1,872 research outputs found

    Computing with Granular Words

    Get PDF
    Computational linguistics is a sub-field of artificial intelligence; it is an interdisciplinary field dealing with statistical and/or rule-based modeling of natural language from a computational perspective. Traditionally, fuzzy logic is used to deal with fuzziness among single linguistic terms in documents. However, linguistic terms may be related to other types of uncertainty. For instance, different users search ‘cheap hotel’ in a search engine, they may need distinct pieces of relevant hidden information such as shopping, transportation, weather, etc. Therefore, this research work focuses on studying granular words and developing new algorithms to process them to deal with uncertainty globally. To precisely describe the granular words, a new structure called Granular Information Hyper Tree (GIHT) is constructed. Furthermore, several technologies are developed to cooperate with computing with granular words in spam filtering and query recommendation. Based on simulation results, the GIHT-Bayesian algorithm can get more accurate spam filtering rate than conventional method Naive Bayesian and SVM; computing with granular word also generates better recommendation results based on users’ assessment when applied it to search engine

    Web of scholars : a scholar knowledge graph

    Get PDF
    In this work, we demonstrate a novel system, namely Web of Scholars, which integrates state-of-the-art mining techniques to search, mine, and visualize complex networks behind scholars in the field of Computer Science. Relying on the knowledge graph, it provides services for fast, accurate, and intelligent semantic querying as well as powerful recommendations. In addition, in order to realize information sharing, it provides open API to be served as the underlying architecture for advanced functions. Web of Scholars takes advantage of knowledge graph, which means that it will be able to access more knowledge if more search exist. It can be served as a useful and interoperable tool for scholars to conduct in-depth analysis within Science of Science. © 2020 ACM

    The Shortest Path to Happiness: Recommending Beautiful, Quiet, and Happy Routes in the City

    Full text link
    When providing directions to a place, web and mobile mapping services are all able to suggest the shortest route. The goal of this work is to automatically suggest routes that are not only short but also emotionally pleasant. To quantify the extent to which urban locations are pleasant, we use data from a crowd-sourcing platform that shows two street scenes in London (out of hundreds), and a user votes on which one looks more beautiful, quiet, and happy. We consider votes from more than 3.3K individuals and translate them into quantitative measures of location perceptions. We arrange those locations into a graph upon which we learn pleasant routes. Based on a quantitative validation, we find that, compared to the shortest routes, the recommended ones add just a few extra walking minutes and are indeed perceived to be more beautiful, quiet, and happy. To test the generality of our approach, we consider Flickr metadata of more than 3.7M pictures in London and 1.3M in Boston, compute proxies for the crowdsourced beauty dimension (the one for which we have collected the most votes), and evaluate those proxies with 30 participants in London and 54 in Boston. These participants have not only rated our recommendations but have also carefully motivated their choices, providing insights for future work.Comment: 11 pages, 7 figures, Proceedings of ACM Hypertext 201

    Aggregated search: a new information retrieval paradigm

    Get PDF
    International audienceTraditional search engines return ranked lists of search results. It is up to the user to scroll this list, scan within different documents and assemble information that fulfill his/her information need. Aggregated search represents a new class of approaches where the information is not only retrieved but also assembled. This is the current evolution in Web search, where diverse content (images, videos, ...) and relational content (similar entities, features) are included in search results. In this survey, we propose a simple analysis framework for aggregated search and an overview of existing work. We start with related work in related domains such as federated search, natural language generation and question answering. Then we focus on more recent trends namely cross vertical aggregated search and relational aggregated search which are already present in current Web search

    Semantic Similarity of Spatial Scenes

    Get PDF
    The formalization of similarity in spatial information systems can unleash their functionality and contribute technology not only useful, but also desirable by broad groups of users. As a paradigm for information retrieval, similarity supersedes tedious querying techniques and unveils novel ways for user-system interaction by naturally supporting modalities such as speech and sketching. As a tool within the scope of a broader objective, it can facilitate such diverse tasks as data integration, landmark determination, and prediction making. This potential motivated the development of several similarity models within the geospatial and computer science communities. Despite the merit of these studies, their cognitive plausibility can be limited due to neglect of well-established psychological principles about properties and behaviors of similarity. Moreover, such approaches are typically guided by experience, intuition, and observation, thereby often relying on more narrow perspectives or restrictive assumptions that produce inflexible and incompatible measures. This thesis consolidates such fragmentary efforts and integrates them along with novel formalisms into a scalable, comprehensive, and cognitively-sensitive framework for similarity queries in spatial information systems. Three conceptually different similarity queries at the levels of attributes, objects, and scenes are distinguished. An analysis of the relationship between similarity and change provides a unifying basis for the approach and a theoretical foundation for measures satisfying important similarity properties such as asymmetry and context dependence. The classification of attributes into categories with common structural and cognitive characteristics drives the implementation of a small core of generic functions, able to perform any type of attribute value assessment. Appropriate techniques combine such atomic assessments to compute similarities at the object level and to handle more complex inquiries with multiple constraints. These techniques, along with a solid graph-theoretical methodology adapted to the particularities of the geospatial domain, provide the foundation for reasoning about scene similarity queries. Provisions are made so that all methods comply with major psychological findings about people’s perceptions of similarity. An experimental evaluation supplies the main result of this thesis, which separates psychological findings with a major impact on the results from those that can be safely incorporated into the framework through computationally simpler alternatives

    On the role of pre and post-processing in environmental data mining

    Get PDF
    The quality of discovered knowledge is highly depending on data quality. Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even irrelevant information. The more complex is the reality to be analyzed, the higher the risk of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global framework to prepare data in the right form to perform correct analyses. On the other hand, the quality of decisions taken upon KDD results, depend not only on the quality of the results themselves, but on the capacity of the system to communicate those results in an understandable form. Environmental systems are particularly complex and environmental users particularly require clarity in their results. In this paper some details about how this can be achieved are provided. The role of the pre and post processing in the whole process of Knowledge Discovery in environmental systems is discussed

    Personalized City Tours - An Extension of the OGC OpenLocation Specification

    Get PDF
    A business trip to London last month , a day visit in Cologne next saturday and romantic weekend in Paris in autumn – this example exhibits one of the central characteristics of today’s tourism. People in the western hemisphere take much pleasure in frequent and repeated short term visits of cities. Every city visitor faces the general problems of where to go and what to see in the diverse microcosm of a metropolis. This thesis presents a framework for the generation of personalized city tours - as extension of the Open Location Specification of the Open Geospatial Consortium. It is founded on context-awareness and personalization while at the same time proposing a combined approach to allow for adaption to the user. This framework considers TimeGeography and its algorithmic implementations to be able to cope with spatio-temporal constraints of a city tour. Traveling salesmen problems - for which a heuristic approache is proposed – are subjacent to the tour generation. To meet the requirements of today’s distributed and heterogeneous computing environments, the tour framework comprises individual services that expose standard-compliant interfaces and allow for integration in service oriented architectures
    • 

    corecore