1,254 research outputs found

    A Survey on Underwater Acoustic Sensor Network Routing Protocols

    Full text link
    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research

    Fuzzy Weight Cluster-Based Routing Algorithm for Wireless Sensor Networks

    Get PDF
    Cluster-based protocol is a kind of important routing in wireless sensor networks. However, due to the uneven distribution of cluster heads in classical clustering algorithm, some nodes may run out of energy too early, which is not suitable for large-scale wireless sensor networks. In this paper, a distributed clustering algorithm based on fuzzy weighted attributes is put forward to ensure both energy efficiency and extensibility. On the premise of a comprehensive consideration of all attributes, the corresponding weight of each parameter is assigned by using the direct method of fuzzy engineering theory. Then, each node works out property value. These property values will be mapped to the time axis and be triggered by a timer to broadcast cluster headers. At the same time, the radio coverage method is adopted, in order to avoid collisions and to ensure the symmetrical distribution of cluster heads. The aggregated data are forwarded to the sink node in the form of multihop. The simulation results demonstrate that clustering algorithm based on fuzzy weighted attributes has a longer life expectancy and better extensibility than LEACH-like algorithms

    Localisation in wireless sensor networks for disaster recovery and rescuing in built environments

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyProgress in micro-electromechanical systems (MEMS) and radio frequency (RF) technology has fostered the development of wireless sensor networks (WSNs). Different from traditional networks, WSNs are data-centric, self-configuring and self-healing. Although WSNs have been successfully applied in built environments (e.g. security and services in smart homes), their applications and benefits have not been fully explored in areas such as disaster recovery and rescuing. There are issues related to self-localisation as well as practical constraints to be taken into account. The current state-of-the art communication technologies used in disaster scenarios are challenged by various limitations (e.g. the uncertainty of RSS). Localisation in WSNs (location sensing) is a challenging problem, especially in disaster environments and there is a need for technological developments in order to cater to disaster conditions. This research seeks to design and develop novel localisation algorithms using WSNs to overcome the limitations in existing techniques. A novel probabilistic fuzzy logic based range-free localisation algorithm (PFRL) is devised to solve localisation problems for WSNs. Simulation results show that the proposed algorithm performs better than other range free localisation algorithms (namely DVhop localisation, Centroid localisation and Amorphous localisation) in terms of localisation accuracy by 15-30% with various numbers of anchors and degrees of radio propagation irregularity. In disaster scenarios, for example, if WSNs are applied to sense fire hazards in building, wireless sensor nodes will be equipped on different floors. To this end, PFRL has been extended to solve sensor localisation problems in 3D space. Computational results show that the 3D localisation algorithm provides better localisation accuracy when varying the system parameters with different communication/deployment models. PFRL is further developed by applying dynamic distance measurement updates among the moving sensors in a disaster environment. Simulation results indicate that the new method scales very well

    Energy Efficient Communication Protocols for Wireless Sensor Networks

    Get PDF
    The popularity of Wireless Sensor Networks have increased tremendously due to the vast potential of the sensor networks to connect the physical world with the virtual world. Since these devices rely on battery power and may be placed in hostile environments replacing them becomes a tedious task. Thus, improving the energy of these networks becomes important.The thesis provides methods for clustering and cluster head selection to WSN to improve energy efficiency. It presents a comparison between the different methods on the basis of the network lifetime . It proposes a modified approach for cluster head selection with good performance and reduced computational complexity .In addition it also proposes BFO as an algorithm for clustering of WSN which would result improved performance with faster convergence

    SRP-HEE: A Modified Stateless Routing Protocol based on Homomorphic Energy based Encryption for Wireless Sensor Network

    Get PDF
    Due to the wireless nature, the sensors node data are prone to location privacy of source and classification of the packet by unauthorized parties. Data encryption is one of the most effective ways to thwart unauthorized access to the data and trace information. Traditional wireless network security solutions are not viable for WSNs In this paper, a novel distributed forward aware factor based heuristics towards generating greedy routing using stateless routing is SRP-HEE for wireless sensor network. The model employs the homomorphic Energy based encryption technique. Energy based Encryption model is devoted as homomorphic mechanism due to their less computational complexity. Additionally, privacy constraint becoming a critical issue in the wireless sensor networks (WSNs) because sensor nodes are generally prone to attacks which deplete energy quickly as it is exposed to mobile sink frequently for data transmission. Through inclusion of the Forward aware factor on the Greedy routing strategies, it is possible to eliminate the attacking node which is depleting the energy of the source node. Heuristic conditions are used for optimizing the sampling rate and battery level for tackling the battery capacity constraints of the wireless sensor nodes. The Node characteristics of the propagating node have been analysed utilizing kalman filter and linear regression. The cooperative caching of the network information will enable to handle the fault condition by changing the privacy level of the network. The Simulation results demonstrate that SRP-HEE model outperforms existing technique on basis of Latency, Packet Delivery Ratio, Network Overhead, and Energy Utilization of nodes

    A Comparative Survey of VANET Clustering Techniques

    Full text link
    © 2016 Crown. A vehicular ad hoc network (VANET) is a mobile ad hoc network in which network nodes are vehicles - most commonly road vehicles. VANETs present a unique range of challenges and opportunities for routing protocols due to the semi-organized nature of vehicular movements subject to the constraints of road geometry and rules, and the obstacles which limit physical connectivity in urban environments. In particular, the problems of routing protocol reliability and scalability across large urban VANETs are currently the subject of intense research. Clustering can be used to improve routing scalability and reliability in VANETs, as it results in the distributed formation of hierarchical network structures by grouping vehicles together based on correlated spatial distribution and relative velocity. In addition to the benefits to routing, these groups can serve as the foundation for accident or congestion detection, information dissemination and entertainment applications. This paper explores the design choices made in the development of clustering algorithms targeted at VANETs. It presents a taxonomy of the techniques applied to solve the problems of cluster head election, cluster affiliation, and cluster management, and identifies new directions and recent trends in the design of these algorithms. Additionally, methodologies for validating clustering performance are reviewed, and a key shortcoming - the lack of realistic vehicular channel modeling - is identified. The importance of a rigorous and standardized performance evaluation regime utilizing realistic vehicular channel models is demonstrated

    A Hybrid Algorithm for Improving the Quality of Service in MANET

    Get PDF
    A mobile ad-hoc network (MANET) exhibits a dynamic topology with flexible infrastructure. The MANET nodes may serve as both host and router functionalities. The routing feature of the MANET is a stand-alone multi-hop mobile network that can be utilized in many real-time applications. Therefore, identifying paths that ensure high Quality of Service (QoS), such as their topology and applications is a vital issue in MANET. A QoS-aware protocol in MANETs aims to find more efficient paths between the source and destination nodes of the network and, hence, the requirements of the QoS. This paper proposes a different hybrid algorithm that combines Cellular Automata (CA) with the African Buffalo Optimization (ABO), CAABO, to improve the QoS of MANETs. The CAABO optimizes the path selection in the ad-hoc on-demand distance vector (AODV) routing protocol. The test results show that with the aid of the CAABO, the AODV manifests energy and delay-aware routing protocol

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    The design and implementation of fuzzy query processing on sensor networks

    Get PDF
    Sensor nodes and Wireless Sensor Networks (WSN) enable observation of the physical world in unprecedented levels of granularity. A growing number of environmental monitoring applications are being designed to leverage data collection features of WSN, increasing the need for efficient data management techniques and for comparative analysis of various data management techniques. My research leverages aspects of fuzzy database, specifically fuzzy data representation and fuzzy or flexible queries to improve upon the efficiency of existing data management techniques by exploiting the inherent uncertainty of the data collected by WSN. Herein I present my research contributions. I provide classification of WSN middleware to illustrate varying approaches to data management for WSN and identify a need to better handle the uncertainty inherent in data collected from physical environments and to take advantage of the imprecision of the data to increase the efficiency of WSN by requiring less information be transmitted to adequately answer queries posed by WSN monitoring applications. In this dissertation, I present a novel approach to querying WSN, in which semantic knowledge about sensor attributes is represented as fuzzy terms. I present an enhanced simulation environment that supports more flexible and realistic analysis by using cellular automata models to separately model the deployed WSN and the underlying physical environment. Simulation experiments are used to evaluate my fuzzy query approach for environmental monitoring applications. My analysis shows that using fuzzy queries improves upon other data management techniques by reducing the amount of data that needs to be collected to accurately satisfy application requests. This reduction in data transmission results in increased battery life within sensors, an important measure of cost and performance for WSN applications
    • 

    corecore