11,333 research outputs found

    Modelling supplier selection and material purchasing for the construction supply chain in a fuzzy scenario-based environment

    Full text link
    Mathematical relations between supplier capacities, the resulting material supply shortages, together with the impact of material delays on construction projects are not well defined. In response to this, this paper presents a novel multi-objective mixed integer linear programming model that considers the selection of suitable suppliers, inventory management practices, order quantities and the possibility of splitting a material order as integrated decisions to be optimised. The trade-off between the overall procurement cost and the weighted lateness, a measure of material delay impacts, is optimised. Material prices, supplier capacities, and resulting delays are treated as fuzzy scenario-based parameters. The proposed model is tested on a numerical example and computation experiments validate the model performance. An extensive sensitivity analysis is carried out and results suggest that by considering high variations in uncertain supplier capacities, the model would generate lower procurement cost and show less significant delay impacts. Whereas greater variations in uncertain material prices cause the total procurement cost to grow 55%; greater variations in uncertain delay durations also drastically increase the weighted lateness by over 70%. This highlights the importance of having high quality estimates for uncertain parameters. Additionally, the analysis also indicates that a minimum overall satisfaction level of 0.9338 can be achieved depending on the model user's strategies, and the proposed scenario-adjusted problem outperforms problems modelled under deterministic market conditions. The major contribution of this paper lies in the development of a fuzzy scenario-based model to solve the supplier selection and material purchasing problem in construction supply chains

    A decision support tool for procurement planning process under uncertainty

    Get PDF
    This communication presents a method to support the customer in the choice of a procurement plan when the gross requirements are ill-known, in a context of collaboration with the supplier. A general model of imperfect parameter representation is suggested, imperfection gathering uncertainty (through various scenarios) and imprecision (through quantities and dates expressed by possibility distribution). A method to compute the possible quantities required to satisfy the gross requirements under the supplier delivering constraints is proposed. From this value, a set of possible supplied quantities is computed to support the decision making of the customer. The decision maker then evaluates the procurement plan with the possible evolution of the inventory

    Decision support for build-to-order supply chain management through multiobjective optimization

    Get PDF
    This is the post-print version of the final paper published in International Journal of Production Economics. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.This paper aims to identify the gaps in decision-making support based on multiobjective optimization (MOO) for build-to-order supply chain management (BTO-SCM). To this end, it reviews the literature available on modelling build-to-order supply chains (BTO-SC) with the focus on adopting MOO techniques as a decision support tool. The literature has been classified based on the nature of the decisions in different part of the supply chain, and the key decision areas across a typical BTO-SC are discussed in detail. Available software packages suitable for supporting decision making in BTO supply chains are also identified and their related solutions are outlined. The gap between the modelling and optimization techniques developed in the literature and the decision support needed in practice are highlighted. Future research directions to better exploit the decision support capabilities of MOO are proposed. These include: reformulation of the extant optimization models with a MOO perspective, development of decision supports for interfaces not involving manufacturers, development of scenarios around service-based objectives, development of efficient solution tools, considering the interests of each supply chain party as a separate objective to account for fair treatment of their requirements, and applying the existing methodologies on real-life data sets.Brunel Research Initiative and Enterprise Fund (BRIEF

    A fuzzy multi-criteria decision making approach for managing performance and risk in integrated procurement-production planning

    Get PDF
    Nowadays in Supply Chain (SC) networks, a high level of risk comes from SC partners. An effective risk management process becomes as a consequence mandatory, especially at the tactical planning level. The aim of this article is to present a risk-oriented integrated procurement–production approach for tactical planning in a multi-echelon SC network involving multiple suppliers, multiple parallel manufacturing plants, multiple subcontractors and several customers. An originality of the work is to combine an analytical model allowing to build feasible scenarios and a multi-criteria approach for assessing these scenarios. The literature has mainly addressed the problem through cost or profit-based optimisation and seldom considers more qualitative yet important criteria linked to risk, like trust in the supplier, flexibility or resilience. Unlike the traditional approaches, we present a method evaluating each possible supply scenario through performance-based and risk-based decision criteria, involving both qualitative and quantitative factors, in order to clearly separate the performance of a scenario and the risk taken if it is adopted. Since the decision-maker often cannot provide crisp values for some critical data, fuzzy sets theory is suggested in order to model vague information based on subjective expertise. Fuzzy Technique for Order of Preference by Similarity to Ideal Solution is used to determine both the performance and risk measures correlated to each possible tactical plan. The applicability and tractability of the proposed approach is shown on an illustrative example and a sensitivity analysis is performed to investigate the influence of criteria weights on the selection of the procurement–production plan

    A fuzzy multi-criteria decision making approach for managing performance and risk in integrated procurement-production planning

    Get PDF
    Nowadays in Supply Chain (SC) networks, a high level of risk comes from SC partners. An effective risk management process becomes as a consequence mandatory, especially at the tactical planning level. The aim of this article is to present a risk-oriented integrated procurement–production approach for tactical planning in a multi-echelon SC network involving multiple suppliers, multiple parallel manufacturing plants, multiple subcontractors and several customers. An originality of the work is to combine an analytical model allowing to build feasible scenarios and a multi-criteria approach for assessing these scenarios. The literature has mainly addressed the problem through cost or profit-based optimisation and seldom considers more qualitative yet important criteria linked to risk, like trust in the supplier, flexibility or resilience. Unlike the traditional approaches, we present a method evaluating each possible supply scenario through performance-based and risk-based decision criteria, involving both qualitative and quantitative factors, in order to clearly separate the performance of a scenario and the risk taken if it is adopted. Since the decision-maker often cannot provide crisp values for some critical data, fuzzy sets theory is suggested in order to model vague information based on subjective expertise. Fuzzy Technique for Order of Preference by Similarity to Ideal Solution is used to determine both the performance and risk measures correlated to each possible tactical plan. The applicability and tractability of the proposed approach is shown on an illustrative example and a sensitivity analysis is performed to investigate the influence of criteria weights on the selection of the procurement–production plan

    Fuzzy Transfer Pricing World: On the Analysis of Transfer Pricing with Fuzzy Logic Techniques

    Get PDF
    The arm’s length analysis of international transfer prices of multinational firms lacks sound methodological approach of the so-called function and risk analysis. In practice, such analyses are descriptive. Derived from Zadeh’s mathematical theory of fuzzy sets, this paper investigates a quantitative approach to identify the function and risk pattern of related parties of multinational companies. We illustrate our fuzzy logic approach with a simple case.
    • …
    corecore