[md] <- Inf

199 d <- cbind(d, d3)

200 d <- rbind(d, c(d3, Inf))

201 d <- d[-md, -md, drop = FALSE]

202 dimnames(d) <- list(tmp, tmp)

203

204 if (details) {

205 console.log("The proximity matrix is updated. To do so the rows/columns of the merged

206 clusters are removed, and the rows/columns of the new cluster are added:")

207 cat("Distances:\n")

208 print(as.dist(round(d, 3)))

209 console.log("")

210

211 if (waiting) {

212 invisible(readline(prompt = "Press [enter] to continue"))

213 console.log("")

214 }

215 }

216 }

217

218 # Compute the merge and order of the hclust

219 ans$merge <- matrix(ans$merge, ncol = 2, byrow = TRUE)

220 ans$order <- unlist(cl)

221

222 if (details) {

223 hline()

224 console.log("RESULTS:")

225 console.log("")

226 console.log("Since all clusters have been merged together, the final clustering hierarchy is:")

227 console.log("(Check the plot for the dendrogram representation of the hierarchy)")

80 Appendix A. Source Code Listings

228 plot(ans, hang = -1)

229 console.log("")

230

231 if (waiting) {

232 invisible(readline(prompt = "Press [enter] to continue"))

233 console.log("")

234 }

235

236 hline()

237 }

238

239 # Return the answer

240 ans

241 }

Code A.4: R implementation of the AHC algorithm

A.5 Divisive Hierarchical Clustering

1 divisive_clustering <- function(

2 data,

3 details = FALSE,

4 waiting = TRUE,

5 ...

6) {

7 if (details) {

8 hline()

9 console.log("EXPLANATION:")

10 console.log("")

11 console.log("The Divisive Hierarchical Clustering algorithm defines a clustering hierarchy

12 for a dataset following a `n` step process, which repeats until `n` clusters remain:")

13 console.log("")

14 console.log("")

15 console.log(" 1. Initially, each object is assigned to the same cluster. The sum of squares

16 of the distances between objects and their cluster center is computed.")

17 console.log(" 2. The cluster with the highest Within-Cluster Sum-of-Squares (WCSS) is split

18 into two using the K-Means algorithm. This step is repeated until `n` clusters remain.")

19 console.log("")

20 console.log("Since this implementation builds a complete hierarchy, the second step does

21 not need to be performed on the cluster with the highest sum of squares, but rather

22 on any cluster with more than one element.")

23 console.log("")

24

25 if (waiting) {

26 invisible(readline(prompt = "Press [enter] to continue"))

27 console.log("")

28 }

29 }

30

31 # Prepare the data structure which will hold the answer

32 ans <- structure(

33 list(

34 merge = numeric(0),

35 height = NULL,

36 order = NULL,

37 labels = rownames(data),

38 method = "kmeans",

39 call = NULL,

A.5 Divisive Hierarchical Clustering 81

40 dist.method = "Euclidean"

41),

42 class = "hclust"

43)

44

45 # Wrap the data with additional information we'll need

46 data_center <- apply(data, 2, mean)

47 totss <- sum(apply(data, 1, function(x) x - data_center)ˆ2)

48 wrapped_data <- list(

49 data = data,

50 label = nrow(data) - 1,

51 ss = totss,

52 elems = -seq_len(nrow(data))

53)

54

55 # Build a list with all clusters

56 clusters <- list(wrapped_data)

57

58 if (details) {

59 hline()

60 console.log("STEP 1:")

61 console.log("")

62 console.log("Initially, each object is assigned to the same cluster. The sum of squares

63 of the distances between objects and their cluster center is computed.")

64 cat("Initial cluster:\n")

65 cat(paste0("CLUSTER #", clusters[[1]]$label, ":\n"))

66 print(clusters[[1]]$data)

67 console.log("")

68

69 if (waiting) {

70 invisible(readline(prompt = "Press [enter] to continue"))

71 console.log("")

72 }

73 }

74

75 # Until there are no clusters with sum of squares greater than 0

76 iter <- 2

77 while (any(sapply(clusters, function(x) length(x$elems)) > 1)) {

78 # We'll operate on the first cluster and order them all afterwards

79 target <- clusters[[1]]

80 clusters <- clusters[-1]

81

82 if (details) {

83 hline()

84 console.log(paste0("STEP ", iter, ":"))

85 console.log("")

86 console.log("Any cluster is selected for division:")

87 cat("Cluster:\n")

88 cat(paste0("CLUSTER #", target$label, " (WCSS: ", target$ss, ")\n"))

89 console.log("")

90

91 if (waiting) {

92 invisible(readline(prompt = "Press [enter] to continue"))

93 console.log("")

94 }

95 }

96

97 # Split the target cluster into two using the k-means approach

98 km <- clustlearn::kmeans(target$data, 2, ...)

99 if (any(km$size == 0))

100 km$cluster[1] <- setdiff(1:2, km$cluster[1])

82 Appendix A. Source Code Listings

101

102 # Create clusters for each split

103 lhs <- list(

104 data = target$data[km$cluster == 1, , drop = FALSE],

105 label = NULL,

106 ss = km$withinss[1],

107 elems = target$elems[km$cluster == 1]

108)

109 lhs$label <- if (length(lhs$elems) == 1) {

110 lhs$elems

111 } else {

112 target$label - 1

113 }

114 rhs <- list(

115 data = target$data[km$cluster == 2, , drop = FALSE],

116 label = NULL,

117 ss = km$withinss[2],

118 elems = target$elems[km$cluster == 2]

119)

120 rhs$label <- if (length(rhs$elems) == 1) {

121 rhs$elems

122 } else {

123 target$label - length(lhs$elems)

124 }

125

126 if (details) {

127 console.log("The cluster is divided through the K-Means method into two that

128 (approximately) minimize the WCSS:")

129 cat(paste0("CLUSTER #", lhs$label, " (WCSS: ", lhs$ss, ")\n"))

130 print(lhs$data)

131 console.log("")

132 cat(paste0("CLUSTER #", rhs$label, " (WCSS: ", rhs$ss, ")\n"))

133 print(rhs$data)

134 console.log("")

135

136 if (waiting) {

137 invisible(readline(prompt = "Press [enter] to continue"))

138 console.log("")

139 }

140 }

141

142 # Update the answer

143 ans$merge <- c(lhs$label, rhs$label, ans$merge)

144 ans$height <- c(km$totss, ans$height)

145

146 if (details) {

147 console.log("If the divided clusters containe more than one element, they are

148 marked again for division:")

149 }

150

151 # Replace the target cluster with the two new ones

152 if (length(rhs$elems) > 1) {

153 clusters <- c(list(rhs), clusters)

154

155 if (details) {

156 console.log("The following cluster is marked for division:")

157 cat(paste0("CLUSTER #", lhs$label, " (WCSS: ", lhs$ss, ")\n"))

158 print(lhs$data)

159 }

160 }

161 if (length(lhs$elems) > 1) {

A.5 Divisive Hierarchical Clustering 83

162 clusters <- c(list(lhs), clusters)

163 if (details) {

164 console.log("The following cluster is marked for division:")

165 cat(paste0("CLUSTER #", rhs$label, " (WCSS: ", rhs$ss, ")\n"))

166 }

167 }

168

169 if (details) {

170 console.log("")

171

172 if (waiting) {

173 invisible(readline(prompt = "Press [enter] to continue"))

174 console.log("")

175 }

176 }

177

178 iter <- iter + 1

179 }

180

181 # Compute the merge and order of the hclust

182 ans$merge <- matrix(ans$merge, ncol = 2, byrow = TRUE)

183 ans$height <- sqrt(ans$height)

184

185 # Order the rows in merge by height

186 tmp <- order_merge_by_height(ans$merge, ans$height)

187 ans$merge <- tmp$merge

188 ans$height <- tmp$height

189

190 # Figure the order of the elements from the merge to build a proper dendrogram

191 ans$order <- merge2order(ans$merge)

192

193 if (details) {

194 hline()

195 console.log("RESULTS:")

196 console.log("")

197 console.log("Since all clusters have been divided into clusters with a single element,

198 the final clustering hierarchy is:")

199 console.log("(Check the plot for the dendrogram representation of the hierarchy)")

200 plot(ans, hang = -1)

201 console.log("")

202

203 if (waiting) {

204 invisible(readline(prompt = "Press [enter] to continue"))

205 console.log("")

206 }

207

208 hline()

209 }

210

211 # Return the answer

212 ans

213 }

214

215 order_merge_by_height <- function(merge, height) {

216 ord1 <- order(height)

217 ord2 <- order(ord1)

218 for (i in seq_len(nrow(merge))) {

219 for (j in seq_len(ncol(merge))) {

220 val <- merge[i, j]

221 merge[i, j] <- if (val < 0) val else ord2[val]

222 }

84 Appendix A. Source Code Listings

223 }

224 merge <- merge[ord1, , drop = FALSE]

225 height <- height[ord1]

226

227 list(merge = merge, height = height)

228 }

229

230 merge2order <- function(merge) {

231 order <- if (nrow(merge) > 0) merge[nrow(merge),] else -1

232 while (any(order > 0)) {

233 target <- which.max(order)

234 order <- c(

235 order[seq_along(order) < target],

236 merge[order[target],],

237 order[seq_along(order) > target]

238)

239 }

240 abs(order)

241 }

Code A.5: R implementation of the DHC algorithm

A.6 Auxiliary functions

1 console.log <- function(txt, ...) {

2 width <- console_width()

3

4 # Split the text into lines

5 tmp <- strsplit(txt, '[\r\n]')[[1]]

6

7 # Process every line

8 lines <- NULL

9 for (line in tmp) {

10 # Get the whitespaces at the beginning of the line

11 white <- get_whitespace(line)

12

13 # Remove trailing whitespace from the line

14 line <- substring(line, nchar(white) + 1)

15 if (is.na(line)) line <- ''

16

17 # Expand the tabs in the whitespace

18 white <- gsub('\t', ' ', white)

19

20 # Split the line into several lines which will fit in the console

21 parts <- strsplit(

22 line,

23 paste0("(?<=.{", max(width - nchar(white), 1), "})"),

24 perl = TRUE

25)[[1]]

26

27 # Add the whitespace to the beginning of each part

28 parts <- paste0(white, parts)

29

30 # Add all parts to the processed lines list

31 lines <- c(lines, parts)

32 }

33

34 # Make sure to print something...

A.6 Auxiliary functions 85

35 if (length(lines) < 1) lines <- ""

36

37 # Print all processed lines

38 for (line in lines) {

39 message(line, ...)

40 }

41 }

42

43 hline <- function() {

44 console.log(strrep('_', cli::console_width()))

45 }

46

47 get_whitespace <- function(txt) {

48 # Find whitespace at the beggining of the string

49 fst_match <- gregexpr("ˆ[\t]*", txt)[[1]]

50

51 # Extract whitespace

52 white.length <- attr(fst_match, "match.length")

53 substring(txt, 1, white.length)

54 }

Code A.6: Auxiliary functions to log the explanations

86 Appendix A. Source Code Listings

Universidad de Alcalá
Escuela Politécnica Superior

Universidad
de Alcalá

	Abstract
	Contents
	List of Figures
	List of Algorithms
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.1.1 Massive amounts of data
	1.1.2 Hands-on learning
	1.1.3 Self-regulated learning
	1.1.4 Problem: A-priori knowledge

	1.2 Project proposition
	1.3 Objectives
	1.3.1 General objectives
	1.3.2 Specific objectives

	1.4 Structure of the document

	2 State of the Art
	2.1 Partitional Clustering
	2.1.1 Hard/Crisp
	2.1.1.1 Square Error
	2.1.1.2 Model-based Clustering
	2.1.1.3 Graph-theoretic Clustering
	2.1.1.4 Density-based Clustering
	2.1.1.5 Subspace Clustering
	2.1.1.6 Search-based Clustering

	2.1.2 Mixture Resolving Algorithms
	2.1.2.1 Expectation Maximization

	2.2 Hierarchical Clustering
	2.2.1 Agglomerative Clustering
	2.2.2 Divisive Clustering
	2.2.3 Implementations that Improve on Hierarchical Clustering

	3 Implementation
	3.1 Developing R packages
	3.2 Algorithms
	3.2.1 K-Means
	3.2.2 DBSCAN
	3.2.3 Gaussian Mixture
	3.2.4 Agglomerative Hierarchical Clustering
	3.2.5 Divisive Hierarchical Clustering

	3.3 Automatic explanations

	4 Results
	4.1 Toy Datasets
	4.2 Algorithm Characteristics
	4.2.1 K-Means
	4.2.2 DBSCAN
	4.2.3 Gaussian Mixture
	4.2.4 Agglomerative Hierarchical Clustering
	4.2.5 Divisive Hierarchical Clustering

	4.3 Algorithm comparison
	4.4 Automatic explanations
	4.5 Uploading a package to CRAN

	5 Conclusions and Future Work
	Bibliography
	Appendix A Source Code Listings
	A.1 K-Means
	A.2 DBSCAN
	A.3 Gaussian Mixture Model with Expectation Maximization
	A.4 Agglomerative Hierarchical Clustering
	A.5 Divisive Hierarchical Clustering
	A.6 Auxiliary functions

