10,559 research outputs found

    Matrix dynamics of fuzzy spheres

    Get PDF
    We study the dynamics of fuzzy two-spheres in a matrix model which represents string theory in the presence of RR flux. We analyze the stability of known static solutions of such a theory which contain commuting matrices and SU(2) representations. We find that irreducible as well as reducible representations are stable. Since the latter are of higher energy, this stability poses a puzzle. We resolve this puzzle by noting that reducible representations have marginal directions corresponding to non-spherical deformations. We obtain new static solutions by turning on these marginal deformations. These solutions now have instability or tachyonic directions. We discuss condensation of these tachyons which correspond to classical trajectories interpolating from multiple, small fuzzy spheres to a single, large sphere. We briefly discuss spatially independent configurations of a D3/D5 system described by the same matrix model which now possesses a supergravity dual.Comment: 26 pages, 3 figures, uses JHEP.cls; (v2) references adde

    Scalar Solitons on the Fuzzy Sphere

    Full text link
    We study scalar solitons on the fuzzy sphere at arbitrary radius and noncommutativity. We prove that no solitons exist if the radius is below a certain value. Solitons do exist for radii above a critical value which depends on the noncommutativity parameter. We construct a family of soliton solutions which are stable and which converge to solitons on the Moyal plane in an appropriate limit. These solutions are rotationally symmetric about an axis and have no allowed deformations. Solitons that describe multiple lumps on the fuzzy sphere can also be constructed but they are not stable.Comment: 24 pages, 2 figures, typo corrected and stylistic changes. v3: reference adde

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Magnetic operations: a little fuzzy physics?

    Full text link
    We examine the behaviour of charged particles in homogeneous, constant and/or oscillating magnetic fields in the non-relativistic approximation. A special role of the geometric center of the particle trajectory is elucidated. In quantum case it becomes a 'fuzzy point' with non-commuting coordinates, an element of non-commutative geometry which enters into the traditional control problems. We show that its application extends beyond the usually considered time independent magnetic fields of the quantum Hall effect. Some simple cases of magnetic control by oscillating fields lead to the stability maps differing from the traditional Strutt diagram.Comment: 28 pages, 8 figure

    The predictive functional control and the management of constraints in GUANAY II autonomous underwater vehicle actuators

    Get PDF
    Autonomous underwater vehicle control has been a topic of research in the last decades. The challenges addressed vary depending on each research group's interests. In this paper, we focus on the predictive functional control (PFC), which is a control strategy that is easy to understand, install, tune, and optimize. PFC is being developed and applied in industrial applications, such as distillation, reactors, and furnaces. This paper presents the rst application of the PFC in autonomous underwater vehicles, as well as the simulation results of PFC, fuzzy, and gain scheduling controllers. Through simulations and navigation tests at sea, which successfully validate the performance of PFC strategy in motion control of autonomous underwater vehicles, PFC performance is compared with other control techniques such as fuzzy and gain scheduling control. The experimental tests presented here offer effective results concerning control objectives in high and intermediate levels of control. In high-level point, stabilization and path following scenarios are proven. In the intermediate levels, the results show that position and speed behaviors are improved using the PFC controller, which offers the smoothest behavior. The simulation depicting predictive functional control was the most effective regarding constraints management and control rate change in the Guanay II underwater vehicle actuator. The industry has not embraced the development of control theories for industrial systems because of the high investment in experts required to implement each technique successfully. However, this paper on the functional predictive control strategy evidences its easy implementation in several applications, making it a viable option for the industry given the short time needed to learn, implement, and operate, decreasing impact on the business and increasing immediacy.Peer ReviewedPostprint (author's final draft

    Fixed points and fuzzy stability of an additive-quadratic functional equation

    Get PDF
    Ministry of Education, Science and TechnologyThe fuzzy stability problems for the Cauchy additive functional equation and the Jensen additive functional equation in fuzzy Banach spaces have been investigated by Moslehian et al. Using fixed point method, we prove the Hyers-Ulam stability of the functional equation lf (Sigma(l)(i=1)x(i)) + Sigma(l)(i=1)f(lx(i) - Sigma(l)(i=1)d(j)) (0.1) = l(2) + l/2 Sigma(l)(i=1)f(x(i)) + l(2) - l/2 Sigma(l)(i=1)f(-x(i)) (l >= 2) in fuzzy Banach spaces.Basic Science Research Program through the National Research Foundation of Kore
    corecore