1,165 research outputs found

    The Semantic Web Paradigm for a Real-Time Agent Control (Part I)

    Get PDF
    For the Semantic Web point of view, computers must have access to structured collections of information and sets of inference rules that they can use to conduct automated reasoning. Adding logic to the Web, the means to use rules to make inferences, choose courses of action and answer questions, is the actual task for the distributed IT community. The real power of Intelligent Web will be realized when people create many programs that collect Web content from diverse sources, process the information and exchange the results with other programs. The first part of this paper is an introductory of Semantic Web properties, and summarises agent characteristics and their actual importance in digital economy. The second part presents the predictability of a multiagent system used in a learning process for a control problem.Semantic Web, agents, fuzzy knowledge, evolutionary computing

    Monitoring appliances sensor data in home environment:Issues and challenges

    Get PDF

    A semantic context management framework on mobile device

    Get PDF
    We present a semantic context management framework named ContextTorrent, which can make various types of context information be semantically searchable and sharable among local and remote context-aware applications. We implement this framework on the Google Android platform with its elegant application support. An open source RDF parser has been extended to effectively get RDF triples from files or over the network. Three embedded database systems were evaluated for storing ontology represented contexts in the resource-constrained mobile devices. We use the FOAF ontology schema and a synthetic data set of up to 2500 records to evaluate the context query and storage performance. Ordinary context queries can be replied instantaneously.published_or_final_versionThe 6th IEEE International Conference on Embedded Software and Systems (ICESS 2009), Zhejiang, China, 25-27 May 2009. In Proceedings of the 6th ICESS, 2009, p. 331-33

    Hybrid approaches based on computational intelligence and semantic web for distributed situation and context awareness

    Get PDF
    2011 - 2012The research work focuses on Situation Awareness and Context Awareness topics. Specifically, Situation Awareness involves being aware of what is happening in the vicinity to understand how information, events, and one’s own actions will impact goals and objectives, both immediately and in the near future. Thus, Situation Awareness is especially important in application domains where the information flow can be quite high and poor decisions making may lead to serious consequences. On the other hand Context Awareness is considered a process to support user applications to adapt interfaces, tailor the set of application-relevant data, increase the precision of information retrieval, discover services, make the user interaction implicit, or build smart environments. Despite being slightly different, Situation and Context Awareness involve common problems such as: the lack of a support for the acquisition and aggregation of dynamic environmental information from the field (i.e. sensors, cameras, etc.); the lack of formal approaches to knowledge representation (i.e. contexts, concepts, relations, situations, etc.) and processing (reasoning, classification, retrieval, discovery, etc.); the lack of automated and distributed systems, with considerable computing power, to support the reasoning on a huge quantity of knowledge, extracted by sensor data. So, the thesis researches new approaches for distributed Context and Situation Awareness and proposes to apply them in order to achieve some related research objectives such as knowledge representation, semantic reasoning, pattern recognition and information retrieval. The research work starts from the study and analysis of state of art in terms of techniques, technologies, tools and systems to support Context/Situation Awareness. The main aim is to develop a new contribution in this field by integrating techniques deriving from the fields of Semantic Web, Soft Computing and Computational Intelligence. From an architectural point of view, several frameworks are going to be defined according to the multi-agent paradigm. Furthermore, some preliminary experimental results have been obtained in some application domains such as Airport Security, Traffic Management, Smart Grids and Healthcare. Finally, future challenges is going to the following directions: Semantic Modeling of Fuzzy Control, Temporal Issues, Automatically Ontology Elicitation, Extension to other Application Domains and More Experiments. [edited by author]XI n.s

    A methodology for structured ontology construction applied to intelligent transportation systems

    Get PDF
    The number of computers installed in urban and transport networks has grown tremendously in recent years, also the local processing capabilities and digital networking currently available. However, the heterogeneity of existing equipment in the field of ITS (Intelligent Transportation Systems) and the large volume of information they handle, greatly hinder the interoperability of the equipment and the design of cooperative applications between devices currently installed in urban networks. While the dynamic discovery of information, composition and invocation of services through intelligent agents are a potential solution to these problems, all these technologies require intelligent management of information flows. In particular, it is necessary to wean these information flows of the technologies used, enabling universal interoperability between computers, regardless of the context in which they are located. The main objective of this paper is to propose a systematic methodology to create ontologies, using methods such as a semantic clustering algorithms for retrieval and representation of information. Using the proposed methodology, an ontology will be developed in the ITS domain. This ontology will serve as the basis of semantic information to a SS (Semantic Service) that allows the connection of new equipment to an urban network. The SS uses the CORBA standard as distributed communication architecture

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Semantic reasoning in cognitive networks for heterogeneous wireless mesh systems

    Get PDF
    The next generation of wireless networks is expected to provide not only higher bandwidths anywhere and at any time but also ubiquitous communication using different network types. However, several important issues including routing, self-configuration, device management, and context awareness have to be considered before this vision becomes reality. This paper proposes a novel cognitive network framework for heterogeneous wireless mesh systems to abstract the network control system from the infrastructure by introducing a layer that separates the management of different radio access networks from the data transmission. This approach simplifies the process of managing and optimizing the networks by using extendable smart middleware that automatically manages, configures, and optimizes the network performance. The proposed cognitive network framework, called FuzzOnto, is based on a novel approach that employs ontologies and fuzzy reasoning to facilitate the dynamic addition of new network types to the heterogeneous network. The novelty is in using semantic reasoning with cross-layer parameters from heterogeneous network architectures to manage and optimize the performance of the networks. The concept is demonstrated through the use of three network architectures: 1) wireless mesh network; 2) long-term evolution (LTE) cellular network; and 3) vehicular ad hoc network (VANET). These networks utilize nonoverlapped frequency bands and can operate simultaneously with no interference. The proposed heterogeneous network was evaluated using ns-3 network simulation software. The simulation results were compared with those produced by other networks that utilize multiple transmission devices. The results showed that the heterogeneous network outperformed the benchmark networks in both urban and VANET scenarios by up to 70% of the network throughput, even when the LTE network utilized a high bandwidth

    A new fuzzy ontology development methodology (FODM) proposal

    Full text link
    There is an upsurge in applying fuzzy ontologies to represent vague information in the knowledge representation field. Current research in the fuzzy ontologies paradigm mainly focuses on developing formalism languages to represent fuzzy ontologies, designing fuzzy ontology editors, and building fuzzy ontology applications in different domains. Less focus falls on establishing a formal methodological approach for building fuzzy ontologies. Existing fuzzy ontology development methodologies, such as the IKARUS-Onto methodology and Fuzzy Ontomethodology, provide formalized schedules for the conversion from crisp ontologies into fuzzy ones. However, a formal guidance on how to build fuzzy ontologies from scratch still lacks in current research. Therefore, this paper presents the first methodology, named FODM, for developing fuzzy ontologies from scratch. The proposed FODM can provide a very good guideline for formally constructing fuzzy ontologies in terms of completeness, comprehensiveness, generality, efficiency, and accuracy. To explain how the FODM works and demonstrate its usefulness, a fuzzy seabed characterization ontology is built based on the FODM and described step-by-step
    • …
    corecore