112 research outputs found

    Fuzzy Logic Control of Adaptive ARQ for Video Distribution over a Bluetooth Wireless Link

    Get PDF
    Bluetooth's default automatic repeat request (ARQ) scheme is not suited to video distribution resulting in missed display and decoded deadlines. Adaptive ARQ with active discard of expired packets from the send buffer is an alternative approach. However, even with the addition of cross-layer adaptation to picture-type packet importance, ARQ is not ideal in conditions of a deteriorating RF channel. The paper presents fuzzy logic control of ARQ, based on send buffer fullness and the head-of-line packet's deadline. The advantage of the fuzzy logic approach, which also scales its output according to picture type importance, is that the impact of delay can be directly introduced to the model, causing retransmissions to be reduced compared to all other schemes. The scheme considers both the delay constraints of the video stream and at the same time avoids send buffer overflow. Tests explore a variety of Bluetooth send buffer sizes and channel conditions. For adverse channel conditions and buffer size, the tests show an improvement of at least 4 dB in video quality compared to nonfuzzy schemes. The scheme can be applied to any codec with I-, P-, and (possibly) B-slices by inspection of packet headers without the need for encoder intervention.</jats:p

    Power-Constrained Fuzzy Logic Control of Video Streaming over a Wireless Interconnect

    Get PDF
    Wireless communication of video, with Bluetooth as an example, represents a compromise between channel conditions, display and decode deadlines, and energy constraints. This paper proposes fuzzy logic control (FLC) of automatic repeat request (ARQ) as a way of reconciling these factors, with a 40% saving in power in the worst channel conditions from economizing on transmissions when channel errors occur. Whatever the channel conditions are, FLC is shown to outperform the default Bluetooth scheme and an alternative Bluetooth-adaptive ARQ scheme in terms of reduced packet loss and delay, as well as improved video quality

    An Adaptive Fuzzy based FEC Algorithm for Robust Video Transmission over Wireless Networks

    Get PDF
    Forward Error Correction (FEC) is a commonly adopted mechanism to mitigate packet loss/bit error during real-time communication. An adaptive, Fuzzy based FEC algorithm to provide a robust video quality metric for multimedia transmission over wireless networks has been proposed to optimize the redundancy of the generated code words from a Reed-Solomon encoder and to save the bandwidth of the network channel. The scheme is based on probability estimations derived from the data loss rates related to the recovery mechanism at the client end. By applying the adaptive FEC, the server uses the reports to predict the next network loss rate using a curve-fitting technique to generate the optimized number of redundant packets to meet specific residual error rates at the client end. Simulation results in the cellular system show that the video quality is massively adapted to the optimized FEC codes based on the probability of packet loss and packet correlation in a wireless environment

    An intelligent approach to quality of service for MPEG-4 video transmission in IEEE 802.15.1

    Get PDF
    Nowadays, wireless connectivity is becoming ubiquitous spreading to companies and in domestic areas. IEEE 802.15.1 commonly known as Bluetooth is high-quality, high-security, high-speed and low-cost radio signal technology. This wireless technology allows a maximum access range of 100 meters yet needs power as low as 1mW. Regrettably, IEEE 802.15.1 has a very limited bandwidth. This limitation can become a real problem If the user wishes to transmit a large amount of data in a very short time. The version 1.2 which is used in this project could only carry a maximum download rate of 724Kbps and an upload rate of 54Kbps In its asynchronous mode. But video needs a very large bandwidth to be transmitted with a sufficient level of quality. Video transmission over IEEE 802.15.1 networks would therefore be difficult to achieve, due to the limited bandwidth. Hence, a solution to transmit digital video with a sufficient quality of picture to arrive at the receiving end is required. A hybrid scheme has been developed in this thesis, comprises of a fuzzy logic set of rules and an artificial neural network algorithms. MPEG-4 video compression has been used in this work to optimise the transmission. This research further utilises an ‘added-buffer’ to prevent excessive data loss of MPEG-4 video over IEEE 802.15.1transmission and subsequently increase picture quality. The neural-fuzzy scheme regulates the output rate of the added-buffer to ensure that MPEG-4 video stream conforms to the traffic conditions of the IEEE 802.15.1 channel during the transmission period, that is to send more data when the bandwidth is not fully used and keep the data in the buffers if the bandwidth is overused. Computer simulation results confirm that intelligence techniques and added-buffer do improve quality of picture, reduce data loss and communication delay, as compared with conventional MPEG video transmission over IEEE 802.15.1

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Improving forwarding mechanisms for mobile personal area networks

    Get PDF
    This thesis presents novel methods for improving forwarding mechanisms for personal area networks. Personal area networks are formed by interconnecting personal devices such as personal digital assistants, portable multimedia devices, digital cameras and laptop computers, in an ad hoc fashion. These devices are typically characterised by low complexity hardware, low memory and are usually batterypowered. Protocols and mechanisms developed for general ad hoc networking cannot be directly applied to personal area networks as they are not optimised to suit their specific constraints. The work presented herein proposes solutions for improving error control and routing over personal area networks, which are very important ingredients to the good functioning of the network. The proposed Packet Error Correction (PEC) technique resends only a subset of the transmitted packets, thereby reducing the overhead, while ensuring improved error rates. PEC adapts the number of re-transmissible packets to the conditions of the channel so that unnecessary retransmissions are avoided. It is shown by means of computer simulation that PEC behaves better, in terms of error reduction and overhead, than traditional error control mechanisms, which means that it is adequate for low-power personal devices. The proposed C2HR routing protocol, on the other hand, is designed such that the network lifetime is maximised. This is achieved by forwarding packets through the most energy efficient paths. C2HR is a hybrid routing protocol in the sense that it employs table-driven (proactive) as well as on-demand (reactive) components. Proactive routes are the primary routes, i.e., packets are forwarded through those paths when the network is stable; however, in case of failures, the protocol searches for alternative routes on-demand, through which data is routed temporarily. The advantage of C2HR is that data can still be forwarded even when routing is re-converging, thereby increasing the throughput. Simulation results show that the proposed routing method is more energy efficient than traditional least hops routing, and results in higher data throughput. C2HR relies on a network leader for collecting and distributing topology information, which in turn requires an estimate of the underlying topology. Thus, this thesis also proposes a new cooperative leader election algorithm and techniques for estimating network characteristics in mobile environments. The proposed solutions are simulated under various conditions and demonstrate appreciable behaviour

    Cross-Layer Optimization of Message Broadcast in MANETs

    Get PDF

    Implementing Efficient and Multi-Hop Image Acquisition In Remote Monitoring IoT systems using LoRa Technology

    Get PDF
    Remote sensing or monitoring through the deployment of wireless sensor networks (WSNs) is considered an economical and convenient manner in which to collect information without cumbersome human intervention. Unfortunately, due to challenging deployment conditions, such as large geographic area, and lack of electricity and network infrastructure, designing such wireless sensor networks for large-scale farms or forests is difficult and expensive. Many WSN-appropriate wireless technologies, such as Wi-Fi, Bluetooth, Zigbee and 6LoWPAN, have been widely adopted in remote sensing. The performance of these technologies, however, is not sufficient for use across large areas. Generally, as the geographical scope expands, more devices need to be employed to expand network coverage, so the number and cost of devices in wireless sensor networks will increase dramatically. Besides, this type of deployment usually not only has a high probability of failure and high transmission costs, but also imposes additional overhead on system management and maintenance. LoRa is an emerging physical layer standard for long range wireless communication. By utilizing chirp spread spectrum modulation, LoRa features a long communication range and broad signal coverage. At the same time, LoRa also has low power consumption. Thus, LoRa outperforms similar technologies in terms of hardware cost, power consumption and radio coverage. It is also considered to be one of the promising solutions for the future of the Internet of Things (IoT). As the research and development of LoRa are still in its early stages, it lacks sufficient support for multi-packet transport and complex deployment topologies. Therefore, LoRa is not able to further expand its network coverage and efficiently support big data transfers like other conventional technologies. Besides, due to the smaller payload and data rate in LoRa physical design, it is more challenging to implement these features in LoRa. These shortcomings limit the potential for LoRa to be used in more productive application scenarios. This thesis addresses the problem of multi-packet and multi-hop transmission using LoRa by proposing two novel protocols, namely Multi-Packet LoRa (MPLR) and Multi-Hop LoRa (MHLR). LoRa's ability to transmit large messages is first evaluated in this thesis, and then the protocols are well designed and implemented to enrich LoRa's possibilities in image transmission applications and multi-hop topologies. MPLR introduces a reliable transport mechanism for multi-packet sensory data, making its network not limited to the transmission of small sensor data only. In collaboration with a data channel reservation technique, MPLR is able to greatly mitigate data collisions caused by the increased transmission time in laboratory experiments. MHLR realizes efficient routing in LoRa multi-hop transmission by utilizing the power of machine learning. The results of both indoor and outdoor experiments show that the machine learning based routing is effective in wireless sensor networks
    • …
    corecore