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ABSTRACT 

 The Ganged Phased Array Radar – Risk Mitigation System (GPAR-RMS) was a 

mobile ground-based sense-and-avoid system for Unmanned Aircraft System (UAS) 

operations developed by the University of North Dakota. GPAR-RMS detected proximate 

aircraft with various sensor systems, including a 2D radar and an Automatic Dependent 

Surveillance – Broadcast (ADS-B) receiver. Information about those aircraft was then 

displayed to UAS operators via visualization software developed by the University of 

North Dakota. The Risk Mitigation (RM) subsystem for GPAR-RMS was designed to 

estimate the current risk of midair collision, between the Unmanned Aircraft (UA) and a 

General Aviation (GA) aircraft flying under Visual Flight Rules (VFR) in the surrounding 

airspace, for UAS operations in Class E airspace (i.e. below 18,000 feet MSL). However, 

accurate probabilistic models for the behavior of pilots of GA aircraft flying under VFR 

in Class E airspace were needed before the RM subsystem could be implemented.  

 In this dissertation the author has documented his research on a novel application 

of an ant colony algorithm to the synthesis of aircraft telemetry data, which was then data 

mined to discover probabilistic models of the behavior of pilots of GA aircraft flying 

under VFR in Class E airspace. The results of data mining an aircraft telemetry data set 

from a consecutive nine month period in 2011 are presented. This aircraft telemetry data 

set consisted of Flight Data Monitoring (FDM) data obtained from Garmin G1000 

devices which are onboard every Cessna 172 in the University of North Dakota’s training 

fleet. Data from aircraft which were potentially within the controlled airspace 



 xiv 

surrounding controlled airports were excluded. Also, GA aircraft which operated in Class 

E airspace were assumed to have been flying under VFR, which is a valid assumption for 

most training flights. First, complex subpaths were discovered from the aircraft telemetry 

data set using a novel application of an ant colony algorithm. Then, probabilistic models 

were data mined from those subpaths using extensions of the Genetic K-Means (GKA) 

and Expectation-Maximization (EM) algorithms. 

 The results obtained from the subpath discovery and data mining suggest: 1) at 

both low altitudes (between 597 and 3,589 feet MSL) and high altitudes (between 3,590 

and 12,860 feet MSL) a pilot flying a GA aircraft near to an uncontrolled airport will 

perform different maneuvers than a pilot flying a GA aircraft far from an uncontrolled 

airport and 2) when only maneuvers with a duration of one minute or longer were 

considered, all variations of left turns were performed less frequently than 1%, while 

many variations of straight flight and right turns were performed more frequently than 

1%. However, since only aircraft telemetry data from the University of North Dakota’s 

training fleet were data mined, these results are not likely to be applicable to GA aircraft 

operating in a non-training environment. 
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CHAPTER I 

INTRODUCTION 

 An Unmanned Aircraft (UA) is any aircraft designed to fly without an onboard 

pilot or crew. At present, UAs are designed to be remotely piloted from the ground via 

direct and/or indirect wireless communication links. There are many different types of 

UAs designed for many different types of applications in military and/or civilian 

operational environments. Civilian applications include surveillance of dangerous 

environments (e.g. flooded rivers) and acquisition of aerial imagery for scientific or 

industrial endeavors (e.g. assessing crop growth in farm fields). 

 In (Loegering and Evans 1999), the design process for the Global Hawk UA is 

described. The Global Hawk UA is designed for extended aerial surveillance from 

altitudes as high as 65,000 feet above Mean Sea Level (MSL). Thus, the UA’s design 

includes redundant flight controls to increase its reliability during long flights. All the 

control surfaces for the UA are split, with each half controlled by a separate actuator. The 

UA also has redundant avionics computers. For each split control surface on the UA, one 

avionics computer controls the actuator for one half, and the other avionics computer 

controls the actuator for the other half. Thus, if one of the avionics computers and/or 

actuators for a control surface fails, the UA can still remain airborne by relying on the 

other redundant component. 
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Civilian Applications of Unmanned Aircraft 

 In (Nonami 2007), several different types of civilian UAs, including Yamaha’s 

RMAX unmanned helicopter, Aerosonde’s UA, and General Atomic’s Altair, Altus I, 

and Altus II are described. Research into the semi-autonomous operation of UAs in the 

National Airspace System (NAS), i.e. airborne sense-and-avoid technology is also 

described in (Nonami 2007). Current problems with semi-autonomous UAs (e.g. collision 

avoidance) are assumed in (Nonami 2007) to be solvable by further advances in the 

computational power of CPUs. Ground-based sense-and-avoid technologies for UAs, 

such as the Ganged Phased Array – Risk Mitigation System (GPAR-RMS) described in 

(Marsh, et al. 2011), are not discussed in (Nonami 2007). 

 In (Hunt, et al. 2010), an application of the Vector-P UA is described in which the 

UA provided aerial imagery for assessing crop growth. The UA was flown with the 

MicroPilot Ground Control Station (GCS) software. Due to the UA’s small size, the 

digital camera attached to the UA needed to be light-weight. The aerial imagery obtained 

during the UA’s two test flights provided an adequate assessment of the crop growth for 

two farm fields. However, the Federal Aviation Administration (FAA) currently restricts 

Unmanned Aircraft System (UAS) operations in the NAS, thus limiting the feasibility of 

assessing crop growth with UAs (Hunt, et al. 2010). 

Restrictions on Civilian Operation of Unmanned Aircraft 

 While UAs have been remarkably successful in U.S. military operations (Weibel 

and Hansman 2004), FAA safety regulations impose strict limitations on their civilian 

operation in the NAS (Dalamagkidis, Valavanis, and Piegl 2008). In (Dalamagkidis, 

Valavanis, and Piegl 2008), current regulatory problems in the U.S. regarding UAs flying 
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in the NAS are described. Many federal agencies could benefit from civilian UASs 

operating in the NAS, including the U.S. Coast Guard, the U.S. Customs and Border 

Protection, and the U.S. Department of Agriculture (Dalamagkidis, Valavanis, and Piegl 

2008). However, the FAA will not permit unfettered UAS operations in the NAS, until 

those UAS operations are demonstrated to have an equivalent level of safety to manned 

aircraft systems (Dalamagkidis, Valavanis, and Piegl 2008).  

 Collision risk is defined in (Dalamagkidis, Valavanis, and Piegl 2008) as the 

potential for a UA to damage people and/or property as a result of a midair collision or 

ground collision. Furthermore, (Dalamagkidis, Valavanis, and Piegl 2008) states the risk 

of a particular collision is determined by the probability of the collision occurring and the 

amount of damage it would cause to people and/or property. Probabilistic models for 

General Aviation (GA) aircraft, such as those presented in chapter 4, could only be used 

to calculate the first type of collision risk, i.e. the risk of a midair collision between a UA 

and a manned aircraft. Any probabilistic models for calculating the second type of 

collision risk (i.e. the risk of a UA colliding with the ground) would need to be based on 

entirely different factors, and are beyond the scope of this research. 

 Current FAA regulations only permit UAS operations in the NAS on a case-by-

case basis via Certificates of Authorization (COAs). A COA designates a restricted 

airspace for an authorized organization to fly a particular type of UA. While the 

authorized organization is flying its UA, manned aircraft are not permitted to enter the 

COA’s restricted airspace. COAs usually expire after a year (Dalamagkidis, Valavanis, 

and Piegl 2008). 
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 According to FAA guidelines, severe collision events (i.e. collisions resulting in 

numerous casualties and/or annihilation of aircraft) for manned aircraft should occur less 

frequently than 10
-9

 occurrences per flight hour (Federal Aviation Administration 2008). 

Furthermore, (Federal Aviation Administration 2008) states that severe collision events 

should rarely occur during the entire service of an aircraft. Since current FAA regulations 

require the safety levels for UAS operations in the NAS to be equivalent to the safety 

levels for manned aircraft systems, UAS operations in the NAS must be demonstrated to 

result in less than 10
-9

 severe collision events per flight hour (Dalamagkidis, Valavanis, 

and Piegl 2008). 

Proposed Collision Avoidance Strategies 

 Since many different types of UAs exist, each with different performance 

characteristics, (Dalamagkidis, Valavanis, and Piegl 2008) suggests categorizing UAs 

based on the altitude ranges which they operate at most frequently—low altitudes (e.g. 

the Vector-P UA), medium altitudes (e.g. the RQ-1 Predator), or high altitudes (e.g. the 

Global Hawk). Specific collision-avoidance strategies are suggested for UASs operating 

in each of these three altitude ranges. Two general strategies are also identified in 

(Dalamagkidis, Valavanis, and Piegl 2008) for avoiding midair collisions between a UA 

and a manned aircraft: 1) maintain adequate horizontal and vertical separation between 

the UA and proximate aircraft or 2) if adequate separation cannot be maintained, the UA 

must activate an airborne sense-and-avoid system. However, if adequate separation 

between the UA and proximate aircraft can be consistently maintained with a ground-

based sense-and-avoid system, such as GPAR-RMS, an airborne sense-and-avoid system 

is not necessary. Probabilistic models for GA aircraft, such as those discovered using the 
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methodology discussed in chapter 3, could have enabled GPAR-RMS to estimate the risk 

of a midair collision between the UA and other GA aircraft in the surrounding airspace. 

With a current and accurate estimate of the risk of a midair collision, the Range Safety 

Operator (RSO) could have immediately landed the UA if the estimated risk of a midair 

collision was too great (Marsh, et al. 2011). 

 Although many commercial aircraft are equipped with collision avoidance 

technology based on Automatic Dependant Surveillance – Broadcast (ADS-B) and/or 

Traffic Collision Avoidance System (TCAS), neither of these technologies are currently 

available for most UAs (Dalamagkidis, Valavanis, and Piegl 2008). Furthermore, most 

GA aircraft in the U.S. currently do not have ADS-B or TCAS capability. Thus, other 

systems for avoiding midair collisions between a UA and proximate aircraft (i.e. ground-

based or airborne sense-and-avoid systems) need to be developed (Dalamagkidis, 

Valavanis, and Piegl 2008). 

 In (Weibel and Hansman 2004), a preliminary assessment of the risk of a midair 

collision between a UA and a manned aircraft is described. The likelihood of such a 

midair collision is estimated in (Weibel and Hansman 2004) using a gas model 

simulation. The gas model simulation described in (Weibel and Hansman 2004) 

characterizes the UA solely by its mass, since aircraft mass is considered a crucial factor 

in midair collisions. Furthermore, the masses of different types of UAs vary significantly 

depending on their intended applications (Weibel and Hansman 2004). The density of 

manned aircraft in the gas model simulation was calculated from a single day of data 

logged by the FAA’s Enhanced Traffic Management System (ETMS). ETMS is used by 

the FAA to archive data from the ground-based radars used by Air Traffic Control (ATC) 



 6 

towers at controlled airports. In (Weibel and Hansman 2004), the UA was considered to 

have a uniform probability of occupying any position in the airspace, regardless of its 

mass.  

 The results from the gas model simulation in (Weibel and Hansman 2004) suggest 

the risk of midair collision between a UA and a manned aircraft is much higher when the 

density of manned aircraft is greater, e.g. within FAA-designated airways. The results 

also suggest smaller UAs (i.e. with less mass) are much less likely to cause severe 

collision events than larger UAs (Weibel and Hansman 2004). Although the preliminary 

results from (Weibel and Hansman 2004) provide some insight into the total risk of 

midair collisions between UAs and manned aircraft in the NAS, these findings are not 

applicable to the risk of midair collisions for specific airspace configurations. 

 In (Marsh, et al. 2011), the visualization software developed for GPAR-RMS is 

described. GPAR-RMS was a mobile ground-based sense-and-avoid system developed at 

the University of North Dakota. GPAR-RMS was composed of proprietary hardware and 

software systems for monitoring UAS operations. These hardware and software systems 

were installed in a fifth-wheel trailer which was quickly transportable to an area for field 

deployment of the UAS. The hardware system was composed of two rack-mounted sets 

of high-speed, multi-core servers and a set of external sensors, including a Garmin GDL 

90 ADS-B transceiver, a DeTect Harrier 2D radar (which was networked to the fifth-

wheel trailer via a wireless bridge), a Davis Weather Monitor II weather station, and a 

Garmin Global Positioning System (GPS) puck. The hardware system also included one 

or more GCSs for controlling the UA(s), i.e. an Insitu ScanEagle GCS and/or a 

MicroPilot GCS.  
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 The software system was composed of the following separate components: 1) a 

Sensor Fusion System (SFS) which received data streams from the external sensors (i.e. 

the Garmin GDL 90 ADS-B transceiver, the DeTect Harrier 2D radar, the GCS(s), and 

the Davis Weather Monitor II weather station), fused the aircraft telemetry data, and 

multicast the fused data and the meteorological measurements from the weather station to 

one or more Information Display Systems (IDSs), 2) the Risk Mitigation (RM) subsystem 

which estimated the risk of collision for the UA based on the current airspace 

configuration, 3) the Health Monitor which displayed the overall system health for 

GPAR-RMS, including the health of the external sensors and the internal temperatures of 

the rack-mounted servers, 4) the Range Control Center (RCC) IDS which displayed the 

information received from SFS in a suitable format for the RSO, and 5) the Ground 

Observer (GO) IDS which displayed the information received from SFS in a suitable 

format for a ground observer or as an additional display for the UA pilot. Whereas the 

RCC IDS displayed a top-down view of the current airspace configuration, the GO IDS 

displayed a view of the current airspace configuration which was centered on the UA 

(Marsh, et al. 2011). 

 The centralized control architecture of GPAR-RMS was effective for UAS 

operations involving one or possibly two UAs, but a distributed control architecture 

would be more effective for controlling and monitoring UAS swarms (Reza and Ogaard 

2011). UAS swarms consist of many small UAs flying together. However, the problem of 

ground-based sense-and-avoid for UAS swarms is beyond the scope of this research. 
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Problem Statement 

 A critical part of GPAR-RMS which was unfinished was the RM subsystem 

(Marsh, et al. 2011). Estimating the risk of midair collision for a specific airspace 

configuration is algorithmically complex. The risk must be estimated for every possible 

midair collision between the UA and every other GA aircraft in the surrounding airspace. 

Furthermore, the estimated risk must be accurate and updated in near real time. Thus, in 

order for an algorithm (such as one that could have been integrated into the RM 

subsystem) to estimate the risk of a midair collision between the UA and another GA 

aircraft, the algorithm needs the probabilities of the pilot of that particular type of GA 

aircraft performing various maneuvers during the next minute. The intent of the UA pilot 

would obviously be known.  

 Although the set of basic maneuvers (e.g. straight ascents or descents, ascending 

or descending turns, and level turns) available to pilots of GA aircraft are known, the 

specific flight path a pilot chooses for an aircraft can be composed of any combination of 

these basic maneuvers. Also, many variations exist for each of the basic maneuvers. The 

pilot of an aircraft may, for instance, perform a level turn at different rates, such as 2° per 

second or 3° per second. Class E airspace is defined in (Federal Aviation Administration 

2011) as national airspace below 18,000 feet MSL which is not already Class A, B, C, D, 

or G airspace. Furthermore, (Federal Aviation Administration 2011) states pilots flying 

aircraft under Visual Flight Rules (VFR) in Class E airspace are not required to 

communicate with ATC. Hence, probabilistic models were needed to predict the behavior 

of pilots of those types of manned aircraft which typically operate under VFR in Class E  
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airspace (i.e. GA aircraft). The problem of how accurate probabilistic models for the 

behavior of pilots of GA aircraft flying under VFR in Class E airspace can be discovered 

is the focus of this dissertation. 

 The methodology discussed in chapter 3, which was used to discover probabilistic 

models for the behavior of pilots of GA aircraft, involves data mining massive aircraft 

telemetry data sets—specifically Flight Data Monitoring (FDM) data sets. These aircraft 

telemetry data sets contain very accurate data about the flight paths of FDM-capable GA 

aircraft over a specific period of time. The positions reported by the telemetry devices on 

these GA aircraft are provided by the Wide Area Augmentation System (WAAS), which 

augments the accuracy of GPS in order to meet FAA requirements (Federal Aviation 

Administration 2010). WAAS provides a horizontal positional accuracy of about 1 meter 

and a vertical positional accuracy of about 1.5 meters in most cases (Federal Aviation 

Administration 2006). With such horizontal and vertical positional accuracy, discovering 

accurate probabilistic models of GA pilot behavior by data mining massive aircraft 

telemetry data sets becomes feasible.  

 These probabilistic models could then be used to estimate the total risk of a midair 

collision for a UA flying in Class E airspace needed by the RM subsystem of GPAR-

RMS. First, the RM subsystem would filter out any GA aircraft in the surrounding 

airspace which were determined to be: a) within the controlled airspace surrounding any 

nearby controlled airport(s) and/or b) flying at such a distance and velocity from the UA 

to not be considered a possible conflict. Then, the RM subsystem would determine the 

applicable probabilistic model for each remaining GA aircraft in the surrounding airspace 

based on the GA aircraft’s altitude above MSL and its proximity to the nearest 
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uncontrolled airport. Thus, each potentially conflicting GA aircraft would have an 

associated probabilistic model. Finally, the maneuver probabilities from these 

probabilistic models associated with the potentially conflicting GA aircraft in the 

surrounding airspace would be used to estimate the probability of any of those GA 

aircraft colliding with the UA in the next minute. 
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CHAPTER II 

BACKGROUND 

 Data mining algorithms are a very diverse class of algorithms used to search for 

meaningful patterns in data sets. Metaheuristic algorithms (which are related to data 

mining algorithms) are a broader class of algorithms used to solve combinatorial 

optimization problems. Heuristic algorithms, like metaheuristic algorithms, can also be 

used to solve combinatorial optimization problems. Many data mining algorithms are 

actually heuristic algorithms. However, although heuristic algorithms typically have 

faster run times, such algorithms are susceptible to converging to suboptimal solutions. 

These suboptimal solutions are locally optimal, but not globally optimal, solutions to the 

combinatorial optimization problems. Such locally optimal solutions may be invalid 

solutions to the combinatorial optimization problems. Certain classes of metaheuristic 

algorithms, e.g. canonical genetic algorithms which save their most optimal solutions, 

have been proved to eventually converge to the globally optimal solution to any 

combinatorial optimization problem (Rudolph 1994). Thus, hybrid algorithms which 

combine data mining algorithms with metaheuristic algorithms are pertinent to 

discovering globally optimal probabilistic models of the behavior of pilots of GA aircraft 

flying under VFR in Class E airspace. 

Metaheuristic Algorithms 

 In (Yagiura and Ibaraki 2001), metaheuristic algorithms are discussed. A 

combinatorial optimization problem involves searching for the globally optimal solution 
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in some countable set of candidate solutions (Bianchi et al. 2009). A heuristic algorithm, 

e.g. the K-Means Algorithm (KMA), iteratively improves an approximate solution (i.e. a 

candidate solution) to a combinatorial optimization problem using some predetermined 

optimization criteria (Yagiura and Ibaraki 2001). The heuristic algorithm runs until no 

further improvements to its candidate solution are possible with the given optimization 

criteria (Greiner 1996). However, a heuristic algorithm is not guaranteed to discover the 

globally optimal solution to a combinatorial optimization problem (Greiner 1996). A 

heuristic algorithm may discover different locally optimal solutions when run with 

different initial conditions (Greiner 1996). Metaheuristic algorithms, e.g. the Genetic K-

Means Algorithm (GKA), extend the combinatorial optimization capabilities of 

traditional heuristic algorithms by performing a broader search for the globally optimal 

solution (Yagiura and Ibaraki 2001).  

 Some examples of metaheuristic algorithms are multi-start local search, Tabu 

search, genetic algorithms, and simulated annealing (Yagiura and Ibaraki 2001). A multi-

start local search algorithm is an extension of the local search algorithm (Yagiura and 

Ibaraki 2001). A local search algorithm is a heuristic algorithm which iteratively 

improves its candidate solution by replacing it with neighboring candidate solutions 

which are more optimal according to the predetermined optimization criteria (Arya, et al. 

2004). The definition of the neighborhood for a candidate solution depends on the 

particular combinatorial optimization problem to be solved (Arya, et al. 2004). However, 

a local search algorithm is only capable of searching for optimal solutions from a small 

subset of the entire set of candidate solutions (Arya, et al. 2004). This subset of candidate 

solutions is determined by: a) the initial conditions and b) the optimization criteria (Arya, 
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et al. 2004). A multi-start local search algorithm extends a local search algorithm by 

searching a larger subset of the entire set of candidate solutions (Yagiura and Ibaraki 

2001). It iteratively performs local searches with different initial conditions (Yagiura and 

Ibaraki 2001).  

 Another extension of the local search algorithm is the Tabu search algorithm 

(Yagiura and Ibaraki 2001). A Tabu search algorithm maintains a Tabu list, i.e. a fixed-

length history of previous candidate solutions which are considered suboptimal (Glover 

1989; Glover 1990). If the optimization criteria cannot generate a candidate solution 

which is not already in the Tabu list, the Tabu search algorithm uses some predetermined 

method for generating a new candidate solution, e.g. randomly perturbing the current 

candidate solution (Glover 1989; Glover 1990). 

 A genetic algorithm mimics biological evolutionary processes. It starts by 

generating a random population of candidate solutions to the combinatorial optimization 

problem (Yagiura and Ibaraki 2001). Then, it iteratively evolves each new generation of 

candidate solutions through the stochastic application of genetic operators (e.g. 

inheritance, mutation, and crossover) to selected candidate solutions from the previous 

generation (Yagiura and Ibaraki 2001).  

 A simulated annealing algorithm mimics the metallurgical technique of annealing. 

It repeats the following steps to search for the globally optimal solution to the 

combinatorial optimization problem (Yagiura and Ibaraki 2001): 1) A candidate solution 

is randomly generated; 2) Let Δ be the difference between the optimality of the candidate 

solution and the current solution S; 3) If Δ ≤ 0 (i.e. the candidate solution is at least as 

optimal as S), the candidate solution will always be selected to replace S; and 4) If Δ > 0 
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(i.e. the candidate solution is less optimal than S), the candidate solution will be selected 

to replace S with a probability of Te



 where T is the current value of the temperature 

parameter (Yagiura and Ibaraki 2001). Thus, the value of the temperature parameter T 

affects the probability of a suboptimal candidate solution being selected to replace S 

(Yagiura and Ibaraki 2001). A simulated annealing algorithm typically starts with a large 

value for T, and then decreases it by a small amount with each iteration (Yagiura and 

Ibaraki 2001). Thus, the simulated annealing algorithm tries to avoid converging to a 

locally optimal solution by occasionally choosing suboptimal candidate solutions 

(Yagiura and Ibaraki 2001). 

 Although most metaheuristic algorithms randomly generate the initial candidate 

solution(s), some metaheuristic algorithms try to find better initial candidate solution(s) 

using more sophisticated techniques, e.g. a greedy search algorithm (Yagiura and Ibaraki 

2001). Also, since metaheuristic algorithms do not perform exhaustive searches of the 

entire set of candidate solutions, such algorithms typically have termination criteria such 

as: a) terminating after a predetermined number of iterations or b) terminating after the 

metaheuristic algorithm has not significantly improved the candidate solution(s) for a 

predetermined number of iterations (Yagiura and Ibaraki 2001). Finally, metaheuristic 

algorithms should be designed to search a statistically diverse sample of the entire set of 

candidate solutions (Yagiura and Ibaraki 2001).  

Genetic Algorithms 

 Genetic algorithms are a class of metaheuristic algorithms modeled after 

evolutionary processes that occur in nature. Using homogeneous finite Markov chain 

analysis, (Rudolph 1994) proves, for the general case, that a genetic algorithm will 
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eventually converge to the globally optimal solution if: a) The genetic algorithm has 

mutation, crossover, and proportional selection operators; b) The mutation operator is 

applied separately to each component of each candidate solution with some nonzero 

probability; c) The genetic algorithm tracks the most optimal candidate solution 

discovered during its entire execution; and d) The genetic algorithm solves a static 

combinatorial optimization problem. Markov chain analysis is also used in (Eiben, Aarts, 

and Van Hee 1991) to prove, for the general case, that a genetic algorithm in which the 

fittest candidate solutions are always selected for reproduction will eventually converge 

to the globally optimal solution. Whether a specific instance of a genetic algorithm will 

eventually converge to the globally optimal solution mainly depends on: a) the 

correctness of its fitness function, since the fitness function is crucial to eliminating 

unproductive searches for the globally optimal solution (Eiben, Aarts, and Van Hee 

1991), and b) whether its mutation operator is implemented as defined in (Rudolph 

1994), i.e. there is a nonzero mutation probability for each component of a candidate 

solution which is independent of the mutation probabilities for the other components. 

 In (Snyder and Daskin 2005), a genetic algorithm for solving the generalized 

Traveling Salesman Problem (TSP) is discussed. This problem belongs to the 

Nondeterministic Polynomial Hard (NP-Hard) class of computational problems. The 

genetic algorithm in (Snyder and Daskin 2005) encodes its candidate solutions with 

random keys, and also applies a local improvement heuristic to its candidate solutions. 

The maximum run time for the genetic algorithm in (Snyder and Daskin 2005) during 41 

test cases was 10.1 seconds, which was significantly faster than the five other non-genetic  
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algorithms that were tested. Furthermore, the genetic algorithm in (Snyder and Daskin 

2005) is algorithmically simpler than non-genetic algorithms designed to solve the 

generalized TSP. 

 In (Kim, Abraham, and Cho 2007), a hybrid algorithm is discussed which 

combines a genetic algorithm with a bacterial foraging algorithm. The hybrid algorithm 

was used to tune a Proportional-Integral-Derivative (PID) controller for an automatic 

voltage regulator in a simulated environment (Kim, Abraham, and Cho 2007). Bacterial 

foraging algorithms mimic the way bacteria, such as E. coli, search for food while 

simultaneously avoiding toxic environments (Kim, Abraham, and Cho 2007). According 

to (Kim, Abraham, and Cho 2007), the E. coli bacterium uses the following four foraging 

strategies: 1) If the bacterium is in a non-toxic environment, it wanders randomly in 

search of food; 2) If the bacterium is swimming towards an increasingly nutritious 

environment (or a decreasingly toxic environment), it engages in food-seeking behavior; 

3) If the bacterium is swimming towards a decreasingly nutritious environment (or an 

increasingly toxic environment), it engages in harm-avoidance behavior; and 4) In some 

situations the bacterium releases chemicals that will attract nearby E. coli bacteria and 

cause them to clump together to protect themselves from a toxic environment.  

 An important consideration in the design of a genetic algorithm is its constraint 

handling (Kim, Abraham, and Cho 2007). When a genetic algorithm applies genetic 

operators such as crossover and/or mutation, it may produce invalid candidate solutions 

(Kim, Abraham, and Cho 2007). Thus, a genetic algorithm which applies crossover 

and/or mutation operators must also have some form of constraint handling to eliminate 

these invalid candidate solutions (Kim, Abraham, and Cho 2007). A bacterial foraging 
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algorithm can efficiently perform such constraint handling, since foraging bacteria are 

essentially solving a constrained combinatorial optimization problem (Kim, Abraham, 

and Cho 2007). Thus, a hybrid algorithm combining these two classes of algorithms is 

useful for solving certain constrained combinatorial optimization problems (Kim, 

Abraham, and Cho 2007). In the simulated tuning of a PID controller for an automatic 

voltage regulator in (Kim, Abraham, and Cho 2007), the hybrid algorithm converged to 

the globally optimal solution in fewer generations than the non-hybrid genetic algorithm. 

 In (Pizzuti 2008), the GA-Net genetic algorithm for discovering communities in 

graphs is discussed. A community is defined in (Pizzuti 2008) as a set of vertices in the 

graph where the vertices are densely connected to other vertices within the set, but only 

sparsely connected to vertices not in the set. The number of communities is automatically 

determined by a genetic algorithm (Pizzuti 2008). In the test in (Pizzuti 2008), which 

used an artificial data set, a population of 300 candidate solutions was evolved for 30 

generations. A reproductive mutation rate of 20% was used during the test (Pizzuti 2008). 

GA-Net detected communities in the artificial data set with an accuracy rate of about 

80%. Thus, GA-Net’s accuracy rate when tested with an artificial data set was 

comparable to equivalent non-genetic algorithms for discovering communities in graphs 

(Pizzuti 2008), such as (Newman and Girvan 2004). 

 In (Pandy and Padhy 2008), the run-time performance of genetic algorithms and 

Particle Swarm Optimization (PSO) algorithms for designing a Flexible AC Transmission 

System (FACTS) are compared. A FACTS is typically used to increase the reliability of a 

power grid (Pandy and Padhy 2008). Genetic algorithms have proven effective at finding 

the optimal parameters for control systems, especially when traditional optimization 
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methods are too cumbersome (Pandy and Padhy 2008). In a PSO algorithm, each particle 

in the swarm is considered a separate candidate solution (Pandy and Padhy 2008). The 

PSO algorithm starts with the particles randomly wandering through the search space 

(Pandy and Padhy 2008). Less successful particles try to improve their candidate 

solutions by imitating more successful particles (Pandy and Padhy 2008). Each particle 

also remembers the best solution it has hitherto discovered (Pandy and Padhy 2008).  

 In order to compare the two algorithms, the genetic algorithm and the PSO 

algorithm in (Pandy and Padhy 2008) were subjected to identical tests. The results of the 

tests indicate that although the PSO algorithm in (Pandy and Padhy 2008) converges to 

the globally optimal solution in fewer iterations (i.e. generations), it is more CPU-

intensive than the genetic algorithm. However, both classes of algorithms exhibited 

acceptable performance at optimizing designs for FACTS (Pandy and Padhy 2008). 

Ant Colony Algorithms 

 Ant colony algorithms are a class of metaheuristic algorithms that mimic the path-

building behavior of ants in nature (Gutjahr 2000). In (Botee and Bonabeau 1998), a 

hybrid algorithm is discussed for solving specific instances of TSP. The hybrid algorithm 

in (Botee and Bonabeau 1998) combines an ant colony algorithm with a genetic 

algorithm. Ant colony algorithms mimic the ability of foraging ants to discover the 

shortest (i.e. the most optimal) path to a food source (Botee and Bonabeau 1998). The ant 

that finds the shortest path to the food source will also be the first ant to successfully 

return to the ant hill with food (Botee and Bonabeau 1998). Once this ant finds the food 

source, it will return to the ant hill along the same path, thus doubling the strength of its 

pheromone trail (Botee and Bonabeau 1998). The strength of its pheromone trail 
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increases faster than any other pheromone trails leading to that food source, resulting in 

other ants preferentially following its pheromone trail (Botee and Bonabeau 1998). 

Furthermore, suboptimal pheromone trails are quickly eliminated by pheromone 

evaporation (Botee and Bonabeau 1998). 

 The hybrid algorithm in (Botee and Bonabeau 1998) uses a genetic algorithm to 

find the optimal parameters for the ant colony algorithm to use for solving a specific 

instance of the TSP. The hybrid algorithm in (Botee and Bonabeau 1998) results in the 

ant colony algorithm converging to the globally optimal solution faster. However, 

combining an ant colony algorithm with a genetic algorithm also resulted in a slower 

overall run time for the hybrid algorithm (Botee and Bonabeau 1998). 

 In (Gutjahr 2000), the Graph-Based Ant System (GBAS) ant colony algorithm is 

discussed. The GBAS ant colony algorithm represents a combinatorial optimization 

problem as a construction graph (Gutjahr 2000). A construction graph is defined in 

(Gutjahr 2000) as a special type of directed graph where every path shares a common 

start node. Time is represented by cycles, which are defined in (Gutjahr 2000) as 

complete traversals of the construction graph by all the ants (i.e. the agents). The weight 

assigned to an edge is the probability of an ant traversing it (Gutjahr 2000). These 

weights are calculated from the digital pheromone strength (which evaporates at a rate 

directly proportional to the number of cycles) and the utility of ants traversing the edge 

(Gutjahr 2000). The utility of ants traversing a particular edge depends on the type of 

combinatorial optimization problem being solved (Gutjahr 2000). The GBAS ant colony 

algorithm in (Gutjahr 2000) was proved to converge to an optimal solution when certain  
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criteria are met. However, the GBAS ant colony algorithm was not implemented to 

confirm this convergence proof (Gutjahr 2000). 

 The runtime complexities of two ant colony algorithms are analyzed in (Gutjahr 

2008), the GBAS (Gutjahr 2000) and Ant System (Dorigo, Maniezzo, and Colorni 1996) 

algorithms. Both ant colony algorithms were shown in (Gutjahr 2008) to find an optimal 

solution to a test problem in linearithmic time, i.e. O(n∙log n). However, since the run-

time complexities of the ant colony algorithms were only analyzed with a single test 

problem, the results of the analysis may not be applicable to other types of problems 

(Gutjahr 2008). 

 In (Han and Shi 2007), a hybrid algorithm is discussed for image segmentation 

which combines an ant colony algorithm with fuzzy clustering. The probability of an ant 

selecting a particular digital pheromone trail to follow is directly proportional to the 

length of the digital pheromone trail and the strength of the trail’s digital pheromones 

(Han and Shi 2007). Typically, the ant also gives preference to digital pheromone trails 

which are closer to it (Han and Shi 2007). For example, to segment an image with respect 

to its gray values using the hybrid algorithm in (Han and Shi 2007), the following steps 

are performed: 1) The pixels of the target image are preprocessed into three-dimensional 

data points, where each data point consists of the gray value, the gradient, and the weight 

for the pixel; 2) A gray-scale histogram is constructed for the image; 3) The number and 

values of the peaks in the histogram are used to determine the number of clusters and the 

gray values for their initial centroids; 4) The gradients for the initial centroids are 

calculated; 5) The weights for the initial centroids are calculated; 6) The ants 

probabilistically construct paths through the 3D Euclidean space (defined by the data 
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points) based on the lengths and strengths of previous digital pheromone trails; and 7) An 

ant is assigned to whichever cluster has the closest centroid to its current position. When 

the hybrid algorithm in (Han and Shi 2007) was tested with other traditional image 

segmentation algorithms, e.g. Sobel edge detection, the hybrid algorithm in (Han and Shi 

2007) was found to be more effective at extracting interesting features from the image. 

However, the tests discussed in (Han and Shi 2007) were only performed on a limited 

number of images. 

 In (Parunak, Purcell, and O’Connell 2002), an ant colony algorithm for 

controlling UA swarms is discussed. The current velocity for each UA in the swarm is 

determined by a vector field (Parunak, Purcell, and O’Connell 2002). The vectors in the 

vector field simultaneously direct the UAs in the swarm towards the desired target and 

away from hazards in the environment (Parunak, Purcell, and O’Connell 2002). The ant 

colony algorithm in (Parunak, Purcell, and O’Connell 2002) dynamically constructs a 

vector field from digital pheromones deposited by UAs in the swarm. Thus, if several 

UAs in the swarm find the same path to a particular target, other UAs in the swarm will 

also tend to follow that digital pheromone trail to the target (Parunak, Purcell, and 

O’Connell 2002). Similarly, if several UAs find the same path around a particular hazard 

in the environment, other UAs in the swarm will tend to follow it too (Parunak, Purcell, 

and O’Connell 2002). The ant colony algorithm in (Parunak, Purcell, and O’Connell 

2002) performs the following steps: 1) The target and hazards in the environment are 

designated by a human operator at the GCS; and 2) The UAs in the swarm autonomously 

discover an optimal path to the target which avoids the hazards. 
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 In (Ma, Duan, and Liu 2007), an ant colony algorithm for controlling a UA is 

discussed. The ant colony algorithm in (Ma, Duan, and Liu 2007) constructs a path the 

UA can follow to a target while avoiding stationary hazards (e.g. ground-based radars) in 

the environment. Since this is a combinatorial optimization problem, an ant colony 

algorithm (or other metaheuristic algorithms) can be used to solve it (Ma, Duan, and Liu 

2007). An ant colony algorithm is essentially a positive feedback loop, where the useful 

behaviors of ants reinforce each other (Ma, Duan, and Liu 2007). Each stationary hazard 

is assumed in (Ma, Duan, and Liu 2007) to have an associated cost function. Thus, the 

task of the ant colony algorithm in (Ma, Duan, and Liu 2007) is to find a path that 

minimizes the cost functions associated with the stationary hazards in the environment. 

The results from running the ant colony algorithm in (Ma, Duan, and Liu 2007) in several 

simulated environments indicate an ant colony algorithm can efficiently find a path to a 

target that avoids stationary hazards in the environment. However, the ant colony 

algorithm in (Ma, Duan, and Liu 2007) is not applicable to UAs flying in environments 

with mobile hazards (i.e. dynamic operational environments). 

Data Mining Algorithms 

 Data mining algorithms can be classified as analytical algorithms, supervised 

learning algorithms, or unsupervised learning algorithms (Painter, et al. 2006). Although 

there are many analytical algorithms used for data mining, linear regression and principal 

component analysis algorithms are two of the more popular choices. Supervised learning 

algorithms (i.e. classification algorithms) and unsupervised learning algorithms (i.e. 

clustering algorithms) are two important non-analytical approaches to data mining. 
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Analytical Algorithms 

 Analytical algorithms for data mining involve the application of statistical theory 

to data mining problems. In (Chen, et al. 2002), an algorithm for real-time 

multidimensional linear regression of stream data is discussed. Stream data are a type of 

dynamic data continuously produced in profuse quantities by some source (Chen, et al. 

2002), e.g. a planetary orbiter. Due to their extremely high production rate, it is not 

feasible to archive stream data for offline data mining (Chen, et al. 2002). Thus, mining 

of stream data must occur in real time (Chen, et al. 2002). Furthermore, run-time 

efficiency is essential to any such algorithm for mining stream data (Chen, et al. 2002). 

The linear regression algorithm in (Chen, et al. 2002) uses a data cube model in order to 

conserve memory. A data cube has separate dimensions for each category in the data set 

(Chen, et al. 2002). The length of each dimension in the data cube is typically some 

statistical measure, such as the mean or variance (Chen, et al. 2002). Each dimension in 

the data cube represents, either directly or indirectly, some important feature in the 

stream data (Chen, et al. 2002). Thus, it is only necessary for the algorithm to store the 

data cube itself in memory, not the entire set of stream data (Chen, et al. 2002). 

 A linear regression algorithm searches for the globally optimal linear function for 

approximating the relationship between certain features in the data set (Chen, et al. 2002). 

A linear regression algorithm does this by minimizing the sum of squared errors between 

the estimated and actual values of the dependent variable (Chen, et al. 2002). This linear 

function is thus an approximation of the relationship between the dependent variable and 

the independent variables in the feature set (Chen, et al. 2002). 
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 KMA is in the NP-hard time complexity class (Drineas, et al. 2004). Thus, the 

time complexity of KMA scales poorly as the size of the data set increases. Since KMA 

is an integer programming algorithm, however, it can be approximated with a more 

efficient linear programming algorithm by relaxing the constraints on the original 

combinatorial optimization problem (Fisher 1981). In (Drineas, et al. 2004), an 

approximation algorithm for KMA which uses linear programming relaxation is 

discussed. The approximation algorithm in (Drineas, et al. 2004) is in the Polynomial (P) 

time complexity class. The approximation algorithm in (Drineas, et al. 2004) uses 

singular value decomposition to find solutions which are, on average, half as optimal as 

solutions found by KMA for the same data set. If there are N data points, each with D 

dimensions, the data points can be partitioned into K clusters (Drineas, et al. 2004): 1) by 

constructing an N×D matrix containing the data points and 2) by finding the singular 

value decomposition of the N×D matrix. Each row in the N×D matrix corresponds to a 

single data point in the data set (Drineas, et al. 2004). Although the singular value 

decomposition algorithm in (Drineas, et al. 2004) typically finds less optimal solutions 

than KMA, it runs asymptotically faster. Thus, it can efficiently find approximate 

solutions to clustering problems involving massive data sets (Drineas, et al. 2004). 

 In (Lughofer 2008), a hybrid algorithm is discussed which improves the vector 

quantization algorithm. A vector quantization algorithm is a clustering algorithm which 

incrementally partitions a data set into K clusters (Lughofer 2008). First, K data points 

are selected from the data set to be the initial centroids for the clusters (Lughofer 2008). 

Then, the data points are incrementally processed in fixed-sized accretions (Lughofer 

2008). For each unprocessed data point P in the current accretion, the following steps are 
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performed (Lughofer 2008): 1) Using a predetermined distance metric, the distance 

between the data point P and each of the K centroids is calculated; 2) The cluster C 

whose centroid is the minimum distance from the data point P is chosen; and 3) The 

centroid for cluster C is moved closer to the data point P by some fixed amount between 

0 and 1. These steps are repeated until: a) All the data points in the data set have been 

processed; and b) No more significant movements of cluster centroids occur (Lughofer 

2008). 

 The traditional vector quantization algorithm has several disadvantages (Lughofer 

2008): 1) The same data points are scanned during every iteration; and 2) The number of 

clusters must be determined prior to starting the vector quantization algorithm. The 

hybrid algorithm in (Lughofer 2008) addresses these disadvantages by incorporating an 

Adaptive Resonance Theory (ART) neural network. When the hybrid algorithm in 

(Lughofer 2008) and similar clustering algorithms were tested, the hybrid algorithm 

produced more accurate results than the other clustering algorithms. 

 In (Parente, et al. 2011), the Vector Quantization Principal Component Analysis 

(VQPCA) algorithm is discussed. VQPCA is a hybrid algorithm for data mining 

experimental results from Moderate or Intense Low-oxygen Dilution (MILD) combustion 

(Parente, et al. 2011). Principal component analysis assumes a linear relationship between 

the variables in the data set (Parente, et al. 2011). Furthermore, the resulting principal 

components are often difficult to interpret due to their formulaic complexity (Parente, et 

al. 2011). The hybrid algorithm in (Parente, et al. 2011) tries to address these problems. 

The VQPCA hybrid algorithm combines principal component analysis and vector 

quantization algorithms (Parente, et al. 2011). First, the data set is partitioned into 
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clusters with vector quantization (Parente, et al. 2011). Then, each cluster is subjected to 

principal component analysis (Parente, et al. 2011). When the VQPCA hybrid algorithm 

was compared with a traditional principal component analysis algorithm, the VQPCA 

hybrid algorithm produced a more accurate characterization of the MILD combustion 

process (Parente, et al. 2011). 

Supervised Learning Algorithms 

 Supervised learning is an appropriate technique when the classes are explicitly 

known prior to data mining, but the rules for classifying the data are unknown (Duda, 

Hart, and Stork 2001). In supervised learning algorithms, the task is to discover sets of 

classification rules from the labeled training data set (Duda, Hart, and Stork 2001). Using 

these rule sets, classifiers are constructed to efficiently and accurately classify similar, 

unlabeled data sets (Duda, Hart, and Stork 2001).  

 In (Agrawal, Imielinski, and Swami 1993), classification algorithms for databases 

which use decision trees are discussed. Classification algorithms partition data sets into 

separate classes using rule-based classifiers (Agrawal, Imielinski, and Swami 1993). The 

rule sets for the classifiers are discovered from the training data set (Agrawal, Imielinski, 

and Swami 1993). Thus, each rule in the rule set is supported by a certain number of data 

points in the training data set (Agrawal, Imielinski, and Swami 1993). The support for a 

given rule is a measure of its statistical significance (Agrawal, Imielinski, and Swami 

1993). If the support for a rule does not exceed some predetermined threshold, the  
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classification algorithm discards it (Agrawal, Imielinski, and Swami 1993). Since the 

main task of a classification algorithm is rule discovery, it is vital for the algorithm to 

discover rules efficiently through effective use of disk and CPU resources (Agrawal, 

Imielinski, and Swami 1993). 

 In (Mehta, Agrawal, and Rissanen 1996), the Supervised Learning In Quest 

(SLIQ) algorithm is discussed. SLIQ is a classification algorithm scalable to massive data 

sets (Mehta, Agrawal, and Rissanen 1996). Unlike many classification algorithms, the 

SLIQ algorithm does not load the entire training data set into memory before constructing 

its classifiers (Mehta, Agrawal, and Rissanen 1996). This allows the SLIQ algorithm to 

construct classifiers for massive data sets for which the training data sets are too large to 

load into memory (Mehta, Agrawal, and Rissanen 1996). Large training data sets are 

desirable because they can be used to construct more accurate classifiers (Mehta, 

Agrawal, and Rissanen 1996).  

 The SLIQ algorithm was designed to construct decision tree classifiers (Mehta, 

Agrawal, and Rissanen 1996). Decision tree classifiers can be constructed quickly, and 

are easily translated into Structured Query Language (SQL) queries (Mehta, Agrawal, 

and Rissanen 1996). During tests run on publicly available data sets, the SLIQ classifiers 

had accuracy levels comparable to classifiers constructed by similar algorithms (Mehta, 

Agrawal, and Rissanen 1996). It was notable, however, that although the SLIQ classifiers 

were slower for the smallest data set tested, their run times were significantly faster for 

larger data sets than the classifiers constructed by other classification algorithms (Mehta, 

Agrawal, and Rissanen 1996). 
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 In (Lewis 1998), naïve Bayes algorithms for classifying text are discussed. A 

naïve Bayes classifier uses Bayes’ theorem on conditional probabilities to classify data 

points: 
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 First, the naïve Bayes classifier estimates the following probabilities from the training 

data set (Lewis 1998): 1) the unconditional probability of the data point belonging to 

class C, 2) the unconditional probability of the data point having feature set X, and 3) the 

conditional probability of the data point having feature set X (given it belongs to class C). 

After determining these three probabilities, the naïve Bayes classifier estimates a fourth 

probability—the conditional probability of the data point belonging to class C given it 

has feature set X (Lewis 1998). Finally, the estimated value for this fourth probability is 

used to classify the data point (Lewis 1998). Since there may be many such conditional 

probabilities for class C, each estimated from different feature sets, only the highest 

conditional probability for class C is used to classify the data points (Lewis 1998).  

 A naïve Bayes classifier uses Bayes’ theorem to indirectly estimate the 

conditional probability of a data point belonging to class C, given it has feature set X, 

instead of the more difficult task of directly estimating this probability (Lewis 1998). A 

naïve Bayes classification algorithm provides a simple and efficient means for classifying 

text (Lewis 1998). However, other supervised learning algorithms often produce more 

accurate classifiers if provided with massive training data sets (Lewis 1998). 

 In (Boros, et al. 2000), the Logical Analysis of Data (LAD) algorithm is 

discussed. The LAD algorithm classifies data points as positive or negative results using 

sets of discovered rules (Boros, et al. 2000). The LAD algorithm discovers patterns in the 
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training data set which are associated with positive and negative results (Boros, et al. 

2000). A positive pattern is a combination of features which is only found in data points 

associated with positive results (Boros, et al. 2000). A negative pattern is a combination 

of features which is only found in data points associated with negative results (Boros, et 

al. 2000). The LAD algorithm represents the combination of features for each pattern as a 

Boolean expression in first-order logic (Boros, et al. 2000). The Boolean expression for a 

pattern evaluates to 1 if a data point matches the pattern or 0 if it does not match (Boros, 

et al. 2000).  

 Patterns are discovered using either a top-down or bottom-up approach (Boros, et 

al. 2000). In the top-down approach, the Boolean expressions for patterns are discovered 

(Boros, et al. 2000): 1) by constructing Boolean expressions where each pattern feature is 

represented by a separate term and 2) by simplifying the resultant Boolean expressions by 

applying identities from first-order logic. In the bottom-up approach, the Boolean 

expressions for patterns are discovered (Boros, et al. 2000): 1) by enumerating Boolean 

expressions for every possible combination of features and 2) by discarding any Boolean 

expressions which do not result in the desired classification. Classifiers can then be 

constructed based on the patterns discovered in the training data set (Boros, et al. 2000). 

 In (Ruggieri 2002), the Efficient C4.5 (EC4.5) algorithm for classification is 

discussed. The EC4.5 classification algorithm is faster than the traditional C4.5 

classification algorithm when classifying certain types of data sets (Ruggieri 2002). The 

C4.5 classification algorithm uses decision trees (constructed from the training data set) 

and information theory to determine the optimal classifications for unlabeled data points 

(Duda, Hart, and Stork 2001). Decision trees are an efficient means of classifying 
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nonmetric data sets (Duda, Hart, and Stork 2001). The traditional classification 

algorithm, which calculates the distance between scores for two data points (using some 

predetermined distance metric, e.g. Euclidean distance) to assess their similarity, is not 

applicable to nonmetric data sets (Duda, Hart, and Stork 2001). In nonmetric data sets, 

features for data points are qualitative attributes instead of quantitative measurements 

(Duda, Hart, and Stork 2001). For example, a data set pertaining to flowering plants 

might contain attributes such as whether the plant is annual or perennial, the color of its 

flowers, and its indigenous climate. Obviously, such features are nonmetric, and cannot 

be mapped to points in Euclidean space. 

 A decision tree algorithm classifies each unlabeled data point by applying a 

decision tree to it (Ruggieri 2002). The decision tree evaluates a single attribute at each 

interior node (Ruggieri 2002). The decision tree algorithm then picks a child node based 

on its evaluation of the data point’s value for that attribute (Ruggieri 2002). These steps 

are repeated until a leaf node in the decision tree is reached (Ruggieri 2002). The data 

point is classified with the same label as that leaf node (Ruggieri 2002).  

 The splitting criterion for a decision tree algorithm is crucial, since it determines 

how decision trees will be constructed (Ruggieri 2002). In the C4.5 algorithm, the data 

points at each interior node are split based on whichever attribute will result in the 

maximum information gain ratio (Ruggieri 2002). Information gain (Kullback and 

Leibler 1951) is a measure of the difference in entropy between two probability 

distributions—the underlying probability distribution for the data set (which is assumed 

to be unknown in any data mining task) and another probability distribution which  
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estimates the underlying distribution. By maximizing the information gain ratio at each 

interior node, the C4.5 classification algorithm tries to insure that the children nodes are 

as dissimilar from each other as possible (Ruggieri 2002). 

 While efficient at accurately classifying unlabeled data points, the traditional C4.5 

algorithm’s approach to constructing decision trees from the training data set is 

inefficient at finding thresholds for continuous attributes (Ruggieri 2002). Interior nodes 

in a decision tree evaluate continuous attributes using predetermined thresholds (Ruggieri 

2002). The traditional C4.5 algorithm is inefficient at constructing decision trees for such 

data sets because it uses a linear search to find the thresholds (Ruggieri 2002). The EC4.5 

algorithm is more efficient at constructing decision trees for these types of data sets 

because it uses a binary search to find the thresholds (Ruggieri 2002). When comparative 

tests were run between the EC4.5 algorithm and the traditional C4.5 algorithm, the EC4.5 

algorithm constructed decision trees in less time than the traditional C4.5 algorithm in 

most cases (Ruggieri 2002). Thus, the EC4.5 algorithm may be a better choice for 

classifying nonmetric data sets with continuous attributes (Ruggieri 2002). 

 In (Ivanciuc 2007), Support Vector Machine (SVM) algorithms are discussed. 

SVM algorithms are supervised learning algorithms which classify data points using a 

binary classification scheme (Ivanciuc 2007). First, the SVM algorithm constructs a 

classifier for the labeled training data set (Ivanciuc 2007). Each data point is assigned 

coordinates in a coordinate system (Ivanciuc 2007). The classifier is then constructed by 

finding the two hyperplanes that demarcate the boundaries between the two classes 

(Ivanciuc 2007). The data points which define those two hyperplanes are called the 

support vectors (Ivanciuc 2007). The SVM algorithm uses the constructed classifier to 
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classify similar, unlabeled data sets (Ivanciuc 2007). It is also possible to design an SVM 

algorithm for classifying data points which cannot be bounded by two hyperplanes 

(Ivanciuc 2007). In such an algorithm, a nonlinear function maps the coordinates 

assigned to the data points into one of the two bounded regions (Ivanciuc 2007). 

 In (Cortez, et al. 2009), the results of data mining a massive data set consisting of 

objective (i.e. physical and chemical) and subjective (e.g. taste) evaluations of various 

Portuguese wines are discussed. The same data set was mined by three different 

algorithms—a linear regression algorithm, a neural network algorithm, and an SVM 

algorithm (Cortez, et al. 2009). Each of the three algorithms was used to discover 

correlations between the objective properties of the wine (which can be accurately 

measured) and the subjective properties of the wine (which can only be determined by 

wine connoisseurs) (Cortez, et al. 2009). When the results from the three algorithms were 

compared, the SVM algorithm was found to be more accurate than the other two 

algorithms (Cortez, et al. 2009). Furthermore, while an SVM algorithm is guaranteed to 

eventually converge to the globally optimal solution, a neural network algorithm could 

converge to a solution that is only locally optimal (Cortez, et al. 2009). 

 In (Weinberger and Saul 2009), an improvement to the accuracy of the K-nearest 

neighbor algorithm for classification is discussed. The traditional K-nearest neighbor 

algorithm is improved in (Weinberger and Saul 2009) by using a different distance 

metric—a Mahalanobis distance metric. A K-nearest neighbor algorithm classifies 

unlabeled data points using a majority vote from the data point’s K nearest neighbors in 

the test data set (Weinberger and Saul 2009). As an example, consider a test data set 

comprised of two classes of labeled data points, A and B. A K-nearest neighbor algorithm 
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would classify an unlabeled data point P (Weinberger and Saul 2009): 1) by finding the K 

data points from the test data set which were closest to P (according to some 

predetermined distance metric) and 2) by classifying P according to whichever of the two 

classes was found more frequently among the K data points. Obviously, an odd number 

should be used for K to avoid ties.  

 Like most data mining algorithms, the traditional K-nearest neighbor algorithm 

uses a Euclidean distance metric (Weinberger and Saul 2009). This typically involves 

mapping data points into a Euclidean space using a fixed number of features from the 

data points, i.e. the feature set (Weinberger and Saul 2009). Distance metrics are used in 

data mining algorithms to measure the similarity between any two data points 

(Weinberger and Saul 2009). However, for some data sets, a Euclidean distance metric 

may not be a sufficiently accurate measure of the similarity between two data points 

(Weinberger and Saul 2009). A common approach for such data sets is to use a distance 

metric learning algorithm to construct a better distance metric from the training data set 

(Weinberger and Saul 2009).   

 The distance metric learning algorithm in (Weinberger and Saul 2009) constructs 

a Mahalanobis distance metric from the training data set. A Mahalanobis distance metric 

minimizes distances between neighbors belonging to the same class and maximizes 

distances between neighbors belonging to different classes (Weinberger and Saul 2009). 

When compared with K-nearest neighbor algorithms which used other distance metrics, 

the Mahalanobis distance metric used in (Weinberger and Saul 2009) for their K-nearest  
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neighbor algorithms had better classification accuracy. However, Mahalanobis distance 

metrics have unacceptable run times when applied to data sets with large numbers of 

dimensions (Wu et al. 2010). 

Unsupervised Learning Algorithms 

 Unsupervised learning is an appropriate technique when the classes for the data 

are not explicitly known prior to data mining, i.e. there is no labeled training data set 

(Duda, Hart, and Stork 2001). In unsupervised learning algorithms, the task is to classify 

the data into a predetermined number of classes based on some similarity metric, e.g. 

Euclidean distance (Duda, Hart, and Stork 2001). Applications of unsupervised learning 

techniques to data mining include clustering with self-organizing maps (Zhang, et al. 

2009), the Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) 

algorithm (Zhang, Ramakrishnan, and Levy 1996), wavelet-based clustering 

(Sheikholeslami, Chatterjee, and Zhang 2000), medical research (Cho, et al. 2010; 

Hybels, et al. 2009; van Rooden, et al. 2010; Jiang, Tang, and Zhang 2004; Chaussabel, 

et al. 2008), and atmospheric science research (Leckebusch, et al. 2008; Camargo, et al. 

2007a; Camargo, et al. 2007b). 

 The first formal description of KMA is in (MacQueen 1967). KMA was designed 

to efficiently group data points into K clusters based on some similarity measure 

(MacQueen 1967). KMA tries to minimize the Total Within-Cluster Variation (TWCV) 

for those K clusters (MacQueen 1967). However, KMA often produces spurious results 

due to (Velmurugan and Santhanam 2010): a) its extreme sensitivity to initial conditions 

(i.e. the initial centroids selected for the K clusters), b) its sensitivity to outliers (e.g. a 

data point in a cluster whose score is much higher than the other data points in the cluster 
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will distort the centroid for the cluster), and c) its tendency to find solutions that are only 

locally optimal. Data mining algorithms have inductive biases which result in different 

types of algorithms favoring different types of solutions (Freitas 2002). KMA, in 

particular, has an inductive bias towards spherical-shaped clusters (Wagstaff, et al. 2001). 

 KMA is a non-hierarchical clustering algorithm which partitions its input data set 

into K clusters, where K is a predetermined constant. Since KMA cannot determine the 

optimal value for K itself, the optimal value of K for KMA must be estimated using some 

other technique. Conversely, hierarchical clustering algorithms produce cluster 

hierarchies, where the number of clusters is automatically determined by the algorithm 

itself. Applications of hierarchical clustering algorithms include agglomerative 

hierarchical clustering algorithms (Teh, Daumé, and Roy 2008; Chang, et al. 2010; Lai 

and Huang 2011) and divisive hierarchical clustering algorithms (Sorzano, et al. 2010; 

Kim and Billard 2011). 

 GKA is discussed in (Krishna and Murty 1999). By hybridizing a genetic 

algorithm with KMA, GKA is guaranteed to eventually converge to the globally optimal 

solution (Rudolph 1994). GKA does not directly address the cluster initialization problem 

(Krishna and Murty 1999). However, its use of a population of many candidate solutions 

(instead of the single candidate solution in KMA) results in reduced sensitivity to initial 

conditions. 

 In (Velmurugan and Santhanam 2010), KMA and the K-medoids algorithm are 

compared. The K-medoids algorithm, originally described in (Kaufman and Rousseeuw 

1990), is a variation on KMA which addresses KMA’s sensitivity to outliers 

(Velmurugan and Santhanam 2010). The K-medoids algorithm uses medoids, instead of 
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means, for the centroids for clusters (Velmurugan and Santhanam 2010). A medoid for a 

cluster is the data point which is the most similar to the other data points in the cluster 

according to the distance metric (Struyf, Hubert, and Rousseeuw 1997). Thus, unlike the 

mean, the medoid is always an actual data point in the cluster. The K-medoids algorithm 

is thus less sensitive to outliers (Velmurugan and Santhanam 2010). A hybrid algorithm 

which combines a genetic algorithm with the K-medoids algorithm is discussed in (Sheng 

and Liu 2006). 

 In (Pelleg and Moore 2000), the X-means algorithm is discussed. The X-means 

algorithm is an extension of KMA which automatically improves suboptimal choices for 

the number of clusters (Pelleg and Moore 2000). After each iteration of KMA, the 

Bayesian Information Criterion (BIC) is evaluated for each cluster to determine whether 

the cluster should be split into two subclusters in order to more accurately represent the 

naturally occurring clusters in the data (Pelleg and Moore 2000). Instead of requiring a 

single value for K to be selected beforehand, like KMA, the X-means algorithm only 

requires a range of possible values for K (Pelleg and Moore 2000). The BIC is evaluated 

for each of the possible values for K, and only the value for K which has the highest BIC 

is used for the final clusters (Pelleg and Moore 2000). 

 In (Chaturvedi, Green, and Carroll 2001), the K-modes algorithm is discussed. 

According to the theory of scale types in (Stevens 1946), there are only four scales (i.e. 

classes) of empirical measurements: nominal scale, ordinal scale, interval scale, and ratio 

scale. Whereas KMA was designed for clustering interval scale data and the K-medians 

algorithm for ordinal scale data, the K-modes algorithm is an adaptation of KMA for 

nominal scale data (Chaturvedi, Green, and Carroll 2001). Since KMA optimizes the sum 
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of squared errors for the data points, KMA is not applicable to nominal scale data (i.e. 

categorical data) (Chaturvedi, Green, and Carroll 2001). However, the K-modes 

algorithm optimizes the L0 norm for data points instead, thus making it suitable for 

nominal scale data (Chaturvedi, Green, and Carroll 2001). To validate the clusters 

produced by the K-modes algorithm, (Chaturvedi, Green, and Carroll 2001) tested the K-

modes algorithm on an artificial data set. The results indicate the validity of clusters 

produced by the K-modes algorithm is comparable to that of clusters produced by an 

equivalent algorithm (Chaturvedi, Green, and Carroll 2001). However, the mean run-time 

for the K-modes algorithm was significantly faster than the mean run-time for the other 

algorithm (Chaturvedi, Green, and Carroll 2001). The K-modes algorithm (like KMA) is 

susceptible to finding solutions that are only locally optimal (Chaturvedi, Green, and 

Carroll 2001). Also, unlike some algorithms, there is no obvious means of finding the 

optimal number of clusters to use for the K-modes algorithm (Chaturvedi, Green, and 

Carroll 2001). 

 In (Roy and Sharma 2010), the Genetic K-Modes (GKMODE) hybrid algorithm is 

discussed. The GKMODE hybrid algorithm combines a genetic algorithm with the K-

modes algorithm discussed in (Chaturvedi, Green, and Carroll 2001). The GKMODE 

hybrid algorithm in (Roy and Sharma 2010) is intended to combine the global 

optimization capabilities of genetic algorithms (Rudolph 1994) with the run-time 

efficiency of the K-modes algorithm, much like GKA does with the K-means algorithm 

(Krishna and Murty 1999). In order to validate their results, (Roy and Sharma 2010) ran 

the GKMODE hybrid algorithm on publicly available data sets containing a mixture of 

numeric and categorical data. Then, the clusters produced by the GKMODE hybrid 
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algorithm were compared with the correct classes for those publicly available data sets 

(Roy and Sharma 2010). Since there was a significant amount of overlap between the two 

result sets, the clusters produced by the GKMODE hybrid algorithm were considered to 

be valid (Roy and Sharma 2010). 

 In (Lu, et al. 2004a), the Fast Genetic K-Means Algorithm (FGKA) is discussed. 

FGKA tries to improve the run-time efficiency of GKA with various techniques (Lu, et 

al. 2004a). For example, when invalid candidate solutions are generated, they are given 

the lowest possible fitness values (Lu, et al. 2004a). Thus, invalid candidate solutions will 

not be selected for reproduction, and will be eliminated from succeeding generations (Lu, 

et al. 2004a). In contrast, GKA explicitly scans for invalid candidate solutions, which 

increases its overhead (Lu, et al. 2004). 

 In (Lu, et al. 2004b), the Incremental Genetic K-Means Algorithm (IGKA) and 

Hybrid Genetic K-Means Algorithm (HGKA) are discussed. IGKA improves the run-

time efficiency of FGKA (Lu, et al. 2004a) by incrementally updating clusters during 

each KMA iteration instead of reassigning all the data points with each iteration of KMA. 

However, FGKA outperforms IGKA for small numbers of iterations (Lu, et al. 2004b). 

Also, IGKA is more efficient than FGKA only when small mutation probabilities are 

used (Lu, et al. 2004b). HGKA uses a combination of both FGKA and IGKA to further 

increase run-time efficiency (Lu, et al. 2004b). HGKA starts by running FGKA on the 

data set, and then switches to running IGKA after the number of iterations exceeds some 

predetermined threshold (Lu, et al. 2004b). 

 In (Al-Shboul and Myaend 2009), the Genetic Algorithm Initialized K-Means 

(GAIK) hybrid algorithm is discussed. The GAIK algorithm is a hybrid algorithm which 
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addresses the cluster initialization problem of KMA (Al-Shboul and Myaend 2009). The 

GAIK hybrid algorithm uses a genetic algorithm to find initial centroids that are close to 

global extrema (Al-Shboul and Myaend 2009). Then, KMA is run with these optimized 

initial centroids (Al-Shboul and Myaend 2009). This reduces the extreme sensitivity of 

KMA to initial conditions (Al-Shboul and Myaend 2009). However, the hybridization of 

KMA with a genetic algorithm makes it more CPU-intensive (Al-Shboul and Myaend 

2009). Also, the GAIK hybrid algorithm only uses a genetic algorithm for finding 

optimal initial centroids. The GAIK hybrid algorithm does not combine a genetic 

algorithm with KMA like GKA does (Krishna and Murty 1999; Al-Shboul and Myaend 

2009). Thus, it is not guaranteed to converge to the globally optimal solution (Rudolph 

1994). 

 In (Chander, Kumar, and Kumar 2011), the Partition-Based Genetic Algorithm 

Initialized K-Means (PGAIK) hybrid algorithm is discussed. Like the GAIK hybrid 

algorithm (Al-Shboul and Myaend 2009), the PGAIK algorithm is a hybrid algorithm 

which addresses the cluster initialization problem of KMA. The PGAIK hybrid algorithm 

uses a genetic algorithm to find optimal initial centroids, and then runs KMA using those 

optimized initial centroids (Chander, Kumar, and Kumar 2011). The PGAIK hybrid 

algorithm partitions the data set into K subsets (Chander, Kumar, and Kumar 2011). It 

then selects one initial centroid from each subset (Chander, Kumar, and Kumar 2011). 

This avoids the case where all the initial centroids are very close to each other, which 

produces a suboptimal distribution of data points among the clusters (Chander, Kumar, 

and Kumar 2011). The PGAIK hybrid algorithm was also shown in (Chander, Kumar, 

and Kumar 2011) to produce more compact clusters than the GAIK hybrid algorithm. 
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However, like the GAIK hybrid algorithm, the PGAIK hybrid algorithm in (Chander, 

Kumar, and Kumar 2011) is more CPU-intensive than KMA. Furthermore, since the 

PGAIK hybrid algorithm in (Chander, Kumar, and Kumar 2011) does not retain the most 

optimal candidate solution it discovers during its execution, it is not guaranteed to 

converge to the globally optimal solution (Rudolph 1994). A way to measure cluster 

validity, which in this case is considered to be directly related to cluster compactness, is 

also proposed in (Chander, Kumar, and Kumar 2011). Cluster compactness can be 

measured using a within-cluster scatter matrix (Chander, Kumar, and Kumar 2011). 

 In (Manning and Schütze 1999), the Expectation-Maximization (EM) algorithm 

(Dempster, Laird, and Rubin 1977; Moore 1999; Fraley and Raftery 2002; Plant and 

Böhm 2010) is discussed. The EM algorithm is similar to KMA (Manning and Schütze 

1999; Plant and Böhm 2010), except the EM algorithm produces fuzzy clusters instead of 

crisp clusters. The EM algorithm assigns each data point an estimated probability of 

membership in each of the K clusters (Manning and Schütze 1999). Then, the EM 

algorithm iteratively improves these membership probability estimates until a locally or 

globally optimal solution is reached (Manning and Schütze 1999). 

 In (Kumar, Satoor, and Buck 2009), an extension of the EM algorithm for parallel 

execution on NVIDIA’s Compute Unified Device Architecture (CUDA) is discussed. 

The run-time performance of the parallelized EM algorithm in (Kumar, Satoor, and Buck 

2009) improved when the number of available Graphics Processing Units (GPUs) 

increased. The probability model used for the parallelized EM algorithm in (Kumar, 

Satoor, and Buck 2009) is a Gaussian mixture model. Since it was designed specifically 

for the CUDA architecture, the parallelized EM algorithm in (Kumar, Satoor, and Buck 
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2009) has the best performance when used for CPU-intensive applications (as opposed to 

I/O-intensive applications). The data parallelism of the algorithm in (Kumar, Satoor, and 

Buck 2009) was maximized when the clusters were small enough to fit in main memory. 

The largest data set the parallelized EM algorithm in (Kumar, Satoor, and Buck 2009) 

was tested on contained 230,400 data points. Some notable disadvantages of the 

parallelized EM algorithm in (Kumar, Satoor, and Buck 2009) were frequent memory 

conflicts between its threads, and the sensitivity of its performance to the number of 

threads that were used. 

 In (Feng and Wang 2011), a hybrid genetic algorithm (PGKM) is discussed which 

combines a genetic algorithm with a variant of KMA. Instead of requiring that the 

number of clusters that KMA will use to be known a priori, the PGKM hybrid algorithm 

uses a genetic algorithm to try to automatically determine the optimal number of clusters 

to use (Feng and Wang 2011). The cluster initialization problem is also addressed by 

finding initial centroids that are far apart from each other (according to the distance 

metric) and within areas of high density in the data set (Feng and Wang 2011). The 

PGKM hybrid algorithm in (Feng and Wang 2011) may be useful for data mining 

massive data sets where the optimal number of clusters is expected to be large. In such 

cases, iteratively testing different numbers of clusters with KMA is infeasible (Feng and 

Wang 2011). However, the optimal number of clusters found by the PGKM hybrid 

algorithm could be inaccurate in such cases, e.g. the PGKM hybrid algorithm finds a 

number of clusters that is only locally optimal, not globally optimal (Feng and Wang 

2011). 
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 In (Handl, Knowles, and Kell 2005), techniques for cluster validation are 

discussed. The clusters produced by a clustering algorithm can be validated by 

demonstrating the clusters correspond to meaningful patterns in the data set, i.e. it is 

extremely unlikely the clusters were produced by chance (Handl, Knowles, and Kell 

2005). Cluster validation is necessary to insure the clusters produced by a clustering 

algorithm are semantically valid (Handl, Knowles, and Kell 2005). Clusters produced by 

different clustering algorithms may exhibit different qualities, such as compactness or 

connectedness (Handl, Knowles, and Kell 2005). Compact clusters are defined in (Handl, 

Knowles, and Kell 2005) as clusters produced with minimal TWCV. Connected clusters 

are defined in (Handl, Knowles, and Kell 2005) as clusters produced by grouping 

together data points in the same neighborhood as each other. KMA searches for the most 

compact clusters for a data set, while density-based algorithms such as the Density-Based 

Scan (DBSCAN) algorithm (Ester, et al. 1998) search for the most connected clusters 

(Handl, Knowles, and Kell 2005). 

 Clusters can be validated either internally or externally (Handl, Knowles, and Kell 

2005). Techniques for internal validation of clusters include stability validation 

techniques which measure the consistency of clusters produced by a clustering algorithm 

that is iteratively applied to similar data sets (Handl, Knowles, and Kell 2005). Unlike 

other techniques for internal validation of clusters, stability validation techniques are not 

biased towards any particular clustering algorithm (Handl, Knowles, and Kell 2005). 

However, like any technique for internal validation of clusters, stability validation 

techniques cannot distinguish between locally and globally optimal clusters produced by 

a clustering algorithm (Handl, Knowles, and Kell 2005). Techniques for external 
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validation of clusters include comparing them with a similar, labeled data set (Handl, 

Knowles, and Kell 2005). However, if no labeled data set exists for a particular type of 

data set, then some other internal or external validation technique must be used (Handl, 

Knowles, and Kell 2005). 

 In (Halkidi, Batistakis, and Vazirgiannis 2001), techniques for cluster validation 

are also discussed. An important technique for external validation of clusters is testing the 

statistical significance of the clusters produced by the clustering algorithm (Halkidi, 

Batistakis, and Vazirgiannis 2001). Clusters are tested for statistical significance by 

showing that the probability of the clustering algorithm producing the clusters by chance 

does not exceed some predetermined significance level, e.g. a significance level of 5% 

(Halkidi, Batistakis, and Vazirgiannis 2001).  

 Different criteria exist for assessing cluster optimality (Halkidi, Batistakis, and 

Vazirgiannis 2001). The criteria suggested in (Berry and Linoff 1996) are compactness 

and separation (Halkidi, Batistakis, and Vazirgiannis 2001). A clustering algorithm can 

ensure cluster compactness by minimizing the TWCV (Halkidi, Batistakis, and 

Vazirgiannis 2001). Cluster separation can be ensured by various techniques, including 

maximizing the distance between the centroids for the clusters (Halkidi, Batistakis, and 

Vazirgiannis 2001). Since the problem of simultaneously minimizing the TWCV (i.e. 

ensuring cluster compactness) and maximizing the distance between the centroids for the 

clusters (i.e. ensuring cluster separation) is likely to be intractable, clustering algorithms 

typically will only optimize one of these criteria. 
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 The normalized Hubert statistic (Γ) is useful for validating cluster compactness 

(Halkidi, Batistakis, and Vazirgiannis 2001): 
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centroids of the clusters containing data points i and j, μp and μq are the means of the P 
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respectively. A cluster can be considered to be compact if it has a large normalized 

Hubert statistic (Halkidi, Batistakis, and Vazirgiannis 2001). Furthermore, the optimal 

number of clusters to use for a specific data set can be determined by finding the number 

of clusters which maximizes the value for the normalized Hubert statistic (Halkidi, 

Batistakis, and Vazirgiannis 2001). 

Mining Vehicle Telemetry Data 

 Numerous algorithms have been developed for mining telemetry data from land, 

sea, and air vehicles. These data mining algorithms for telemetry data sets can be 

classified as either descriptive or predictive algorithms according to the models the 

algorithms use. Applications of descriptive algorithms include discovering patterns in 

animal migrations and automobile traffic (Li, et al. 2010) and coastal surveillance 

(Dahlbom and Niklasson 2007). Applications of predictive algorithms include improving 

commercial airline safety (McFadden and Towell 1999; Callantine 2001) and improving 

the safety of aircraft in the U.S. Navy (Haas, Walker, and Kough 2008). 

 In (Zhang, Zhang, and Hu 2007), a feature extraction algorithm for classifiers for 

operational data sets obtained from military aircraft is discussed. A feature extraction 
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algorithm searches for the smallest possible feature set necessary for data mining (Zhang, 

Zhang, and Hu 2007). The feature extraction algorithm in (Zhang, Zhang, and Hu 2007) 

extracts relevant features from the data in two phases: 1) performing an Artificial Neural 

Network Weight Analysis (ANNWA) of a multilayer neural network trained on the data 

set and 2) applying a genetic algorithm to find the optimal feature set for constructing a 

classifier for the data set. The weights in a multilayer neural network can be considered to 

be a ranking of the relevance of data points in the training data set (Zhang, Zhang, and 

Hu 2007). If a particular data point (i.e. feature) in the training data set results in a 

strongly weighted connection in the multilayer neural network, then that data point is 

likely to be highly relevant to the output signal from the multilayer neural network 

(Zhang, Zhang, and Hu 2007).  

 ANNWA was performed prior to running the genetic algorithm because the time 

complexity of ANNWA is considerably less than the time complexity of a genetic 

algorithm (Zhang, Zhang, and Hu 2007). Thus, by first reducing the possible feature set 

with ANNWA, the total number of features the genetic algorithm had to operate on was 

significantly reduced (Zhang, Zhang, and Hu 2007). Two data sets were used to test the 

feature extraction algorithm in (Zhang, Zhang, and Hu 2007). Both of the data sets used 

in (Zhang, Zhang, and Hu 2007) consisted of engine performance data for military 

aircraft (e.g. the oil pressure for the turbine engines). The results from testing the feature 

extraction algorithm in (Zhang, Zhang, and Hu 2007) suggest that smaller feature sets 

produce more accurate classifiers. 
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Descriptive Algorithms 

 Descriptive algorithms for mining vehicle telemetry data try to discover patterns 

in the data sets which can be used to describe vehicle movements. A three-step process 

for fuzzy clustering of trajectories is discussed in (Pelekis, et al. 2011). A trajectory is the 

chronologically-ordered sequence of the positions of a moving object, e.g. the complete 

flight path of an aircraft. A trajectory has a fixed starting position (at time zero) and 

ending position. A trajectory clustering algorithm measures the similarity between two 

trajectories based on the proximity of the objects to each other during similar time frames 

(Pelekis, et al. 2011). 

 Unlike other trajectory clustering algorithms, the three step process in (Pelekis, et 

al. 2011) corrects for uncertainty in the trajectory data. A trajectory database stores the 

discrete positions of an object at varying times during its trajectory (Pelekis, et al. 2011). 

Various types of uncertainty may be present in a trajectory database, for instance, the 

small amount of positional uncertainty intrinsic to any GPS-based data set (Pelekis, et al. 

2011). The first algorithm in (Pelekis, et al. 2011) preprocesses the trajectory database 

into a more suitable format for trajectory clustering. The preprocessing algorithm in 

(Pelekis, et al. 2011) segments the discrete positions for the trajectory using time 

intervals with some fixed duration D. After the preprocessing, each interval of the 

trajectory with duration D is represented by a single data point (Pelekis, et al. 2011). 

Thus, each original trajectory is preprocessed into an approximate form for processing by 

the next two algorithms (Pelekis, et al. 2011). For example, an object may have been 

contained in some geographic region R for 10 minutes during its trajectory. 
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 The second algorithm discussed in (Pelekis, et al. 2011), called the CenTra 

algorithm, determines the centroid trajectories for each of the clusters. The third 

algorithm discussed in (Pelekis, et al. 2011), called the Time-Relaxed CenTra (TX-

CenTra) algorithm, performs fuzzy clustering of the preprocessed data points based on 

their distances from the centroid trajectories. The TX-CenTra algorithm merges 

reoccurring chronological sequences of successive data points in the trajectories (Pelekis, 

et al. 2011). Thus, the results from the TX-CenTra algorithm are simplified and easier to 

interpret (Pelekis, et al. 2011). Although the three step process of trajectory clustering in 

(Pelekis, et al. 2011) had acceptable run-time performance during testing, it also 

exhibited high sensitivity to initial conditions. 

Predictive Algorithms 

 Predictive algorithms for mining vehicle telemetry data try to discover 

probabilistic models from the data sets which can be used to predict vehicle movements. 

In (McCall, et al. 2007), an algorithm for predicting the behavior of automobile drivers is 

discussed. The predictive algorithm in (McCall, et al. 2007) uses computer vision 

algorithms to: a) detect the automobile’s position within the traffic lane and b) detect 

changes in the driver’s lateral head motion. Furthermore, the predictive algorithm in 

(McCall, et al. 2007) uses data from the automobile’s internal sensors to determine its 

velocity. To predict the automobile’s future path, a Kalman filter (Kalman 1960) is 

applied to its reported velocity and its estimated position within the traffic lane (McCall, 

et al. 2007). Sparse Bayesian learning (Tipping 2001) is used to predict whether the 

driver intends to initiate a lane change based on changes in the driver’s head motion and 

the automobile’s estimated position within the traffic lane (McCall, et al. 2007). The 
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reliability of the predictive algorithm in (McCall, et al. 2007) was acceptable when tested 

in scenarios which were similar to the scenarios present in the training data set. However, 

the predictive algorithm in (McCall, et al. 2007) was less reliable in scenarios which 

differed significantly from those present in the training data set. 

 In (Taniar and Goh 2007), several data mining algorithms are discussed which 

could be used to discover movement patterns of GPS-enabled mobile device users (e.g. 

smart phone users). First, the GPS positions of the mobile device users are sampled at 

some constant rate and stored in a database (Taniar and Goh 2007). Then, the database is 

normalized by discarding irrelevant data, e.g. errors in the positions reported by the GPS 

receivers (Taniar and Goh 2007). If the mobile device user stayed near a particular GPS 

position for some predetermined duration, then that GPS position is considered to be 

significant (Taniar and Goh 2007). For example, the mobile device user may have 

stopped at a restaurant for an hour. A movement pattern of a mobile device user is 

defined in (Taniar and Goh 2007) as a path which starts and ends at significant GPS 

positions. These significant GPS positions in a mobile device user’s path are correlated to 

nearby Locations Of Interest (LOI), e.g. a department store, that were assumed to have 

been interesting to the mobile device user (Taniar and Goh 2007). 

 The support for a movement pattern is defined in (Taniar and Goh 2007) as the 

frequency at which the movement pattern occurs in the database. Furthermore, the 

confidence in the significance of the movement pattern is defined in (Taniar and Goh 

2007) as the relative frequency of the movement pattern in the database with respect to 

similar movement patterns (Taniar and Goh 2007). If the support and/or confidence for a 

movement pattern in the database do not exceed certain predetermined thresholds, the 
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movement pattern is not considered to be significant (Taniar and Goh 2007). Any 

movement patterns discovered in the database which do not meet the minimum criteria 

for significance (i.e. exceed the minimum thresholds for support and confidence) are 

excluded from the output of the data mining algorithms (Taniar and Goh 2007).  

 The data mining algorithms in (Taniar and Goh 2007) were tested on three 

artificial data sets constructed by hand with Microsoft Excel (Taniar and Goh 2007). The 

results from the tests indicate the time complexities of the data mining algorithms in 

(Taniar and Goh 2007) grow exponentially as the size of the data sets (i.e. the number of 

data points) increases. Since the data mining algorithms in (Taniar and Goh 2007) were 

only tested with artificial data sets, their accuracy at discovering movement patterns in 

real data sets could not be verified. 

 In (Maedar, Morari, and Baumgartner 2011), an algorithm for predicting 

maneuvers of GA aircraft is discussed. The predictive algorithm discussed in (Maedar, 

Morari, and Baumgartner 2011) was implemented as part of the FLARM collision 

avoidance system. FLARM (Flarm Technology 2010) is a cooperative collision 

avoidance system (i.e. its collision avoidance algorithm is dependent on communication 

with FLARM devices in other GA aircraft) designed for use by GA aircraft (Maedar, 

Morari, and Baumgartner 2011). Using its GPS receiver to determine the GA aircraft’s 

position and velocity, the onboard FLARM device estimates its intended flight path 

(Maedar, Morari, and Baumgartner 2011). The onboard FLARM device then wirelessly 

transmits the estimated flight path for its GA aircraft to any nearby GA aircraft which  
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may also be equipped with FLARM devices (Maedar, Morari, and Baumgartner 2011). If 

a potential conflict is detected, the onboard FLARM device warns the pilot of the 

possibility of a midair collision (Maedar, Morari, and Baumgartner 2011). 

 The predictive algorithm in (Maedar, Morari, and Baumgartner 2011) has three 

steps: 1) estimating the current state of the GA aircraft, 2) attempting to classify the 

current maneuver being performed by the pilot (e.g. turning or straight and level flight), 

and 3) predicting the future flight path of the GA aircraft. During the first step, an 

Interacting Multiple Model (IMM) algorithm based on an Extended Kalman Filter (EKF) 

is used to estimate the current state of the GA aircraft using historical GPS data and an 

estimation of current wind conditions (Maedar, Morari, and Baumgartner 2011). During 

the second step, the predictive algorithm in (Maedar, Morari, and Baumgartner 2011) 

attempts to classify the current maneuver using a static classification scheme based on 

observation of common maneuvers performed by GA pilots. Finally, during the third 

step, the predictive algorithm in (Maedar, Morari, and Baumgartner 2011) estimates the 

flight path of the GA aircraft during the next 20 seconds based on the estimate of its 

current state (from the first step) and the estimate of the current maneuver the pilot is 

performing (from the second step). 

 Although the predictive algorithm in (Maedar, Morari, and Baumgartner 2011) is 

based on traditional techniques for predictive modeling of nonlinear systems, such as 

EKF, the algorithm uses a static classification scheme based on observation of common 

maneuvers performed by pilots of GA aircraft. Thus, their classification scheme may not 

include unusual maneuvers that pilots of GA aircraft may occasionally perform, which 

could be discovered by mining massive aircraft telemetry data sets. Furthermore, the 
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static classification scheme used by the algorithm in (Maedar, Morari, and Baumgartner 

2011) cannot detect ascending and descending maneuvers, e.g. a descending right turn. 

The curvature of the Earth is also not considered by the predictive algorithm in (Maedar, 

Morari, and Baumgartner 2011) when transforming the geographic coordinates provided 

by GPS into a Cartesian coordinate system. However, the predictive algorithm in 

(Maedar, Morari, and Baumgartner 2011) tries to estimate the current wind conditions in 

the GA aircraft’s environment, which can significantly impact maneuvers by GA aircraft 

at lower speeds, e.g. 80 knots. 

 To test their predictive algorithm, (Maedar, Morari, and Baumgartner 2011) used 

a synthetic data set. The results in (Maedar, Morari, and Baumgartner 2011) indicate: a) 

Their algorithm accurately predicted the turn rate for pilot maneuvers, with a maximum 

estimation error of about 7°; and b) Their algorithm accurately predicted the speed of the 

GA aircraft when estimates of the current wind conditions were included. Thus, the 

predictive algorithm in (Maedar, Morari, and Baumgartner 2011) can accurately predict 

some of the more common maneuvers performed by pilots of GA aircraft in level flight. 
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CHAPTER III 

METHODOLOGY 

 The Aircraft Data Miner (ADM) was developed to data mine ADS-B, and later 

FDM, data. ADM was implemented with the C++ language in the Linux operating 

system environment. ADM was used to mine a large FDM data set to discover 

probabilistic models of pilot behavior as a function of the aircraft’s performance (e.g. a 

Cessna 172), altitude, and proximity to the nearest uncontrolled airport. The FDM data 

were obtained exclusively from the University of North Dakota’s training fleet. Thus, the 

maneuvers performed by those student pilots are only likely to be used in a training 

environment. The behavior of the pilot of a GA aircraft flying under VFR in Class E 

airspace may have also been influenced by hazardous conditions in the operational 

environment, such as a mechanical failure in the aircraft. However, such hazardous 

conditions in the operational environmental only occur rarely, and their consideration is 

beyond the scope of this research. 

 FDM data obtained from the Garmin G1000 are also typically stored in Comma-

Separated Value (CSV) files for later analysis. The data sets mined with ADM consist of 

a large number of flat files (in the CSV format) containing the raw data from FDM data 

archived by Garmin G1000 units from many different aircraft over an extended period of 

time. Those FDM data are stored in the flat files in the same chronological order that the 

data were logged by the Garmin G1000. Many of the data contained in FDM data sets are 

not relevant to this analysis. Also, the data streams logged by Garmin G1000 units are 
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time-ordered sequences of discrete 3D GPS positions occupied by FDM-capable aircraft, 

whereas the continuous flight paths of the aircraft (rather than the discrete positions along 

those flight paths) are more important to the analysis of pilot maneuvers. Thus, it is 

necessary to extensively preprocess the raw FDM data into a more useful format prior to 

data mining. 

Data Preprocessing 

 ADM performs all of its data preprocessing via SQL commands that operate on 

tables in a relational database, as recommended in (Segal 2010). Since the data 

preprocessing algorithms are I/O-intensive, proper caching of tables in the data 

preprocessing database is crucial to the performance of the data preprocessing algorithms. 

ADM performs five phases of data preprocessing on the FDM data for each performance 

class in the data set (see figure 1): 1) extracting the FDM data from the flat files and 

importing the relevant data into a relational database, 2) normalizing the data in the 

database, 3) constructing normalized flight paths from the discrete 3D GPS positions in 

the database, 4) discovering digital pheromone trails by finding subpaths which are 

common to multiple normalized flight paths, and 5) dynamically segmenting the 

normalized flight paths into subpaths using those digital pheromone trails. These five 

phases of data preprocessing must be completed prior to data mining. 
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Figure 1.  The flowchart for the five phases of data preprocessing. 

 

 Three of the phases of data preprocessing have their own data models—the 

normalized flight path construction phase, the digital pheromone trail discovery phase, 

and the subpath classification phase. The aircraft telemetry data import phase and the 

normalization phase are the only phases which share the same data model. See figure 2 

for the data structure diagram (DeMarco 1979) of the data preprocessing phases.         
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The output data tables from a given data preprocessing phase are the input data tables for 

the following phase. All tables used during the data preprocessing phases are stored in the 

same relational database. During the aircraft telemetry data import phase, FDM data are 

extracted from flat files and imported into tables in the relational database. This is the 

only phase of data preprocessing which operates on flat files. The remaining phases 

operate exclusively on tables in the relational database. Each table used during data 

preprocessing contains data for only one performance class. Thus, as FDM data are 

extracted from the flat files, each datum is imported into the corresponding table for its 

performance class. A special table in the data preprocessing database, the aircraft data 

index, specifies which performance classes have been imported into the database, as well 

as other database metadata. This database schema facilitates the later data mining phases, 

where the subpaths for each performance class are data mined separately.  

 
Figure 2.  The data structure diagram for the data preprocessing database. 
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 The normalized flight path construction phase constructs normalized flight paths 

from the discrete 3D aircraft positions stored in the tables from the previous phases. 

These normalized flight paths are jointly specified by two types of data models—the path 

metadata model and the path vector data model. The path metadata model specifies 

general information about the normalized flight paths, such as the unique identifiers for 

the paths and the lengths of the paths. The path vector data model specifies the ordered 

3D vectors of which the paths are composed. Each path vector has an associated 

identifier and sequence number which indicates which path it pertains to and its position 

within that path, respectively. The starting latitude, longitude, and altitude for the path 

vectors, as well as their yaw (i.e. heading) and pitch (i.e. ascent) angles, are also specified 

by the path vector data model. 

 The digital pheromone trail discovery phase discovers digital pheromone trails 

(i.e. subpaths which are common to multiple normalized flight paths) using the path 

metadata and path vector tables generated during the previous phase. The discovered 

digital pheromone trails are jointly specified by two types of data models—the digital 

pheromone trail metadata model and the digital pheromone trail vector model. The digital 

pheromone trail metadata model specifies information about the digital pheromone trails 

themselves, such as the unique identifiers and the strengths of the digital pheromone 

trails. The digital pheromone trail vector data model specifies the ordered 3D vectors of 

which the digital pheromone trails are composed. Each digital pheromone trail vector has 

an associated identifier and sequence number which indicates which digital pheromone 

trail it pertains to and its position within that digital pheromone trail, respectively. Unlike 

the path vector data model, however, the digital pheromone trail vector model only 
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specifies the yaw and pitch angles of the digital pheromone trail vectors. It does not 

specify the starting latitude, longitude, or altitude. Thus, every digital pheromone trail 

shares the same start point in the digital pheromone trail vector data model. The start 

point for each successive vector in the digital pheromone trail is the end point for the 

previous vector. 

 The subpath classification phase segments the normalized flight paths (specified 

by the path metadata and path vector tables generated during the third phase) into 

subpaths using the digital pheromone trail metadata and digital pheromone trail vector 

tables generated during the previous phase. The subpaths are specified by a single data 

model. The subpath data model specifies information about each subpath, such as the 

normalized flight path it pertains to, its sequence number, and—if it has a matching 

digital pheromone trail in the relational database—the unique identifier for that digital 

pheromone trail, i.e. the digital pheromone trail which is the best classifier for the 

subpath. 

Constructing Normalized Flight Paths 

 Every data preprocessing phase except the subpath classification phase operates 

incrementally. The input tables to two of these phases—the normalization and normalized 

flight path construction phase—have special fields which indicate whether a specific row 

has been processed by a specific phase. Thus, those two phases only need to process 

those rows which have not already been processed, instead of completely processing both 

the rows for the new and the old data whenever any new data are imported into the 

relational database. 
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 The first phase of data preprocessing (see figure 3) involves reading the raw FDM 

data obtained from the Garmin G1000 units, discarding irrelevant data, insuring each 

aircraft has a unique numeric identifier so it is easily tracked, and importing the relevant 

data from each aircraft into the relational database. Data for any flight segments outside 

of Class E airspace are discarded. FDM data do not specify whether aircraft are on the 

ground or airborne. Thus, it is not possible to insure that all FDM data from aircraft on 

the ground are completely excluded from the automated analysis. ADM retains the 

following fields from FDM data: a) the aircraft’s latitude, longitude, and altitude, b) the 

aircraft’s heading, c) the aircraft’s horizontal velocity, d) the aircraft’s ascent angle, and 

e) the time of reception for the datum. The aircraft’s tail number and performance class 

are specified manually when the FDM data are archived. 

 
Figure 3.  The algorithm for importing aircraft telemetry data into the data 

preprocessing database. 

 Since integer-based algorithms are typically faster than equivalent string-based 

algorithms, a unique identifier is generated for each aircraft in the data set which is based 

on the aircraft’s tail number. First, each digit in the aircraft’s tail number is replaced with 

its two digit representation, so a “0” is replaced with “00”, a “1” with “01”, and so forth. 

Then, each letter in the tail number is also replaced with a two digit representation—“A”  

 

 

Input: Set D of aircraft telemetry data files. 
Output: Set R of rows in the data preprocessing database containing aircraft telemetry data. 

 

for each file F in D do 

for each data point P in F do 

if not has_missing_features(P) then 

if 18000. altitudeP then 

)_.(__ classeperformancPfortablelookupS    

Insert row for P into table S.  

Mark any rows for normalized paths for corresponding performance class as incomplete. 
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is replaced with “10”, “B” is replaced with “11”, and so forth. Finally, a “1” is inserted at 

the beginning of the digit string to create the unique identifier. For example, using this 

algorithm the tail number N1657U would be mapped to the unique identifier 

1230106050730. 

 The second phase (see figure 4) involves normalizing the data in the database. 

Redundant data, e.g. an aircraft maintaining the same GPS position for several seconds, 

and data for all flight segments outside of the U.S. are discarded. The specific volume of 

controlled airspace around controlled airports varies from airport to airport. However, the 

only publicly available data which specify these specific controlled airspace volumes 

around controlled airports is only available in the Portable Document Format (PDF), 

which is not amenable to the automatic processing required by data mining algorithms. 

The maximum volume of controlled airspace around any airport in the NAS is 27,780 

meters horizontally and 3,000 meters vertically above MSL. This is the maximum 

possible volume for Class B airspace. ADM guarantees the data points used to 

reconstruct the normalized flight paths are not inside controlled airspace around any 

controlled airports by discarding any data points from aircraft within this maximum 

volume of controlled airspace around any controlled airport. 



 60 

 
Figure 4.  The algorithm for normalizing the aircraft telemetry data in the data 

preprocessing database. 

 The third phase (see figure 5) involves constructing vectors from the discrete 3D 

GPS positions for aircraft in the database. Consecutive data points with the same heading 

and ascent angles (i.e. the yaw and pitch angles, respectively) are merged to form the 

longest possible vectors. The magnitude of these vectors is measured in time, not 

distance, because while aircraft can fly at different speeds (and thus cover different 

distances in the same amount of time), it is reasonable to assume that the pilots of those 

aircraft require about the same amount of time to perform the same types of maneuvers. 

 There may have been other factors affecting the aircraft’s heading, ascent angle, 

and altitude than just the pilot’s control inputs, e.g. air turbulence. Also, the uncertainties 

in the aircraft’s horizontal and vertical position (inherent to GPS-based telemetry devices 

such as the Garmin G1000) introduce a measurable amount of error. To correct for these 

anomalies, ADM rounds up the aircraft’s heading and ascent angles to the nearest  

 

Input: Set R of unprocessed rows in the data preprocessing database containing aircraft telemetry data.  

Output: Set R′ of normalized rows in the data preprocessing database containing aircraft telemetry data. 
 

Delete rows in R for data points outside of the NAS.  

for each aircraft A in R  

N number of data points for A 

for 1i to N  

if is_possibly_near_controlled_airport(A[i]) then 

Delete row for A[i]. 

else 

if 1i  and A[i].id  A[i-1].id then  

Delete all rows for A in R. 

goto end_of_outer_loop 
if A[i].ascent_angle  null then  

A[i].ascent_angle
1tan (A[i].horizontal_velocity, A[i].vertical_velocity)  

if 1i and A[i-1].heading   null then  

if A[i].latitude   A[i-1].latitude or A[i].longitude   A[i-1].longitude then  

A[i-1].heading
1tan  (A[i].longitude, A[i].latitude)  

else  
Delete row for A[i-1].  

if 1i and A[i-1].heading   null then  

Delete row for A[i-1]. 

label end_of_outer_loop 
Mark rows in R′ as completely processed by the normalization phase.  
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multiple of 2°, and the aircraft’s altitude to the nearest multiple of 2 meters. Thus, the 

values for the heading, ascent angle, and altitude of the aircraft are considered to be 

accurate indicators of the pilot’s intent to within ±1° for headings and ascent angles, and 

to within ±1 meter for altitudes. 

 
Figure 5.  The algorithm for constructing normalized flight paths from the aircraft 

telemetry data in the data preprocessing database. 

 

Input: Set R′ of unprocessed rows in the data preprocessing database containing normalized aircraft telemetry data.  

Output: Set P of rows in the data preprocessing database containing normalized flight paths. 

 

for each aircraft A in R′  

N number of data points for A  

p  new path  

for 1i to N  

if 0)( plength then  

90_ headingnormalized   

 90 A[i].heading  

v  vector with heading  normalized_heading, ascent_angle  A[i].ascent_angle, magnitude  0  

else if A[i].timestamp A[i-1].timestamp   300 seconds then  

if A[i].heading  A[i-1].heading then  

90_ headingnormalized   

 90 A[i].heading  

else  

normalized_heading  A[i].heading    

if A[i].heading  A[i-1].heading and A[i].ascent_angle  A[i-1].ascent_angle then  

v.magnitude  v.magnitude  A[i].timestamp   A[i-1].timestamp  

else  
Insert v into p.  

v  vector with heading  normalized_heading, ascent_angle  A[i].ascent_angle, magnitude  0  

else  
Insert v into p.  

)_.(__ classeperformancAfortableslookupS    

Insert vectors for p into S.vector_table.  

Insert metadata for p into S.metadata_table.  

p   new path 

if A[i].timestamp   A[i-1].timestamp  300 seconds then  

if A[i].heading  A[i-1].heading then  

90_ headingnormalized   

 90 A[i].heading  

else  

normalized_heading  A[i].heading    

if A[i].heading   A[i-1].heading and A[i].ascent_angle  A[i-1].ascent_angle then  

v.magnitude   v.magnitude  A[i].timestamp   A[i-1].timestamp  

else  
Insert v into p.  

v  vector with heading  normalized_heading, ascent_angle  A[i].ascent_angle, magnitude  0  

else  
Insert v into p.  

)_.(__ classeperformancAfortableslookupS    

Insert rows for vectors in p into S.vector_table.  
Insert row for metadata of p into S.metadata_table.  

p  new path  

Age any digital pheromone trails in the database by an amount proportional to size(R′).  

Mark rows for digital pheromone trails for corresponding performance classes as incomplete.  
Mark rows in R′ as completely processed by the normalized flight path construction phase. 
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 Since an aircraft’s heading is represented as a compass direction in FDM data, it 

is necessary during this phase to normalize the aircraft headings obtained from the FDM 

data. The headings are normalized with respect to the heading currently considered the 

straight-flying direction for the aircraft. If the aircraft flew with the same heading H for 

two or more consecutive data points, then H would be considered its current straight-

flying direction. Thus, to normalize the straight-flying heading H to an angle of 90°, it is 

rotated by 90-H degrees. Likewise, all other aircraft headings are rotated by the same 

amount until the straight-flying direction changes. If the angles of ascent for an aircraft 

were unavailable (e.g. in ADS-B data), these values could be calculated from the 

aircraft’s horizontal and vertical velocities. 

 Also, if there is a time difference of more than 300 seconds between two 

consecutive data points for an aircraft, then these data points are considered to belong to 

separate normalized flight paths. Thus, the second data point will be used to start a new 

normalized flight path. Once all the normalized flight paths have been constructed from 

the discrete 3D positions of the aircraft, any existing digital pheromone trails in the 

relational database are aged by an amount S which is proportional to the size of the input 

data set for the phase. The digital pheromone trails in the relational database are aged by: 

1) subtracting S from the digital pheromone strength for each of the digital pheromone 

trails and 2) deleting any digital pheromone trails which, as a result, have a digital 

pheromone strength which is no longer greater than zero. 
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Discovering Digital Pheromone Trails 

 The fourth phase (see figure 6) involves the discovery of digital pheromone trails 

in the normalized flight paths for the aircraft using an ant colony algorithm. In order to 

dynamically discover classes of maneuvers frequently performed by pilots of GA aircraft, 

each normalized flight path is considered a separate digital pheromone trail deposited by 

the aircraft. If every normalized flight path is compared with every other normalized 

flight path, then subpaths can be discovered that are common to multiple paths. These 

common subpaths are the areas where digital pheromones from normalized flight paths 

are reinforcing each other (see figure 7). For example, if a subpath is common to two 

normalized flight paths, its corresponding digital pheromone trail (see figure 8) will have 

a strength of 2. 

 
Figure 6.  The algorithm for discovering digital pheromone trails from the 

normalized flights paths in the data preprocessing database. 

 Digital pheromone trails with greater strengths are thus more likely to represent 

actual maneuvers performed by pilots of GA aircraft. Furthermore, since two subpaths do 

Input: Set P of unprocessed rows in the data preprocessing database containing normalized flight paths. 
Output: Set T of rows in the data preprocessing database containing digital pheromone trails. 

 

N number of rows in P 

D  maximum diffusion distance 

t  new digital pheromone trail 

for 1p to 1N  

for each vector u


 in path p 

eu endpoint of u


 

for 1 pq to N 

for each vector v


 in path q 

ev endpoint of v


 

if distance(ue,ve)   D then 

if length(t)   0 then 

if t is not in database then 

Insert t into database. 

t new digital pheromone trail 

else 

Append u


to t.  

if length(t)   0 then 

if t is not in database then 

Insert t into database. 

t new digital pheromone trail 

Mark rows in P as completely processed by the digital pheromone trail discovery phase. 
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not have to be identical to be considered a match, only within some maximum diffusion 

distance D of each other, either of the subpaths could be selected as representative of the 

corresponding digital pheromone trail. In such cases, ADM arbitrarily selects the first 

subpath as the subpath which is representative of the digital pheromone trail. 

 
Figure 7.  Normalized flight paths (projected in 2D) which have one common 

subpath (when D = 1). 

 During digital pheromone trail discovery, the shapes of the digital pheromone 

trails are important—not the GPS positions of their endpoints. Thus, each digital 

pheromone trail is assigned the same starting point in the internal coordinate system. 

Also, normalized flight paths are represented internally as ordered sequences of unit 

vectors to facilitate comparisons during this phase.  

 

Figure 8.  The digital pheromone trail discovered from normalized flight paths A and 

B (when D = 1). Its digital pheromone strength is 2. 
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 Every normalized flight path for a given performance class is compared with 

every other normalized flight path for that performance class on a vector by vector basis. 

If two vectors are within some maximum diffusion distance D of each other, then they are 

considered a match. Since only the distances between unit vectors will be calculated, D 

must have a value less than 2. Any value for D greater than or equal to 2 will result in a 

case where every vector is within diffusion distance of every other vector. Also, any 

digital pheromone trails with lengths of less than 60 are discarded, because the RM 

subsystem is primarily concerned with the trajectories of GA aircraft over the next 

minute (i.e. 60 seconds). When a shorter minimum length of 5 was used for the digital 

pheromone trails, the discovered digital pheromone trails with the greatest relative 

subpath frequencies had insufficient lengths for accurately predicting trajectories of GA 

aircraft over the next minute. 

 The algorithm for digital pheromone trail discovery performs many distance 

calculations. To improve its run-time efficiency, a vector proximity map is constructed. A 

vector proximity map is a 2D Boolean array. It can determine if any two unit vectors are 

within some maximum diffusion distance D of each other in constant run-time. The 

angles (i.e. heading and ascent angles) for each of the vectors are encoded as integers. 

These encoded integers are then used as indexes into the vector proximity map. The 

element in the vector proximity map corresponding to those two vectors is 1 if the vectors 

are within diffusion distance of each other (i.e. the vectors match), or 0 otherwise. 

 The strength of a digital pheromone trail is a potential indicator of the frequency 

at which pilots performed this type of maneuver. In ant colony algorithms, the strengths 

of digital pheromone trails decrease over time through evaporation unless the digital 



 66 

pheromone trails are continually reinforced by new digital pheromones. However, the 

time elapsed according to the system clock is not a useful control variable for this 

problem, since FDM data are not necessarily imported into the relational database at a 

constant rate. Thus, a better control variable for this problem is the amount of new FDM 

data that are being imported into the relational database. The discovery of digital 

pheromone trails thus ultimately results in a set of frequently occurring subpaths in the 

FDM data for a specific performance class. 

Classifying Subpaths 

 The fifth and final phase of data preprocessing (see figure 9) involves segmenting 

the normalized flight paths into subpaths using the digital pheromone trails discovered 

during the previous phase. This is the only phase of data preprocessing which is 

nonincremental, because any insertions or deletions of digital pheromone trails that occur 

during the digital pheromone trail discovery phase necessitate the reclassification of all 

subpaths in the relational database. The subpaths identified during this phase are stored in 

the database for later retrieval during the data mining phases. Each normalized flight path 

P is segmented into subpaths in an iterative manner, starting with the first vector in the 

path. The current vector Vp from P is compared with the first vector Vt from every digital 

pheromone trail in the database whose length is less than or equal to the length of P. If 

the vectors Vp and Vt are within some maximum diffusion distance D of each other, then 

the digital pheromone trail is a potential match. If the vectors Vp and Vt are not within 

some maximum diffusion distance D of each other, then the digital pheromone trail is not 

a potential match.  
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Figure 9.  The algorithm for classifying subpaths using the digital pheromone trails 

in the data preprocessing database. 

 Next, each of the potentially matching digital pheromone trails is compared with 

every subpath in P of the same length which has the same starting vector. This determines 

if any subpath of P completely matches one of the digital pheromone trails. From the set 

of complete matches to subpaths in P, the digital pheromone trail with the greatest 

strength is used to classify the subpath. If there are multiple such digital pheromone trails, 

the longest digital pheromone trail from the set of strongest matches is used to classify 

the subpath. The matching digital pheromone trail, having some length Lt, will thus 

match some subpath from P of length Lt. The next subpath segmented from P will start 

immediately after the end of the previous subpath. If there are only a few normalized 

flight paths for a particular performance class, it is possible for a normalized flight path to 

have subpaths that are not common to any other normalized flight paths. Such subpaths 

are defined by exclusion and cannot be classified. 

 The set of digital pheromone trails discovered for a particular performance class 

thus form a dynamic set of classes of maneuvers a pilot is likely to perform when flying a 

GA aircraft with that performance class. Each digital pheromone trail is a potentially 

Input: Set P of unprocessed rows in the data preprocessing database containing normalized flight paths.  

Output: Set U of rows in the data preprocessing database containing subpaths. 
 

for each path p in P 

for 1i to length(p)  

m longest digital pheromone trail with greatest strength which matches subpath p[i..length(m)] 

if not is_inside_controlled_airspace(p[i]) then  

u  new subpath 

altitudestartingu _. p[i].altitude  

airportprivatetoproximitystartingu ____. p[i].proximity_to_uncontrolled_airport  

vectorsu. p[i..length(m)]  

if m  null then  

typemaneuveru _.  unknown  

else  

typemaneuveru _.  m.ID  

)_.(__ classeperformancpfortablelookupS    

Insert subpath u into table S.  

Mark any rows for data mining results for corresponding performance classes as incomplete.  
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unique type of maneuver that was intentionally performed by pilots. In some cases, there 

are may be two or more digital pheromone trails with different strengths that match the 

same subpath in a normalized flight path. In these cases the digital pheromone trail with 

the greatest strength (i.e. the one that occurs most frequently in the data) is always used. 

However, since the actual intentions of the pilot are unknown, it is possible (though 

unlikely) that the pilot actually performed a maneuver corresponding to a digital 

pheromone trail of lesser strength. 

Searching for Proximate Uncontrolled Airports 

 The aircraft’s altitude, proximity to the nearest controlled airport, and proximity 

to the nearest uncontrolled airport at the start of each subpath are calculated and/or stored 

in the relational database for later retrieval. The proximity to the nearest controlled or 

uncontrolled airport is the geodesic distance from the aircraft’s latitude/longitude position 

to the latitude/longitude position of the nearest controlled or uncontrolled airport, 

respectively. Proximity to the nearest airport is calculated by searching an airport 

database for controlled or uncontrolled airports, respectively, which are near the aircraft, 

finding the distance from the aircraft to each of the nearby controlled or uncontrolled 

airports, respectively, and then selecting the minimum of those distances.  

 If a high degree of accuracy is desired for geodesic distances, Vincenty’s inverse 

method (Vincenty 1975) is preferred, since the geodesic distances calculated by 

Vincenty’s inverse method are accurate to within half a millimeter. Although very 

accurate, algorithms based on Vincenty’s inverse method can also be very CPU- 
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intensive. Thus, the algorithm for calculating the aircraft’s proximity to an uncontrolled 

or controlled airport was designed to reduce the total number of distance calculations 

performed with Vincenty’s inverse method. 

 The airport search algorithm represents the contiguous area of the NAS as a large 

grid of cells. A cell in the grid measures 50 meters on each side. Since the curvature of 

the Earth over a 50 square meters area is negligible, any curvature within the cells can be 

ignored. The number of cells in every column in the grid is 55,121 cells (which is 

equivalent to 2,756,050 meters). The number of cells in the rows of the grid varies from 

82,259 cells (or 4,112,950 meters) to 117,052 cells (or 5,852,600 meters), depending on 

the row’s latitude. To map a point specified as latitude and longitude to a point within the 

grid, the airport search algorithm only needs to calculate two distances using Vincenty’s 

inverse method—from the western edge of the grid to the point and from the southern 

edge of the grid to the point.  

 After calculating those two distances, the airport search algorithm divides both 

distances by the length of a side of a grid cell (i.e. 50 meters), rounding down to the 

nearest integer, to obtain the X and Y coordinates for the point within the grid. The grid 

positions for all the airports (both uncontrolled and controlled) in the airport database are 

calculated prior to the subpath classification phase, and stored for later retrieval. The 

airport’s type (i.e. either uncontrolled or controlled) is stored along with its grid position. 

Then, during the subpath classification phase, each latitude/longitude point along the 

aircraft’s path is mapped to its corresponding point within the grid. 
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 Since the grid positions for all the airports in the airport database are calculated 

offline, the airport search algorithm can efficiently determine which airports of a specific 

type are near the aircraft using the aircraft’s current position within the grid. First, the 

algorithm searches for airports of that specific type within the same cell as the aircraft. If 

there aren’t any airports of that specific type in the same cell as the aircraft, the algorithm 

searches all the cells that border that cell, and so on, until cells containing one or more 

airports of that specific type are found. Once the airport search algorithm finds the cell(s) 

containing the airports of that specific type which are closest to the aircraft’s cell, it 

calculates the distance between the aircraft and each of those airports, and uses the 

minimum for the aircraft’s proximity measurement. 

Data Mining 

 ADM performs all of its data mining via SQL commands that operate on tables in 

a relational database. All tables used during the data mining phases are stored in the same 

relational database. ADM performs its data mining in two phases (see figure 10): 1) 

altitude mining and 2) proximity mining. These two data mining phases are performed 

separately for the data from each performance class in the FDM data set(s). The phases 

must occur in sequence to produce correct results.  

 Both of the data mining phases operate on the same relational database. This 

relational database stores all of the candidate solutions generated during both phases of 

data mining. Data are grouped into tables based on their respective performance classes. 

Since the subpath classification phase is nonincremental, all phases of data mining are 

also nonincremental. Accessing massive tables in a relational database is more costly  
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than accessing many smaller tables. Thus, each respective table in the relational database 

only stores data points for the clusters for the candidate solutions from a single 

generation.  

 
Figure 10.  The flowchart for the two phases of data mining. 

 ADM uses a database-oriented implementation of GKA for altitude mining. GKA 

produces compact clusters by minimizing the TWCV. See figure 11 for the data structure 

diagram (DeMarco 1979) of the data mining phases. ADM uses the Expectation-

Maximization Evolutionary Algorithm (EMEA) for proximity mining. EMEA is a 

database-oriented hybrid algorithm which combines the EM clustering algorithm with a 

genetic algorithm. EMEA uses a Gaussian mixture model for its probability distributions. 

Cluster compactness is not a very useful optimality criterion for fuzzy clustering 

algorithms, such as EMEA. If EMEA produces compact clusters, the centroids for these 

clusters could still be close to each other, causing the clusters to overlap. Thus, instead of 

producing compact clusters by minimizing the TWCV like GKA, EMEA produces 

clusters with sufficient separation by maximizing the distance between the centroids for 

the clusters.  

 The two phases of data mining share the same data model. The output data tables 

from the first data mining phase are the input data tables for the second data mining 
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phase. The aircraft data index used during the data preprocessing phases is also used 

during the data mining phases to determine which performance classes have data which 

are ready for data mining (i.e. completely preprocessed).  

 The altitude mining phase mines the subpaths stored in the data preprocessing 

database during the final phase of data preprocessing (i.e. the subpath classification 

phase). Then, the proximity mining phase mines the crisp clusters from the most optimal 

candidate solution stored in the data mining database by the altitude mining phase. The 

clusters produced during both phases of data mining are jointly specified by three types 

of data models—the cluster metadata model, the cluster data model, and the candidate 

solution metadata model. The cluster metadata model specifies general information about 

the clusters, such as their unique identifiers and important cluster statistics (e.g. the 

variation within each cluster). The cluster data model specifies the subpaths from which 

the clusters are composed. Each subpath in the cluster data model has an associated 

identifier which specifies its containing cluster. The candidate solution metadata model 

specifies general information about candidate solutions needed by GKA, such as the 

fitness values. EMEA does not use the candidate solution metadata model. 

 
Figure 11.  The data structure diagram for the data mining database. 
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 If the aircraft telemetry data were mined jointly with respect to both the aircraft’s 

altitude and its proximity to the nearest uncontrolled airport, e.g. by using 2D feature 

vectors of the form (A, P) where A is the aircraft’s altitude and P is the aircraft’s 

proximity, there would have to be a linear relationship between the aircraft’s altitude and 

its proximity to the nearest uncontrolled airport. Either the aircraft’s altitude would need 

to be dependent on the proximity, or the aircraft’s proximity would need to be dependent 

on its altitude.  

 Using a 2D Euclidean-based distance metric typically requires minimizing a 

relaxed form of the 2D Euclidean distance function, such as: 

     221

2

21, yyxxyxf   

Thus, the closer the X and Y coordinates are between the two points, the greater their 

similarity will be according to a 2D Euclidean-based distance metric. However, this 

apparent linear relationship can be disproved with a counterexample. Consider two 

aircraft, A1 and A2. Aircraft A1 is flying at 500 meters MSL and aircraft A2 is flying at 

3,000 meters MSL. If both aircraft are near uncontrolled airports, e.g. within a few 

kilometers, the maneuvers performed by the pilots of the aircraft are likely to be 

influenced by the proximity of their aircraft to the uncontrolled airports. However, the 

altitudes of the aircraft differ by 2,500 meters. Thus, their corresponding data points will 

be assigned to different clusters, even though the maneuvers performed by the pilots of 

these aircraft are likely to be very similar.  

 The behavior of the pilot of an aircraft with respect to variations in the aircraft’s 

altitude is much easier to predict than the pilot’s behavior with respect to variations in the 

aircraft’s proximity to the nearest uncontrolled airport. At higher altitudes, terrain 
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features have less influence over the maneuvers performed by the aircraft’s pilot. 

Conversely, at low altitudes, terrain features are one of the predominant factors 

influencing the maneuvers performed by an aircraft’s pilot. Thus, data mining with 

respect to an aircraft’s altitude should only result in a few altitude clusters, e.g. a cluster 

for high altitudes and a cluster for low altitudes, which should be compact clusters with 

crisp boundaries. This suggests a crisp clustering algorithm (i.e. GKA) should be used to 

mine aircraft telemetry data with respect to the aircraft’s altitude.  

 The behavior of the pilot of an aircraft with respect to variations in the aircraft’s 

proximity to the nearest uncontrolled airport is more complex. Thus, it is more difficult 

for a crisp clustering algorithm to correctly cluster the aircraft telemetry data with respect 

to proximity. The proximity clusters are likely to be less compact and have fuzzy 

boundaries. This suggests a fuzzy clustering algorithm (i.e. EMEA) should be used to 

mine aircraft telemetry data with respect to the aircraft’s proximity to the nearest 

uncontrolled airport. 

 Clustering algorithms such as GKA and EMEA try to produce clusters which 

satisfy certain optimality criterion, such as cluster compactness and cluster separation. 

Furthermore, crisp clustering algorithms produce more compact clusters than fuzzy 

clustering algorithms. If a crisp clustering algorithm is used for the first phase of data 

mining, this will create highly compact clusters. Since the second phase will further 

refine the highly compact clusters produced during the first phase, if a fuzzy clustering 

algorithm is used for the second phase of data mining, it will be more likely to produce 

highly compact clusters. Thus, a crisp clustering algorithm (i.e. GKA) should be used 

during the first phase of data mining, and a fuzzy clustering algorithm (i.e. EMEA) 
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should be used during the second phase of data mining. The two phases of data mining 

result in probabilistic decision tree models (see figure 12) which will be applicable to GA 

aircraft flying outside the controlled airspace surrounding controlled airports. 

 
Figure 12.  An example of a decision tree model based on data mining results. 

 Unlike GKA, the EM algorithm (and hence EMEA) produces fuzzy clusters 

where each data point has a probability of membership in each of the clusters. These 

fuzzy clusters do not have crisp boundaries that can be used in the resultant decision tree 

model to determine which cluster is most similar to a data point. Instead, the decision 

based on the aircraft’s proximity to the nearest uncontrolled airport uses the fuzzy cluster 

whose mean proximity value is nearest to the proximity value of the aircraft’s data point. 

Mining Altitude Features 

 In the first phase of data mining, the subpaths from the preprocessed data for a 

performance class are automatically clustered into K1 clusters with respect to the altitude 

at the start of each subpath. GKA (the data mining algorithm used during this phase) is a 
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hybrid algorithm which combines KMA (see figure 13) with a genetic algorithm. Since 

GKA is a crisp clustering algorithm, GKA tends to produce highly compact clusters, 

which is important during the first phase of data mining. 

 
Figure 13.  The K-Means Algorithm (KMA). 

 GKA (see figure 14) takes several input parameters, including the number of 

clusters (K1), the fitness constant to use (typically 1.5), the probability of a mutation 

occurring during reproduction, the number of candidate solutions in each generation of 

the population, and the total number of generations to produce. Since GKA uses a one-

point crossover operator, a minimum of 3 candidate solutions must be used. Also, the 

parallelized GKA does not allow crossover between slave nodes in the computational 

cluster. Whether GKA is guaranteed to converge to the globally optimal solution depends 

on its implementation (Eiben, Aarts, and Van Hee 1991; Rudolph 1994). 

Input: Set U of rows in the data preprocessing database containing subpaths. 

Output: Set U′ of rows in the data preprocessing database containing subpaths mapped to crisp clusters. 
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Figure 14.  The Genetic K-Means Algorithm (GKA) implemented with a generational 

population model and rank-based selection. 

 Since the FDM data from the Garmin G1000 only specify an aircraft’s altitude 

above MSL, and not its altitude Above Ground Level (AGL), aircraft altitudes above 

MSL are used during the altitude mining phase. An aircraft’s altitude above the terrain, 

Input: Set U of rows in the relational database containing subpaths. 

Output: Set L of rows in the relational database containing subpaths mapped to crisp clusters for each candidate solution. 
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which may have more directly influenced the maneuvers chosen by the aircraft’s pilot 

than its altitude above MSL, is thus not available during the altitude mining phase. If the 

aircraft’s altitude AGL was available, it could be substituted for the aircraft’s altitude 

above MSL without any modification to the altitude mining algorithm. High-resolution 

3D terrain data, such as the Shuttle Radar Topography Mission (SRTM) terrain data 

obtained by the National Aeronautics and Space Administration (NASA) (National 

Aeronautics and Space Administration 2009), could be used to estimate the aircraft’s 

altitude AGL from its altitude above MSL. However, estimates of an aircraft’s altitude 

AGL using SRTM terrain data would have limited accuracy, since the resolution of 

SRTM terrain data is only 1 arcsecond (United States Geological Survey 2009). 

Mining Proximity Features 

 In the second phase of data mining, the most optimal candidate solution generated 

for a given performance class during the first phase is data mined further. Each of the K1 

clusters from that candidate solution is data mined with respect to the aircraft’s proximity 

to the nearest uncontrolled airport at the start of each subpath. This partitions each of the 

K1 altitude clusters into K2 proximity clusters, resulting in a probabilistic decision tree 

model. 

 EMEA (the data mining algorithm used during this phase) is a fuzzy clustering 

algorithm. Thus, EMEA (see figure 15) tends to produce less compact clusters. However, 

since the behavior of a pilot with respect to variations in the aircraft’s proximity to the 

nearest uncontrolled airport is complex, estimating the correct number of crisp proximity 

clusters can be difficult. EMEA estimates the probability of each data point belonging to  
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each of the K2 clusters, instead of assigning each data point to only one cluster. Thus, 

EMEA is less dependent on a correct estimate of the number of clusters in the data set to 

produce valid results. 

 
Figure 15.  The Expectation-Maximization Evolutionary Algorithm (EMEA). 

 EMEA takes several input parameters, including the number of clusters (K2), the 

probability of a mutation, the number of candidate solutions in each generation of the 

population, and the total number of generations to produce. Since EMEA does not use a 
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crossover operator, it does not have any restrictions on the number of candidate solutions 

which may be used. Due to its lack of a crossover operator, EMEA is not guaranteed to 

converge to the globally optimal solution (Eiben, Aarts, and Van Hee 1991; Rudolph 

1994). However, EMEA’s use of a mutation operator and a set of multiple candidate 

solutions decreases the likelihood that EMEA will converge to a locally optimal solution. 

Exploiting Data Parallelism 

 The data preprocessing and data mining algorithms exploit data parallelism by 

using a Beowulf computational cluster and the Parallel Virtual Machine (PVM) system 

(Geist, et al. 1994) for parallel computing. Since the master process and the database 

server both run on the master node, the master process needs to limit its CPU usage. 

Thus, the master process does not perform any data preprocessing or data mining itself. It 

merely divides the task and spawns slave processes on all the nodes in the computational 

cluster. In order to prevent key conflicts, temporary keys are used during the normalized 

flight path construction and digital pheromone trail discovery phases of data 

preprocessing, as well as both of the data mining phases. Each slave process spawned 

during these phases is assigned its own temporary key for its tables. After all slave 

processes for the phase are finished, the master process merges the temporary keys for 

the tables by: 1) adding the cumulative size of previous table partitions to each primary 

key field and 2) setting the temporary keys to null values. An advantage of temporary 

keys is separate tables do not need to be opened for each individual slave process. This 

typically results in less overhead and more cache hits for the database server. 
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 For each of the parallelized data preprocessing algorithms, the master process 

performs the following steps: 1) divides the data preprocessing task by partitioning the 

input data set, 2) spawns slave processes for each of the partitions in the data set via calls 

to the PVM library, 3) marks the phase as complete after all the slave processes have 

successfully completed their tasks and notified the master process, and 4) merges the 

results from the slave processes. 

 The first phase of data preprocessing (i.e. the aircraft telemetry data import phase) 

is the only phase of data preprocessing or data mining which was not parallelized. If a 

centralized database server is used, there is no advantage to multiple slave processes 

importing data into the database simultaneously. When new data are imported into the 

database, the normalization, normalized flight path construction, digital pheromone trail 

discovery, and subpath classification phases of data preprocessing, as well as both of the 

data mining phases, are marked as incomplete. 

 During the second phase of data preprocessing (i.e. the normalization phase), the 

data for each table are partitioned for slave processes with respect to the aircraft 

associated with those data. Each slave process thus operates on its own set of aircraft. 

Since a composite primary key is used for the aircraft data tables, and no new rows are 

generated during this phase, temporary keys are not used.  

 During the third phase of data preprocessing (i.e. the normalized flight path 

construction phase), each normalized aircraft data table is partitioned with respect to the 

aircraft associated with the data. Thus, each slave process operates on its own set of 

aircraft. However, since each slave process constructs its own normalized flight paths,  
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temporary keys are used during this phase to avoid key conflicts. Furthermore, since 

digital pheromone trails are aged during this phase, if any existing digital pheromone 

trails in the relational database evaporate, then all normalized flight paths associated with 

those digital pheromone trails will need to be reprocessed during the subpath 

classification phase. 

 During the fourth phase of data preprocessing (i.e. the digital pheromone trail 

discovery phase), each path table and path vector table is partitioned with respect to its 

normalized flight paths. Each slave process thus operates on its own set of normalized 

flight paths. However, since each slave process can potentially discover new digital 

pheromone trails, temporary keys are used during this phase to avoid key conflicts.  

 During the fifth phase of data preprocessing (i.e. the subpath classification phase), 

each path table and path vector table is partitioned with respect to its normalized flight 

paths. Each slave process thus operates on its own set of normalized flight paths. Since a 

composite primary key is used for the subpath tables, which is based on the unique path 

identifiers used in the path and path vector tables, temporary keys are not used during this 

phase.  

 For each of the parallelized data mining algorithms, the master process performs 

the following steps: 1) divides the data mining task by assigning a fraction of the total 

candidate solutions to each node in the computational cluster, 2) spawns slave processes 

to data mine the subpopulations via calls to the PVM library, 3) marks the phase as 

complete after all the slave processes have successfully completed their tasks and notified 

the master process, and 4) merges the results from the slave processes. Since the data 

mining occurs in two phases (altitude mining followed by proximity mining), it is 
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necessary for ADM to wait for all the slave processes from the altitude phase to complete 

before any slave processes are spawned for the proximity mining phase. See figure 16 for 

the UML activity diagram for parallelized data mining using 2 slave processes. 

 
Figure 16.  The UML activity diagram for the parallel data mining algorithms. 

 If a centralized database server is used during parallel data mining, explicit 

locking via communication between the master and slave nodes is necessary for 

balancing the load on the centralized database server. Thus, these parallel data mining 

algorithms exhibit coarse-grained parallelism when used with a centralized database 

server. However, the data parallelism of these data mining algorithms can be significantly 

improved by using a distributed database server (Lee, et al. 2000; Cheng, Lee, and Wong 

2002; Ismail 2012). 
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CHAPTER IV 

RESULTS 

 ADM was used to data mine the FDM data set S using two types of data 

preprocessing—nonincremental and incremental data preprocessing. Data set S consists 

of approximately 104 gigabytes of data archived between 3/13/2011 and 11/23/2011. 

These FDM data were obtained exclusively from 61 Cessna 172 planes in the University 

of North Dakota’s training fleet. The data points in S have latitudes ranging from 35.47° 

to 49.91° and longitudes ranging from -108.56° to -81.85°. 

 In order to test the correctness of the incremental data preprocessing algorithms, 

as well as verify the data mining results through stability testing (Handl, Knowles, and 

Kell 2005), data set S was partitioned into two subsets, data set A and data set B. For the 

incremental data preprocessing: 1) Data set A was preprocessed; 2) Data set B was 

incrementally preprocessed and integrated with data set A; and 3) The subpaths from the 

combined data sets A and B were data mined with respect to altitude, and then with 

respect to proximity to uncontrolled airports. 

Nonincremental Data Preprocessing 

 ADM sequentially preprocessed data set S as follows: 1) The raw FDM data from 

data set S, consisting of 136,287,621 data points, were imported into the database; 2) The 

imported data from data set S were normalized, deleting 3,655,423 data points which 

were potentially inside controlled airspace (of which 6,423 data points were within the 

Class B airspace surrounding a Class B airport); 3) The remaining 132,622,198 data 
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points from data set S were used to reconstruct 1,963 normalized flight paths; 4) From 

these normalized flight paths, 7,229 digital pheromone trails were discovered when D = 

1; and 5) Of these digital pheromone trails, 1,197 digital pheromone trails were used to 

classify 27,188 subpaths (with 3,795,093 unclassifiable data points). See figures 17 and 

18 for histograms of the subpaths with respect to starting altitude and starting proximity 

to uncontrolled airports, respectively. 

 
Figure 17.  The histogram for discovered subpaths (from the nonincremental results) 

with respect to starting altitudes. 
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Figure 18.  The histogram for discovered subpaths (from the nonincremental results) 

with respect to starting proximities to uncontrolled airports. 

 Although 7,229 digital pheromone trails were discovered, only 1,197 digital 

pheromone trails were actually used to classify subpaths. These 1,197 digital pheromone 

trails had the greatest digital pheromone strengths out of those digital pheromone trails 

which matched the given subpaths. Of those 1,197 digital pheromones trails, the two 

digital pheromone trails with a relative subpath frequency of at least 10% were digital 

pheromone trails #N56 (see table 1) and #N3882 (see table 2). 
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Table 1. The vector sequence for digital pheromone trail #N56. 

Vector Sequence # Heading (degrees) Ascent Angle (degrees) Duration (seconds) 

1 90° 2° 63 

Table 2. The vector sequence for digital pheromone trail #N3882. 

Vector Sequence # Heading (degrees) Ascent Angle (degrees) Duration (seconds) 

1 90° 0° 1 

2 88° -2° 1 

3 90° -2° 1 

4 88° -2° 1 

5 90° -2° 3 

6 88° -2° 1 

7 90° -2° 1 

8 88° -2° 1 

9 90° -2° 3 

10 88° -2° 1 

11 90° -2° 3 

12 88° -2° 1 

13 90° -2° 2 

14 88° -2° 1 

15 90° -2° 1 

16 88° -2° 1 

17 90° -2° 1 

18 88° -2° 1 

19 90° -2° 3 

20 88° -2° 1 

21 90° -2° 2 

22 88° -2° 1 

23 90° -2° 1 

24 88° -2° 1 

25 90° -2° 1 

26 88° -2° 1 

27 90° -2° 1 

28 88° -2° 1 

29 90° -2° 1 

30 88° -2° 1 

31 90° -2° 1 

32 88° -2° 1 

33 90° -2° 1 

34 88° -2° 1 

35 90° -2° 1 

36 88° -2° 1 

37 90° -2° 1 

38 88° -2° 1 

39 90° -2° 1 

40 88° -2° 1 

41 90° -2° 1 

42 88° -2° 1 

43 90° -2° 2 

44 88° -2° 1 

45 90° -2° 3 

46 88° -2° 1 

47 90° -2° 1 
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 After sequentially preprocessing the raw FDM data set, ADM performed parallel 

data mining of the resultant subpaths on a Beowulf computational cluster with the 

Network File System (NFS) and a centralized MySQL database server. ADM evolved 6 

candidate solutions for 200 generations during both phases of data mining using a 

mutation probability of 17% and a crossover probability of 100%. To test ADM’s parallel 

data mining algorithms, the data mining was performed on 3 nodes of the Beowulf 

cluster. ADM’s master process did not perform any data mining itself. Instead, the master 

process merely divided the task and spawned slave processes on the remaining nodes in 

the Beowulf cluster. Thus, each of the 2 slave nodes was assigned 3 candidate solutions 

for parallel data mining.  

 During the first phase of data mining (i.e. altitude mining), the minimum TWCV 

of 3,519,079,060.43 was reached on the 52nd generation by candidate solution #2. 

During the second phase of data mining (i.e. proximity mining), the maximum cluster 

separation of 1,682.57 was reached for the first altitude cluster on the 7th generation (by 

candidate solution #6) and the maximum cluster separation of 6,875.62 was reached for 

the second altitude cluster on the 36th generation (by candidate solution #2). The data 

mining results are shown in tables 3 and 4. These results have a significance level of 

0.05% when statistically validated with Pearson’s chi-square test (Pearson 1900; Handl, 

Knowles, and Kell 2005). 

 ADM first categorized the data points into one of 2 clusters based on the aircraft’s 

altitude. Two clusters were used for the first phase of data mining because the subpath 

altitudes appear to be grouped into two large clusters with a boundary near approximately 

980 meters (or 3,215 feet) MSL (see figure 17). This resulted in a cluster of low altitudes 
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(containing 15,851 data points) and a cluster of high altitudes (containing 11,337 data 

points). Then, for each of these clusters, ADM categorized the data points within the 

cluster into one of 2 subclusters based on the aircraft’s proximity to the nearest 

uncontrolled airport. Two proximity subclusters were used for each altitude cluster 

because the subpath proximities appear to be grouped into four clusters with possible 

boundaries at approximately 1,215 meters, 6,060 meters, and 12,110 meters (see figure 

18). Since EMEA was used for proximity mining, the proximity clusters produced were 

not crisp clusters. 

Table 3. The relative subpath frequencies and membership probabilities for the 

maneuvers (with a relative frequency of at least 1%) discovered in the first altitude 

cluster (with starting altitudes from 181.9 to 1,093.9 meters MSL) from the 

nonincremental results (for Cessna 172 aircraft). 

Pheromone Trail ID 
Pheromone 

Strength 

Relative 

Subpath 

Frequency 

Probability of 

Membership in 

Cluster 1 

Probability of  

Membership in 

Cluster 2 

N7216 4 1.03% 55.61% 44.39% 

N7222 2 1.03% 51.05% 48.95% 

N2050 31 1.05% 43.26% 56.74% 

N3243 30 1.08% 55.62% 44.38% 

N3231 94 1.23% 55.71% 44.29% 

N3237 80 1.26% 55.54% 44.46% 

N3232 50 2.41% 54.64% 45.36% 

N3880 56 2.43% 42.32% 57.68% 

N6919 149 2.73% 61.95% 38.05% 

N699 880 3.33% 55.21% 44.79% 

N3887 36 3.62% 44.75% 55.25% 

N2008 82 3.64% 44.8% 55.2% 

N7210 7 3.88% 50.67% 49.33% 

N3878 97 3.92% 42.21% 57.79% 

N362 1,642 4.02% 67.38% 32.62% 

N101 1,243 4.91% 64.76% 35.24% 

N725 924 5.03% 59.06% 40.94% 

N3882 118 8.95% 44.66% 55.34% 

N56 19,810 22.56% 66.42% 33.58% 



 90 

Table 4. The relative subpath frequencies and membership probabilities for the 

maneuvers (with a relative frequency of at least 1%) discovered in the second altitude 

cluster (with starting altitudes from 1,094.14 meters to 3,919.58 meters MSL) from the 

nonincremental results (for Cessna 172 aircraft). 

Pheromone Trail ID 
Pheromone 

Strength 

Relative 

Subpath 

Frequency 

Probability of 

Membership in 

Cluster 1 

Probability of  

Membership in 

Cluster 2 

N743 1,049 1.03% 48.06% 51.94% 

N725 924 1.09% 64.04% 35.96% 

N6919 149 1.16% 60.58% 39.42% 

N3232 50 1.23% 49.66% 50.34% 

N3923 2 1.4% 54.42% 45.58% 

N7210 7 1.59% 60.1% 39.9% 

N699 880 1.6% 59.71% 40.29% 

N2050 31 1.68% 56.47% 43.53% 

N3880 56 4.9% 54.83% 45.17% 

N3887 36 5.48% 57.14% 42.86% 

N2008 82 5.92% 57.75% 42.25% 

N3878 97 9.79% 55.1% 44.9% 

N3882 117 13.11% 55.63% 44.37% 
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Figure 19.  The digital pheromone trails (projected in 2D) used to classify the 

subpaths from nonincremental preprocessing. Only those with relative subpath 

frequencies of at least 1% are shown. The positive Y axis points in the aircraft’s 

forward direction, and the positive X axis points to the right. 
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Figure 20.  The decision tree model from data mining the results of nonincremental 

preprocessing. Only digital pheromone trails with a relative subpath frequency of 

at least 10% are shown. Subpaths for both altitude clusters were grouped with the 

cluster with the closest mean proximities. 

Incremental Data Preprocessing 

 ADM sequentially preprocessed data set A as follows: 1) The raw FDM data from 

data set A, consisting of 67,687,525 data points, were imported into the database; 2) The 

imported data from data set A were normalized, deleting 1,755,356 data points which 

were potentially inside controlled airspace; 3) The remaining 65,932,169 data points from 

data set A were used to reconstruct 936 normalized flight paths; 4) From these 

normalized flight paths, 2,734 digital pheromone trails were discovered when D = 1; and 

5) Of these digital pheromone trails, 781 digital pheromone trails were used to classify 

10,198 subpaths (with 2,033,648 unclassifiable data points). 
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 After sequentially preprocessing data set A, data set B was incrementally 

preprocessed and integrated with data set A as follows: 1) The raw FDM data from data 

set B, consisting of 68,600,096 data points, were imported into the database; 2) The 

imported data from data set B were normalized, deleting 1,897,471 data points which 

were potentially inside controlled airspace; 3) The remaining 66,702,625 data points from 

data set B were used to construct an additional 1,000 normalized flight paths; 4) After 

these normalized flight paths were constructed, 1,367 digital pheromone trails from data 

set A were evaporated using a proportional evaporation constant of 1,000; 5) From these 

normalized flight paths, 4,002 additional digital pheromone trails were discovered when 

D = 1; and 6) Of these digital pheromone trails, 853 digital pheromone trails were used to 

classify 17,136 additional subpaths (with 1,927,902 unclassifiable data points). The 

histograms of the subpaths with respect to starting altitude and starting proximity to 

uncontrolled airports are similar to the respective histograms from the nonincremental 

results. 

 Of those 1,634 digital pheromones trails (from the union of data sets A and B), 

the three digital pheromone trails with a relative subpath frequency of at least 10% are 

digital pheromone trails #I276 (see table 5), #I456 (see table 6), and #I4949 (see table 7). 

Table 5. The vector sequence for digital pheromone trail #I276. 

Vector Sequence # Heading (degrees) Ascent Angle (degrees) Duration (seconds) 

1 90° -2° 61 

Table 6.  The vector sequence for digital pheromone trail #I456. 

Vector Sequence # Heading (degrees) Ascent Angle (degrees) Duration (seconds) 

1 90° 2° 62 

2 88° 4° 1 
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Table 7. The vector sequence for digital pheromone trail #I4949. 

Vector Sequence # Heading (degrees) Ascent Angle (degrees) Duration (seconds) 

1 90° 0° 1 

2 88° -2° 1 

3 90° -2° 1 

4 88° -2° 1 

5 90° -2° 3 

6 88° -2° 1 

7 90° -2° 1 

8 88° -2° 1 

9 90° -2° 3 

10 88° -2° 1 

11 90° -2° 3 

12 88° -2° 1 

13 90° -2° 2 

14 88° -2° 1 

15 90° -2° 1 

16 88° -2° 1 

17 90° -2° 1 

18 88° -2° 1 

19 90° -2° 3 

20 88° -2° 1 

21 90° -2° 2 

22 88° -2° 1 

23 90° -2° 1 

24 88° -2° 1 

25 90° -2° 1 

26 88° -2° 1 

27 90° -2° 1 

28 88° -2° 1 

29 90° -2° 1 

30 88° -2° 1 

31 90° -2° 1 

32 88° -2° 1 

33 90° -2° 1 

34 88° -2° 1 

35 90° -2° 1 

36 88° -2° 1 

37 90° -2° 1 

38 88° -2° 1 

39 90° -2° 1 

40 88° -2° 1 

41 90° -2° 1 

42 88° -2° 1 

43 90° -2° 2 

44 88° -2° 1 

45 90° -2° 3 

46 88° -2° 1 

47 90° -2° 1 
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 After incrementally and sequentially preprocessing data sets A and B, ADM 

performed sequential data mining of the resultant subpaths on a quad-core 64-bit server 

with a centralized MySQL database server. ADM evolved 6 candidate solutions for 200 

generations during both phases of data mining using a mutation probability of 17% and a 

crossover probability of 100%. During the first phase of data mining (i.e. altitude 

mining), the minimum TWCV of 3,528,381,952.68 was reached on the 18th generation 

by candidate solution #2. During the second phase of data mining (i.e. proximity mining), 

the maximum cluster separation of 1,647.34 was reached for the first altitude cluster on 

the 12th generation (by candidate solution #5) and the maximum cluster separation of 

6,888.42 was reached for the second altitude cluster on the 36th generation (by candidate 

solution #1). The data mining results are shown in tables 15 and 16. These results have a 

significance level of 0.05% when statistically validated with Pearson’s chi-square test 

(Pearson 1900; Handl, Knowles, and Kell 2005).  

 ADM first categorized the data points into one of 2 clusters based on the aircraft’s 

altitude. This resulted in a cluster of low altitudes (containing 15,970 data points) and a 

cluster of high altitudes (containing 11,364 data points). Then, for each of these clusters, 

ADM categorized the data points within the cluster into one of 2 subclusters based on the 

aircraft’s proximity to the nearest uncontrolled airport. 

Table 8. The relative subpath frequencies and membership probabilities for the 

maneuvers (with a relative frequency of at least 1%) discovered in the first altitude 

cluster (with starting altitudes from 181.9 to 1,090.3 meters MSL) from the incremental 

results (for Cessna 172 aircraft). 

Pheromone Trail ID 
Pheromone 

Strength 

Relative 

Subpath 

Frequency 

Probability of 

Membership in  

Cluster 1 

Probability of  

Membership in  

Cluster 2 

I1815 2 1.12% 47.01% 52.99% 

I4344 30 1.15% 45.32% 54.68% 
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Table 8. Cont. 

Pheromone Trail ID Pheromone 

Strength 

Relative 

Subpath 

Frequency 

Probability of 

Membership in 

Cluster 1 

Probability of  

Membership in  

Cluster 2 

I1811 12 1.36% 44.27% 55.73% 

I4346 78 1.56% 43.05% 56.95% 

I4351 50 2.22% 43.79% 56.21% 

I4957 54 2.31% 56.97% 43.03% 

I1580 32 3.09% 39.77% 60.23% 

I4971 36 3.63% 54.88% 45.12% 

I3224 82 3.8% 55.67% 44.33% 

I4952 93 3.93% 58.13% 41.87% 

I1807 26 4.08% 49.44% 50.56% 

I4949 113 9.19% 54.49% 45.51% 

I276 8,312 20.76% 39.28% 60.72% 

I456 16,162 23.03% 34.22% 65.78% 

Table 9. The relative subpath frequencies and membership probabilities for the 

maneuvers (with a relative frequency of at least 1%) discovered in the second altitude 

cluster (with starting altitudes from 1,090.57 meters to 3,954.81 meters MSL) from the 

incremental results (for Cessna 172 aircraft). 

Pheromone Trail ID 
Pheromone 

Strength 

Relative 

Subpath 

Frequency 

Probability of 

Membership in  

Cluster 1 

Probability of  

Membership in  

Cluster 2 

I4351 50 1.08% 51.61% 48.39% 

I1580 32 1.28% 59.46% 40.54% 

I4969 2 1.42% 55.01% 44.99% 

I1807 26 1.61% 59.51% 40.49% 

I4957 54 4.83% 54.23% 45.77% 

I276 8,312 5.41% 57.22% 42.78% 

I4971 36 5.76% 58.02% 41.98% 

I3224 82 5.79% 58.84% 41.16% 

I4952 93 9.78% 54.82% 45.18% 

I4949 113 12.91% 55.65% 44.35% 
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Figure 21.  The digital pheromone trails (projected in 2D) used to classify the 

subpaths from incremental preprocessing. Only those with relative subpath 

frequencies of at least 1% are shown. The positive Y axis points in the aircraft’s 

forward direction, and the positive X axis points to the right. 
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Figure 22.  The decision tree model from data mining the results of incremental 

preprocessing. Only digital pheromone trails with a relative subpath frequency of 

at least 10% are shown. Subpaths for both altitude clusters were grouped with the 

cluster with the closest mean proximities. 

Table 10. The run times for the five phases of sequential data preprocessing of a 1 

gigabyte FDM data set. 

Data Preprocessing Phase Run time (seconds) 

Importing Aircraft Telemetry Data 680 

Normalizing Database 6,701 

Constructing Normalized Flight Paths 40 

Discovering Digital Pheromone Trails 7 

Classifying Subpaths 140 

Table 11. The run times for the two phases of sequential data mining of the 

preprocessed data set. 

Data Mining Phase Run time (seconds) 

Altitude Mining 8,218 

Proximity Mining 12,886 

Table 12. The run times for the two phases of parallel data mining of the 

preprocessed data set using a centralized database server. 

Data Mining Phase Run time (seconds) 

Altitude Mining 25,969 

Proximity Mining 35,955 
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Table 13. The run times for the two phases of parallel data mining of the 

preprocessed data set using a distributed database server. 

Data Mining Phase Run time (seconds) 

Altitude Mining 11,048 

Proximity Mining 20,373 

 

Validation with Synthetic Data 

 Synthetic FDM data were used to separately validate the sequential, 

nonincremental data preprocessing and data mining algorithms. To validate the 

sequential, nonincremental data preprocessing algorithms (see table 14), eleven CSV data 

files were constructed by hand to simulate FDM data from eleven different GA aircraft. 

Ten of these synthetic CSV files contained identical paths composed of alternating left 

and right turns. The other synthetic CSV file contained a different path composed of 

straight and level flight. This was intended to test the ability of the ant colony algorithm 

to correctly discover the shape, length, and strength of the path which was common to 10 

of the 11 synthetic CSV files (see figure 23). 

Table 14. The expected and actual results from validating the sequential, 

nonincremental data preprocessing algorithms using synthetic FDM data. 

Data Preprocessing Phase Expected Result Actual Result 

Importing Aircraft Telemetry Data Imported 990 data points. Imported 990 data points. 

Normalizing Database Deleted 0 data points. Deleted 0 data points. 

Constructing Normalized Flight Paths Constructed 11 paths. Constructed 11 paths. 

Discovering Digital Pheromone Trails Discovered 2 trails. Discovered 2 trails. 

Classifying Subpaths 
Successfully classified 11 

subpaths. 

Successfully classified 17 

subpaths. Seventeen 

subpaths could not be 

classified. 
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Figure 23.  The digital pheromone trails (projected in 2D) used to classify the 

subpaths from the synthetic FDM data. 

Table 15. The expected and actual results from validating the sequential data mining 

algorithms using synthetic FDM data. 

Data Mining Phase Expected Result Actual Result 

Altitude Mining 

Produced 2 non-overlapping crisp 

clusters—a cluster of low starting 

altitudes and a cluster of high 

starting altitudes. 

Produced 2 non-overlapping 

clusters—a cluster of low starting 

altitudes (from 91.44 to 96.44 

meters MSL) and a cluster of 

high altitudes (from 194.488 to 

210.51 meters MSL). 

Proximity Mining 
Produced 2 well-separated fuzzy 

clusters. 

Produced 2 well-separated fuzzy 

clusters (with a maximum total 

separation of 5,842.17). 

Table 16. The relative subpath frequencies and membership probabilities for the 

maneuvers discovered in the first altitude cluster from the synthetic FDM data. 

Pheromone Trail ID 
Pheromone 

Strength 

Relative 

Subpath 

Frequency 

Probability of 

Membership in 

Cluster 1 

Probability of  

Membership in 

Cluster 2 

S0 90 100% 66.66% 33.33% 

Table 17. The relative subpath frequencies and membership probabilities for the 

maneuvers discovered in the second altitude cluster from the synthetic FDM data. 

Pheromone Trail ID 
Pheromone 

Strength 

Relative 

Subpath 

Frequency 

Probability of 

Membership in 

Cluster 1 

Probability of  

Membership in 

Cluster 2 

S0 90 72.73% 62.5% 37.5% 

S1 20 27.27% 100% 0% 
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 The subpaths produced by the sequential, nonincremental data preprocessing of 

the synthetic FDM data were used to construct synthetic data to validate the sequential 

data mining algorithms. The starting altitudes and proximities to uncontrolled airports for 

the subpaths in the second synthetic data set were modified to conform to the desired 

probability distribution. During sequential data mining of the synthetic FDM data, the 

minimum TWCV of 366.42 was reached by all candidate solutions on the 1st generation. 

The first altitude cluster contained 6 subpaths, with starting altitudes from 91.44 meters 

(or 300 feet) MSL to 96.44 meters (or 316 feet) MSL, and the second altitude cluster 

contained 28 subpaths, with starting altitudes from 194.88 meters (or 639 feet) MSL to 

210.51 meters (or 691 feet) MSL. The maximum cluster separation of 5,842.17 was 

reached on the 7th generation by candidate solution #3. This resulted in a decision tree 

model (see figure 24).  

 
Figure 24.  The decision tree model from data mining the synthetic FDM data. 
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Accuracy and Performance Testing with Real Data 

 To evaluate the accuracy and performance of a predictive algorithm based on the 

decision tree model from the nonincremental results, two simple test programs were 

implemented for testing the accuracy and performance, respectively. Approximately 133 

megabytes of FDM data (consisting of 253,088 data points) obtained from flights for a 

single Cessna 172 aircraft during early 2012 were used to test both the accuracy and 

performance during sequential execution of the two test programs. The average error in 

the predicted values for the aircraft’s heading angles when compared with the actual 

values was about 21°, and the average error in the predicted values for the aircraft’s 

ascent angles when compared with the actual values was about 4°. After running on a 

single CPU for 13,315 seconds, the performance test program had processed 82,802 

relevant data points, giving an average performance of 0.38 seconds per data point. The 

remaining 170,286 data points in the FDM data were skipped due to invalid data points 

and data points which were potentially inside Class B airspace around a controlled 

airport. 
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CHAPTER V 

ANALYSIS 

 The membership probabilities for digital pheromone trails in the first altitude 

cluster from the nonincremental results (see table 3) do not show a strong bias towards 

either of the possible proximity clusters. This suggests that, at relatively low altitudes, the 

maneuvers naturally form into two proximity clusters—a cluster of aircraft near to an 

uncontrolled airport and a cluster of aircraft far from an uncontrolled airport. The 

membership probabilities for the second altitude cluster from the nonincremental results 

(see table 4) also do not show a strong bias towards either of the possible proximity 

clusters. This suggests that, at higher altitudes, pilot maneuvers also naturally group into 

two proximity clusters—a cluster near to and a cluster far from an uncontrolled airport. 

The membership probabilities for digital pheromone trails from the incremental results 

(see tables 8 and 9) suggest this as well. 

Verification Results 

 Although the nonincremental and incremental data preprocessing used the same 

raw FDM data as input, the two methods did not preprocess those data identically. For 

example, the incremental data preprocessing resulted in the evaporation of 1,367 digital 

pheromone trails (those with the lowest pheromone strengths), while the nonincremental 

data preprocessing obviously did not involve the evaporation of any digital pheromone 

trails. Thus, the nonincremental and incremental data preprocessing should not be 

expected to produce identical results. Furthermore, the stochastic nature of the data 
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mining algorithms (i.e. GKA and EMEA) resulted in small variations in the data mining 

results between the two result sets (i.e. the nonincremental and incremental preprocessing 

results). Also, since the particular implementations of GKA and EMEA are not 

guaranteed by (Rudolph 1994) to converge to the globally optimal solution, either data 

mining phase could have produced a locally optimal solution. However, the results from 

both result sets are similar, which suggests stability in the results derived from the two 

different types of preprocessing algorithms. 

 For the nonincremental result set, 2 digital pheromone trails with relative 

frequencies of 10% or greater were used to classify subpaths—digital pheromone trails 

#N56 and #N3882. Digital pheromone trail #N56 (see table 1) could represent, for 

example, a maneuver where the aircraft maintained a straight heading for 63 seconds 

while ascending at an angle of 2°, while digital pheromone trail #N3882 (see table 2) 

could represent a maneuver where the aircraft turned to the right at an average turn rate of 

2° per second. For the incremental result set, 3 digital pheromone trails with relative 

frequencies of 10% or greater were used to classify subpaths—digital pheromone trails 

#I276 (see table 5), #I456 (see table 6), and #I4949 (see table 7). 

 Thus, more digital pheromone trails with relative frequencies of 10% or greater 

were used to classify subpaths in the incremental result set than in the nonincremental 

result set. This is likely due to the evaporation of digital pheromone trails that occurs 

during incremental preprocessing. Evaporation of digital pheromone trails deletes a 

certain number of digital pheromone trails with the lowest pheromone strengths. The 

number of digital pheromone trails deleted is proportional to the size of the data set 

which is incrementally preprocessed. Evaporation also decreases the pheromone strengths 
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of all the remaining digital pheromone trails. Thus, evaporation tends to decrease the 

dispersion of pheromone strengths in the remaining digital pheromone trails. 

 Both the nonincremental (see figure 19) and incremental (see figure 21) result sets 

contain similar sets of digital pheromone trails with relative subpath frequencies of 1% or 

greater, consisting of straight flight and right turns. While digital pheromone trails 

representing left turns were discovered, those digital pheromone trails had relative 

subpath frequencies of less than 1%. This indicates that left turns with a duration of one 

minute or longer were performed less frequently than straight flight and right turns. Each 

arrow in figures 19, 21, and 23 represents a 1 second segment of the digital pheromone 

trail. The “jumps” in the digital pheromone trails from both result sets representing right 

turns (see figures 19 and 21) indicate the aircraft resumed straight flight, i.e. the aircraft 

heading was normalized to 90° after the “jump” in the digital pheromone trail. The 

decision tree models for the nonincremental (see figure 20) and incremental (see figure 

22) result sets are also similar, with each cluster having one maneuver which was 

performed much more frequently than the other maneuvers.  

Validation Results 

 During the test with synthetic data, the ant colony algorithm correctly discovered 

the shape (see figure 23), length (70), and strength (90) of the identical paths in 10 of the 

11 synthetic CSV files. The ant colony algorithm also correctly discovered the shape (see 

figure 23), length (24), and strength (20) of a repeating subpath of the different path in 

the other synthetic CSV file. The strength of the digital pheromone trail discovered for 

the 10 synthetic CSV files containing an identical path is 90 because, during the digital 

pheromone discovery phase of data preprocessing, the strength for a digital pheromone 
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trail is incremented by 2 for each path which contains the common subpath. The strength 

of the digital pheromone trail discovered for the other synthetic CSV is 20 because the 

digital pheromone trail was a common subpath to all of the identical paths in the 10 

synthetic CSV files. However, since the digital pheromone trail which was common to all 

of the 11 synthetic CSV files was shorter than the digital pheromone trail which was 

common to the 10 synthetic CSV files with identical paths, it was not used to classify 

those paths. The expected number of subpaths differed from the actual number of 

subpaths (see table 20) because, instead of the digital pheromone discovery algorithm 

representing each complete path as a single digital pheromone trail (i.e. the expected 

result), a shorter digital pheromone trail was discovered which was common to the paths 

in all 11 synthetic CSV files. Since this digital pheromone trail was shorter than the 

length of the different path, 17 subpaths were classified instead of 11. 

 Although the results from testing the decision tree model for the nonincremental 

results (see figure 20)  with a simple test program indicated its predicted values for 

heading angles had somewhat limited accuracy (with an average heading error of 21°), 

these results also indicated that the predicted values for ascent angles were highly 

accurate (with an average ascent angle error of 4°). The accuracy of the decision tree 

model at predicting ascent angles during the test suggest the decision tree model would 

be a better predictor of ascending and descending maneuvers performed by pilots of GA 

aircraft (e.g. descending turns) than the predictive algorithm in (Maedar, Morari, and  
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Baumgartner 2011). Also, the performance of the test program when applying the 

decision tree model was adequate, requiring an average time of only 0.38 seconds to 

generate a predicted maneuver when provided with the aircraft’s current altitude above 

MSL and proximity to the nearest uncontrolled airport.  

 Thus, a predictive algorithm based on the decision tree model would have good 

performance scalability with increasing numbers of GA aircraft in the surrounding 

airspace. As the complexity of the decision tree model for such a predictive algorithm 

increases, more floating-point comparisons will be required for predicting the future path 

of each GA aircraft. However, modern CPUs, and especially GPU-based parallel 

architectures such as NVIDIA’s CUDA, are highly efficient at floating-point 

comparisons. Furthermore, if a massive aircraft telemetry data set (e.g. a terabyte or more 

of raw data) was mined using these data preprocessing and mining algorithms, the 

accuracy of these probabilistic models could be substantially improved. 
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CHAPTER VI 

CONCLUSION 

 Probabilistic models for the behavior of pilots of GA aircraft flying in Class E 

airspace were obtained by data mining a large FDM data set (i.e. an aircraft telemetry 

data set). The FDM data set was preprocessed separately using both nonincremental and 

incremental data preprocessing algorithms. The nonincremental result set was data mined 

on a Beowulf computational cluster using parallelized versions of GKA and EMEA. The 

incremental result set was data mined sequentially on a quad-core server. 

 The membership probabilities for digital pheromone trails (discovered with a 

novel application of an ant colony algorithm) in the clusters of lower and higher altitudes 

from both the nonincremental and incremental result sets did not show a strong bias 

towards either of the two proximity clusters. This suggests that, at both low and high 

altitudes, different sets of maneuvers would be performed by a pilot flying a GA aircraft 

depending on whether the GA aircraft is near to or far from an uncontrolled airport. The 

decision tree models for both result sets were similar. In each cluster in both of the 

decision tree models, one maneuver was performed much more frequently than any of the 

other maneuvers. Thus, the two result sets were similar which indicates stability in the 

results produced by the two different types of preprocessing algorithms (i.e. 

nonincremental and incremental preprocessing). 
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 Future work for this research could include the following: 1) The FDM data set 

consisted exclusively of aircraft telemetry data from the University of North Dakota’s 

flight training program. Thus, the set of discovered maneuvers may not be equivalent to 

the set of maneuvers which could be discovered from a national aircraft telemetry data set 

containing data for GA aircraft. 2) The volumes of controlled airspace surrounding 

airports were only approximated, since any GA aircraft within the maximum possible 

volume of controlled airspace surrounding any controlled airport was considered to be in 

controlled airspace. These controlled airspace volumes could be more accurately 

represented by separately specifying the FAA-mandated controlled airspace volumes for 

each controlled airport in the airport database. 3) The aircraft’s altitude above mean sea 

level (MSL) was used as a data mining parameter, since this is the only type of altitude 

provided by FDM data. However, an aircraft’s altitude above ground level (AGL) is 

likely to be a variable which is more strongly correlated with the maneuvers performed 

by the pilot of a GA aircraft. This could be estimated using a terrain database such as 

NASA’s SRTM terrain database. 4) Not all variables which may have been correlated 

were considered, e.g. the prevailing weather conditions, the possibility of a mechanical 

failure, or the possibility of pilot error. Other data, such as METARs or an aircraft 

maintenance database could be correlated to the aircraft telemetry data set to include 

these parameters of the aircraft’s operational environment. 5) The predictive power of the 

decision tree models could not be validated in collision avoidance scenarios, since the 

GPAR-RMS research project was discontinued prior to completion of this research. 6) 

GKA was not implemented with a mutation operator which is independently applied to 

each component of each candidate solution. If the implementation of GKA was extended 
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to use such a mutation operator, GKA could be guaranteed to eventually converge to the 

globally optimal solution for any input data set. 7) The parallelized GKA could be 

extended to allow crossover between candidate solutions on distinct nodes in the Beowulf 

computational cluster. 8) Since EMEA does not allow crossover between candidate 

solutions, EMEA is not guaranteed to eventually converge to the globally optimal 

solution. Although extending EMEA to include a crossover operator would be non-

trivial, it would ensure EMEA would eventually converge to the globally optimal 

solution to the combinatorial optimization problem. 9) Using a distributed database server 

during parallel data mining, instead of a centralized database server, would increase data 

parallelism, thus considerably improving the performance of the parallelized GKA and 

EMEA. 

 In this dissertation, the author has documented his research on a novel application 

of an ant colony algorithm to the synthesis of aircraft telemetry data, which was then data 

mined to discover probabilistic models of the behavior of pilots of GA aircraft flying 

under VFR in Class E airspace. This is a novel application of an ant colony algorithm 

because existing research on ant colony algorithms has focused on their application to 

combinatorial optimization problems, not their application to pattern discovery. Ant 

colony algorithms could potentially be used to discover reoccurring patterns in any time 

series data, e.g. electromagnetic signals or financial markets.  

 Two clustering algorithms were studied for this research: 1) the Genetic K-Means 

algorithm, which combines a crisp clustering algorithm with a genetic algorithm, and 2) 

the Expectation-Maximization algorithm, which is a fuzzy clustering algorithm that 

estimates the probability of each data point belonging to each of the K clusters. The 
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Genetic K-Means algorithm was found to produce compact clusters without converging 

to local optima. The Expectation-Maximization algorithm was found to quickly produce 

fuzzy clusters, but also to frequently converge to local optima. However, the membership 

probabilities determined by the Expectation-Maximization algorithm provided good 

estimates of the number of naturally occurring clusters in the data sets.
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Appendix A 

Glossary of Acronyms 

ADM — Aircraft Data Miner 

ADS-B — Automatic Dependent Surveillance – Broadcast 

AGL — Above Ground Level 

ANNWA — Artificial Neural Network Weight Analysis 

ART — Adaptive Resonance Theory 

ATC — Air Traffic Control 

BIC — Bayesian Information Criterion 

BIRCH — Balanced Iterative Reducing and Clustering using Hierarchies 

COA — Certificate of Authorization 

CSV — Comma-Separated Values 

CUDA — Compute Unified Device Architecture 

DSD — Data Structure Diagram 

EC4.5 — Efficient C4.5 

EKF — Extended Kalman Filter 

EM — Expectation-Maximization 

EMEA — Expectation-Maximization Evolutionary Algorithm 

ETMS — Enhanced Traffic Management System 

FAA — Federal Aviation Administration 

FACTS — Flexible AC Transmission System 
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FDM — Flight Data Monitoring 

FGKA — Fast Genetic K-Means Algorithm 

GA — General Aviation 

GAIK — Genetic Algorithm Initialized K-Means algorithm 

GBAS — Graph-Based Ant System 

GCS — Ground Control Station 

GKA — Genetic K-Means Algorithm 

GKMODE — Genetic K-Modes algorithm 

GO — Ground Observer 

GPAR-RMS — Ganged Phased Array – Risk Mitigation System 

GPS — Global Positioning System 

HGKA — Hybrid Genetic K-Means Algorithm 

IDS — Information Display System 

IGKA — Incremental Genetic K-Means Algorithm 

IMM — Interacting Multiple Model 

KMA — K-Means Algorithm 

LAD — Logical Analysis of Data 

LOI — Location of Interest 

MILD — Moderate or Intense Low-oxygen Dilution 

MSL — Mean Sea Level 

NAS — National Airspace System 

NASA — National Aeronautics and Space Administration 

NFS — Network File System 
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NP — Nondeterministic Polynomial 

P — Polynomial 

PDF — Portable Document Format 

PGAIK — Partition-Based Genetic Algorithm Initialized K-Means 

PID — Proportional-Integral-Derivative 

PSO — Particle Swarm Optimization 

PVM — Parallel Virtual Machine 

RCC — Range Control Center 

RM — Risk Mitigation 

RSO — Range Safety Officer 

SFS — Sensor Fusion System 

SLIQ — Supervised Learning In Quest 

SQL — Structured Query Language 

SRTM — Shuttle Radar Topography Mission 

SVM — Support Vector Machine 

TCAS — Traffic Collision Avoidance System 

TSP — Traveling Salesman Problem 

TWCV — Total Within-Cluster Variation 

UA — Unmanned Aircraft 

UAS — Unmanned Aircraft System 

VFR — Visual Flight Rules 
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VQPCA — Vector Quantization Principal Component Analysis 

WAAS — Wide Area Augmentation System 

XML — Extensible Markup Language 
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Appendix B 

Glossary of Aviation Terms 

ADS-B — A protocol for regularly transmitting and receiving GPS-based telemetry data 

between proximate transceivers, such as aircraft with onboard ADS-B transceivers or 

base stations. 

Class B Airspace — Largest airspace class which can surround a controlled airport. 

Class E Airspace — National airspace below 18,000 feet MSL which is not Class G 

airspace. 

Controlled Airport — An airport with an ATC tower. 

FDM — A process whereby GPS-based telemetry data and other performance data for 

aircraft are archived by onboard equipment, such as the Garmin G1000, for later analysis. 

General Aviation — A flight conducted by a private pilot, i.e. a pilot who is not 

associated with the military or a commercial airline company. 

Instrument Flight Rules — A set of flight rules where the pilot uses only avionics 

instruments and directions from ATC to avoid potential conflicts with other aircraft. 

Uncontrolled Airport — An airport without an ATC tower. 

Visual Flight Rules — A set of flight rules for pilots where the pilot visually searches for 

nearby aircraft and avoids any potential conflicts with other aircraft. 
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