25 research outputs found

    CONTROL OF METAL TRANSFER AT GIVEN ARC VARIABLES

    Get PDF
    Gas Metal Arc Welding (GMAW) is one of the most important welding processes in industrial application. To control metal transfer at given variables is a focus in the field of research and development in welding community. In this dissertation, laser enhanced GMAW is proposed and developed by adding a lower power laser onto the droplet to generate an auxiliary detaching force. The electromagnetic force needed to detach droplets, thus the current that determines this force, is reduced. Wire feed speed, arc voltage, and laser intensity were identified as three major parameters that affect the laser enhanced metal transfer process and a systematic series of experiments were designed and conducted to test these parameters. The behaviors of the laser enhanced metal transfer process observed from high speed images were analyzed using the established physics of metal transfer. In all experiments, the laser was found to affect the metal transfer process as an additional detaching force that tended to change a short-circuiting transfer to drop globular or drop spray, reduce the diameter of the droplet detached in drop globular transfer, or decrease the diameter of the droplet such that the transfer changed from drop globular to drop spray. The enhancement of the laser was found to increase as the laser intensity increased. The larger laser intensity tended to help reduce the size of the droplet detached. The arc voltage affected the metal transfer process through changing the current and changing the gap and possible time interval of the droplet development. A larger arc voltage helped reduce the size of the droplet detached through an increased electromagnetic force. Desired heat input and current/arc pressure waveforms may thus be both delivered and controlled by GMAW through laser enhancement. Laser recoil pressure force was estimated based on the difference of gravitational force with and without laser pulse, and the result was with an acceptable accuracy. Good formation of welds and full penetration of thin plate could be obtained using laser enhanced GMAW. A nonlinear model was established to simulate the dynamic metal transfer in laser enhanced GMAW, and the results agree with the experimental one

    Welding Processes

    Get PDF
    Despite the wide availability of literature on welding processes, a need exists to regularly update the engineering community on advancements in joining techniques of similar and dissimilar materials, in their numerical modeling, as well as in their sensing and control. In response to InTech's request to provide undergraduate and graduate students, welding engineers, and researchers with updates on recent achievements in welding, a group of 34 authors and co-authors from 14 countries representing five continents have joined to co-author this book on welding processes, free of charge to the reader. This book is divided into four sections: Laser Welding; Numerical Modeling of Welding Processes; Sensing of Welding Processes; and General Topics in Welding

    Monitoração e análises da penetração do cordão de solda atraves da observação da oscilação da poça de fusão no processo GMAW-S

    Get PDF
    Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2018.A busca por métodos de produção com melhor controle da qualidade e maior produtividade tem impulsionado o uso de sistemas automatizados em processos industriais como a soldagem. Porém, tornar a soldagem eficiente e econômica, é necessário para reduzir o desperdício de material e tempo gasto na produção e ensaios de verificação de qualidade. Isso pode ser conseguido por meio de sistemas automatizados que substituam os soldadores especialistas e sejam capazes de prever a geometria do cordão de solda a partir dos parâmetros de soldagem – permitindo que um processo realizado com os parâmetros determinados forneça uma junta com as propriedades mecânicas desejadas. Durante anos, muito se tem feito no sentido de prever os problemas na soldagem com o intuito de torná-la um processo estável, capaz de efetuar uniões de peças com o mínimo de interferência humana. Dos vários sensores utilizados em processos de soldagem, ainda não há uma opção eficaz capaz de identificar, diretamente, as características do cordão obtido durante o processo. Esse é um fator limitante no controle do processo, pois somente é possível determinar as características do cordão após a realização da solda através de ensaios (destrutivos ou não), quando nenhuma ação de controle pode ser tomada. Este trabalho propõe o desenvolvimento de um sistema de monitoramento da poça de fusão em tempo real usado para obter imagens do comportamento da oscilação da poça durante a solda. Uma nova abordagem para este tipo de imagens é a utilização de um sistema de iluminação por laser do processo, de modo que uma imagem de alta qualidade natural da poça de fusão, eletrodo e cordão de solda possa ser obtida, dando detalhes da poça e arredores. Essa estratégia, independente de modelos pré-definidos do processo, permite controlar a penetração dos cordões de solda no processo GMAW no modo de transferência metálica por curto-circuito (GMAW-S). Para o modelo e controlador definiu-se a utilização de sistemas inteligentes focados diretamente nas medições da oscilação da poça de fusão e a estimação da penetração dos cordões de solda a partir dos parâmetros de processo. Finalmente, um modelo para relacionar a profundidade da penetração, a frequência de oscilação da poça com a formação e o padrão das escamas na superfície do cordão de solda é proposto.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ).The search for methods of production with better quality control and greater productivity has promoted the use of automated systems in industrial processes such as welding. However, make the welding efficient and economical; it is necessary to reduce the waste and time spent on the production and quality tests. This can be achieved by means of automated systems to replace those skilled welders and be able to predict the geometry of the weld bead as welding parameters - allowing a process performed with the determined parameters provide a joint with the desired mechanical properties. For years, much has been done to predict problems in welding in order to make it a stable process capable of making unions parts with minimal human interference. The various sensors used in welding processes, there is still no effective option able to identify, directly, the weld bead characteristics obtained during the process. This is a limiting factor in the process control, because only can be determined the weld bead characteristics after the completion of welding through testing (destructive or not) when no control action can be taken. This work proposes the development of a real-time weld pool monitoring system to obtain the images of the weld pool oscillation behavior during welding. A novel approach to this type of images is the use of a laser lighting system for illumination of the process, so that a high quality natural image of the weld pool, electrode and weld bead can be obtained, giving details of the weld pool and surrounding area. This strategy, regardless of predefined models, can control the weld bead penetration in the GMAW-S process. For the proposed model and controller is defined the use of intelligent systems focused on the measurements of the weld pool oscillations and the estimation of the weld bead penetration from the process parameters. Finally, a model to relate the weld penetration depth, the weld pool oscillation frequency with the formation and the pattern of the ripples on the weld bead surface is proposed

    Book of abstracts of the 14th International Symposium of Croatian Metallurgical Society - SHMD \u272020, Materials and metallurgy

    Get PDF
    Book of abstracts of the 14th International Symposium of Croatian Metallurgical Society - SHMD \u272020, Materials and metallurgy held in Šibenik, Croatia, June 21-26, 2020. Abstracts are organized in four sections: Materials - section A; Process metallurgy - Section B; Plastic processing - Section C and Metallurgy and related topics - Section D

    Current Air Quality Issues

    Get PDF
    Air pollution is thus far one of the key environmental issues in urban areas. Comprehensive air quality plans are required to manage air pollution for a particular area. Consequently, air should be continuously sampled, monitored, and modeled to examine different action plans. Reviews and research papers describe air pollution in five main contexts: Monitoring, Modeling, Risk Assessment, Health, and Indoor Air Pollution. The book is recommended to experts interested in health and air pollution issues

    CIRP Encyclopedia of Production Engineering

    Get PDF
    This high quality reference work has been written and reviewed by members of The International Academy for Production Engineering, also known as CIRP. This Academy is recognized worldwide to represent the highest standards in research on production engineering, which includes design, optimization, control, management of processes, machines, and systems. One key concept behind this Encyclopedia is that apart from covering fundamental concepts in the field of production engineering, it also closely follows recent developments and emerging concepts. In particular this renewed print edition covers a wide range of new topical entries such as Hybrid Processes, High Performance Grinding, Biomimetic Design, Cold Spray, Sheet-bulk Metal Forming, Ecodesign, Cyber Physical System, Nano Technology, or Geometrical Product Specification. The second edition also comprises reviewed entries from the first version, which have been updated to reflect new standards or developments. The target audience primarily comprises researchers, engineers, managers, graduate students, and many others whose day-to-day work gravitates around production engineering technologies in the global market

    NASA Tech Briefs, December 1991

    Get PDF
    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences

    NASA Tech Briefs, August 1991

    Get PDF
    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Aeronautical engineering: A continuing bibliography with indexes (supplement 286)

    Get PDF
    This bibliography lists 845 reports, articles, and other documents introduced into the NASA scientific and technical information system in Dec. 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    corecore