6,434 research outputs found

    Evidence/Discovery-Based Evolving Ontology (EDBEO)

    Get PDF
    This paper presents a proposal for the development of an ontology evolution strategy which refines ontological relations in scientific ontologies. In addition to experts’ consensus, it is desirable to define ontological relations between any two concepts in a scientific ontology based on scientific evidence. To address this issue, we can relate ontological relations to different research results obtained from various studies. To implement this solution, our envisaged evidence/discovery-based methodology integrates a higher-level ontology (systematic review ontology) into a systematic review agent which employs a Fuzzy Inference System in order to automatically modifyontological relations of a domain ontology based on the evidence received from information resources. The evidence/discovery-based methodology will further use the domain ontology to discover novel connections between distinct literatures, thereby, enrich its conceptualization

    Multi-Agent Systems

    Get PDF
    A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous and proactive software components. Multi-agent systems have been brought up and used in several application domains

    An Ontology Based Approach To The Integration Of Heterogeneous Information Systems Supporting Integrated Provincial Administration In Khon Kaen, Thailand

    Get PDF
    Information systems are a necessity to the administration of organizations. In a recent reform to the Thai administration, the governor of each province is entrusted with the full responsibility for the strategic planning and execution of the Integrated Provincial Administration (IPA). This presents a big challenge and many difficult problems for a potentially fast growing, both economically and demographically, province, such as Khon Kaen. To provide the administrator of the province with reliable and up to date information, the Provincial Operation Centre (POC) has been set up and assigned the task of collecting all required information from disparate information systems, many of which are legacy systems. This information lacks interoperability and integration of data due to many different structures and semantic heterogeneity encountered in many information systems. This research is a part of a collaborative data sources community development project. It attempts to aid high-level decision makers by using ontology to resolve heterogeneities among many disparate data sources. After relevant data sources are identified, they are analysed to reveal important and corresponding concepts, attributes and relations. They are then used in the creation of ontologies to resolve schematic and semantic conflicts in the data sources. The integration of many heterogeneous information systems will provide a unified view of information facilitating the provincial administrator in his decision making

    Data quality issues in electronic health records for large-scale databases

    Get PDF
    Data Quality (DQ) in Electronic Health Records (EHRs) is one of the core functions that play a decisive role to improve the healthcare service quality. The DQ issues in EHRs are a noticeable trend to improve the introduction of an adaptive framework for interoperability and standards in Large-Scale Databases (LSDB) management systems. Therefore, large data communications are challenging in the traditional approaches to satisfy the needs of the consumers, as data is often not capture directly into the Database Management Systems (DBMS) in a seasonably enough fashion to enable their subsequent uses. In addition, large data plays a vital role in containing plenty of treasures for all the fields in the DBMS. EHRs technology provides portfolio management systems that allow HealthCare Organisations (HCOs) to deliver a higher quality of care to their patients than that which is possible with paper-based records. EHRs are in high demand for HCOs to run their daily services as increasing numbers of huge datasets occur every day. Efficient EHR systems reduce the data redundancy as well as the system application failure and increase the possibility to draw all necessary reports. However, one of the main challenges in developing efficient EHR systems is the inherent difficulty to coherently manage data from diverse heterogeneous sources. It is practically challenging to integrate diverse data into a global schema, which satisfies the need of users. The efficient management of EHR systems using an existing DBMS present challenges because of incompatibility and sometimes inconsistency of data structures. As a result, no common methodological approach is currently in existence to effectively solve every data integration problem. The challenges of the DQ issue raised the need to find an efficient way to integrate large EHRs from diverse heterogeneous sources. To handle and align a large dataset efficiently, the hybrid algorithm method with the logical combination of Fuzzy-Ontology along with a large-scale EHRs analysis platform has shown the results in term of improved accuracy. This study investigated and addressed the raised DQ issues to interventions to overcome these barriers and challenges, including the provision of EHRs as they pertain to DQ and has combined features to search, extract, filter, clean and integrate data to ensure that users can coherently create new consistent data sets. The study researched the design of a hybrid method based on Fuzzy-Ontology with performed mathematical simulations based on the Markov Chain Probability Model. The similarity measurement based on dynamic Hungarian algorithm was followed by the Design Science Research (DSR) methodology, which will increase the quality of service over HCOs in adaptive frameworks

    DESIGN AND EXPLORATION OF NEW MODELS FOR SECURITY AND PRIVACY-SENSITIVE COLLABORATION SYSTEMS

    Get PDF
    Collaboration has been an area of interest in many domains including education, research, healthcare supply chain, Internet of things, and music etc. It enhances problem solving through expertise sharing, ideas sharing, learning and resource sharing, and improved decision making. To address the limitations in the existing literature, this dissertation presents a design science artifact and a conceptual model for collaborative environment. The first artifact is a blockchain based collaborative information exchange system that utilizes blockchain technology and semi-automated ontology mappings to enable secure and interoperable health information exchange among different health care institutions. The conceptual model proposed in this dissertation explores the factors that influences professionals continued use of video- conferencing applications. The conceptual model investigates the role the perceived risks and benefits play in influencing professionals’ attitude towards VC apps and consequently its active and automatic use

    Resolution of Semantic Heterogeneity in Database Schema Integration Using Formal Ontologies

    Get PDF
    This paper addresses the problem of handling semantic heterogeneity during database schema integration. We focus on the semantics of terms used as identifiers in schema definitions. Our solution does not rely on the names of the schema elements or the structure of the schemas. Instead, we utilize formal ontologies consisting of intensional definitions of terms represented in a logical language. The approach is based on similarity relations between intensional definitions in different ontologies. We present the definitions of similarity relations based on intensional definitions in formal ontologies. The extensional consequences of intensional relations are addressed. The paper shows how similarity relations are discovered by a reasoning system using a higher-level ontology. These similarity relations are then used to derive an integrated schema in two steps. First, we show how to use similarity relations to generate the class hierarchy of the global schema. Second, we explain how to enhance the class definitions with attributes. This approach reduces the cost of generating or re-generating global schemas for tightly-coupled federated database

    An ontological framework for the formal representation and management of human stress knowledge

    Get PDF
    There is a great deal of information on the topic of human stress which is embedded within numerous papers across various databases. However, this information is stored, retrieved, and used often discretely and dispersedly. As a result, discovery and identification of the links and interrelatedness between different aspects of knowledge on stress is difficult. This restricts the effective search and retrieval of desired information. There is a need to organize this knowledge under a unifying framework, linking and analysing it in mutual combinations so that we can obtain an inclusive view of the related phenomena and new knowledge can emerge. Furthermore, there is a need to establish evidence-based and evolving relationships between the ontology concepts.Previous efforts to classify and organize stress-related phenomena have not been sufficiently inclusive and none of them has considered the use of ontology as an effective facilitating tool for the abovementioned issues.There have also been some research works on the evolution and refinement of ontology concepts and relationships. However, these fail to provide any proposals for an automatic and systematic methodology with the capacity to establish evidence-based/evolving ontology relationships.In response to these needs, we have developed the Human Stress Ontology (HSO), a formal framework which specifies, organizes, and represents the domain knowledge of human stress. This machine-readable knowledge model is likely to help researchers and clinicians find theoretical relationships between different concepts, resulting in a better understanding of the human stress domain and its related areas. The HSO is formalized using OWL language and Protégé tool.With respect to the evolution and evidentiality of ontology relationships in the HSO and other scientific ontologies, we have proposed the Evidence-Based Evolving Ontology (EBEO), a methodology for the refinement and evolution of ontology relationships based on the evidence gleaned from scientific literature. The EBEO is based on the implementation of a Fuzzy Inference System (FIS).Our evaluation results showed that almost all stress-related concepts of the sample articles can be placed under one or more category of the HSO. Nevertheless, there were a number of limitations in this work which need to be addressed in future undertakings.The developed ontology has the potential to be used for different data integration and interoperation purposes in the domain of human stress. It can also be regarded as a foundation for the future development of semantic search engines in the stress domain

    Conceptual graph-based knowledge representation for supporting reasoning in African traditional medicine

    Get PDF
    Although African patients use both conventional or modern and traditional healthcare simultaneously, it has been proven that 80% of people rely on African traditional medicine (ATM). ATM includes medical activities stemming from practices, customs and traditions which were integral to the distinctive African cultures. It is based mainly on the oral transfer of knowledge, with the risk of losing critical knowledge. Moreover, practices differ according to the regions and the availability of medicinal plants. Therefore, it is necessary to compile tacit, disseminated and complex knowledge from various Tradi-Practitioners (TP) in order to determine interesting patterns for treating a given disease. Knowledge engineering methods for traditional medicine are useful to model suitably complex information needs, formalize knowledge of domain experts and highlight the effective practices for their integration to conventional medicine. The work described in this paper presents an approach which addresses two issues. First it aims at proposing a formal representation model of ATM knowledge and practices to facilitate their sharing and reusing. Then, it aims at providing a visual reasoning mechanism for selecting best available procedures and medicinal plants to treat diseases. The approach is based on the use of the Delphi method for capturing knowledge from various experts which necessitate reaching a consensus. Conceptual graph formalism is used to model ATM knowledge with visual reasoning capabilities and processes. The nested conceptual graphs are used to visually express the semantic meaning of Computational Tree Logic (CTL) constructs that are useful for formal specification of temporal properties of ATM domain knowledge. Our approach presents the advantage of mitigating knowledge loss with conceptual development assistance to improve the quality of ATM care (medical diagnosis and therapeutics), but also patient safety (drug monitoring)

    DevOps Ontology - An ontology to support the understanding of DevOps in the academy and the software industry

    Get PDF
    Currently, the degree of knowledge about what DevOps really means and what it entails is still limited. This can result in an informal and even incorrect implementation in many cases. Although several proposals related to DevOps adoption can be found, confusion is not uncommon and terminology conflict between the proposals is still evident. This article proposes DevOps Ontology, a semi-formal ontology that proposes a generic, consistent, and clear language to enable the dissemination of information related to implementing DevOps in software development. The ontology presented in this article facilitates the understanding of DevOps by identifying the relationships between software process elements and the agile principles/values that may be related to them. The DevOps Ontology has been defined considering the following aspects: the REFSENO formalism that uses the representation in UML was used and the language OWL language using Prótegé and HermiT Reasoner to evaluate the consistency of its structure. Likewise, it was satisfactorily evaluated in three application cases: a theoretical validation; instantiation of the continuous integration and deployment practices proposed by the company GitLab. Furthermore, a mobile app was created to retrieve information from the DevOps Ontology using the SPARQL protocol and RDF language. The app also evaluated the Ontology’s proficiency in responding to knowledge-based questions using SPARQL. The results showed that DevOps Ontology is consistent, complete, and concise, i.e.: to say: the consistency could be observed in the ability to be able to infer knowledge from the ontology, ensuring that the ontology is complete by checking for any incompleteness and verifying that all necessary definitions and inferences are well-established. Additionally, the ontology was assessed for conciseness to ensure that it doesn't contain redundant or unnecessary definitions. Furthermore, it has the potential for improvement by incorporating new concepts and relationships as needed. The newly suggested ontology creates a set of terms that provide a systematic and structured approach to organizing the existing knowledge in the field. This helps to minimize the confusion, inconsistency, and heterogeneity of the terminologies and concepts in the area of interest
    • …
    corecore