11,018 research outputs found

    Fuzzy set covering as a new paradigm for the induction of fuzzy classification rules

    Full text link
    In 1965 Lofti A. Zadeh proposed fuzzy sets as a generalization of crisp (or classic) sets to address the incapability of crisp sets to model uncertainty and vagueness inherent in the real world. Initially, fuzzy sets did not receive a very warm welcome as many academics stood skeptical towards a theory of imprecise'' mathematics. In the middle to late 1980's the success of fuzzy controllers brought fuzzy sets into the limelight, and many applications using fuzzy sets started appearing. In the early 1970's the first machine learning algorithms started appearing. The AQ family of algorithms pioneered by Ryszard S. Michalski is a good example of the family of set covering algorithms. This class of learning algorithm induces concept descriptions by a greedy construction of rules that describe (or cover) positive training examples but not negative training examples. The learning process is iterative, and in each iteration one rule is induced and the positive examples covered by the rule removed from the set of positive training examples. Because positive instances are separated from negative instances, the term separate-and-conquer has been used to contrast the learning strategy against decision tree induction that use a divide-and-conquer learning strategy. This dissertation proposes fuzzy set covering as a powerful rule induction strategy. We survey existing fuzzy learning algorithms, and conclude that very few fuzzy learning algorithms follow a greedy rule construction strategy and no publications to date made the link between fuzzy sets and set covering explicit. We first develop the theoretical aspects of fuzzy set covering, and then apply these in proposing the first fuzzy learning algorithm that apply set covering and make explicit use of a partial order for fuzzy classification rule induction. We also investigate several strategies to improve upon the basic algorithm, such as better search heuristics and different rule evaluation metrics. We then continue by proposing a general unifying framework for fuzzy set covering algorithms. We demonstrate the benefits of the framework and propose several further fuzzy set covering algorithms that fit within the framework. We compare fuzzy and crisp rule induction, and provide arguments in favour of fuzzy set covering as a rule induction strategy. We also show that our learning algorithms outperform other fuzzy rule learners on real world data. We further explore the idea of simultaneous concept learning in the fuzzy case, and continue to propose the first fuzzy decision list induction algorithm. Finally, we propose a first strategy for encoding the rule sets generated by our fuzzy set covering algorithms inside an equivalent neural network

    Fuzzy set covering as a new paradigm for the induction of fuzzy classification rules

    Get PDF
    In 1965 Lofti A. Zadeh proposed fuzzy sets as a generalization of crisp (or classic) sets to address the incapability of crisp sets to model uncertainty and vagueness inherent in the real world. Initially, fuzzy sets did not receive a very warm welcome as many academics stood skeptical towards a theory of imprecise'' mathematics. In the middle to late 1980's the success of fuzzy controllers brought fuzzy sets into the limelight, and many applications using fuzzy sets started appearing. In the early 1970's the first machine learning algorithms started appearing. The AQ family of algorithms pioneered by Ryszard S. Michalski is a good example of the family of set covering algorithms. This class of learning algorithm induces concept descriptions by a greedy construction of rules that describe (or cover) positive training examples but not negative training examples. The learning process is iterative, and in each iteration one rule is induced and the positive examples covered by the rule removed from the set of positive training examples. Because positive instances are separated from negative instances, the term separate-and-conquer has been used to contrast the learning strategy against decision tree induction that use a divide-and-conquer learning strategy. This dissertation proposes fuzzy set covering as a powerful rule induction strategy. We survey existing fuzzy learning algorithms, and conclude that very few fuzzy learning algorithms follow a greedy rule construction strategy and no publications to date made the link between fuzzy sets and set covering explicit. We first develop the theoretical aspects of fuzzy set covering, and then apply these in proposing the first fuzzy learning algorithm that apply set covering and make explicit use of a partial order for fuzzy classification rule induction. We also investigate several strategies to improve upon the basic algorithm, such as better search heuristics and different rule evaluation metrics. We then continue by proposing a general unifying framework for fuzzy set covering algorithms. We demonstrate the benefits of the framework and propose several further fuzzy set covering algorithms that fit within the framework. We compare fuzzy and crisp rule induction, and provide arguments in favour of fuzzy set covering as a rule induction strategy. We also show that our learning algorithms outperform other fuzzy rule learners on real world data. We further explore the idea of simultaneous concept learning in the fuzzy case, and continue to propose the first fuzzy decision list induction algorithm. Finally, we propose a first strategy for encoding the rule sets generated by our fuzzy set covering algorithms inside an equivalent neural network

    An application of decision trees method for fault diagnosis of induction motors

    Get PDF
    Decision tree is one of the most effective and widely used methods for building classification model. Researchers from various disciplines such as statistics, machine learning, pattern recognition, and data mining have considered the decision tree method as an effective solution to their field problems. In this paper, an application of decision tree method to classify the faults of induction motors is proposed. The original data from experiment is dealt with feature calculation to get the useful information as attributes. These data are then assigned the classes which are based on our experience before becoming data inputs for decision tree. The total 9 classes are defined. An implementation of decision tree written in Matlab is used for these data

    Survey of data mining approaches to user modeling for adaptive hypermedia

    Get PDF
    The ability of an adaptive hypermedia system to create tailored environments depends mainly on the amount and accuracy of information stored in each user model. Some of the difficulties that user modeling faces are the amount of data available to create user models, the adequacy of the data, the noise within that data, and the necessity of capturing the imprecise nature of human behavior. Data mining and machine learning techniques have the ability to handle large amounts of data and to process uncertainty. These characteristics make these techniques suitable for automatic generation of user models that simulate human decision making. This paper surveys different data mining techniques that can be used to efficiently and accurately capture user behavior. The paper also presents guidelines that show which techniques may be used more efficiently according to the task implemented by the applicatio

    Fuzzy rule-based system applied to risk estimation of cardiovascular patients

    Get PDF
    Cardiovascular decision support is one area of increasing research interest. On-going collaborations between clinicians and computer scientists are looking at the application of knowledge discovery in databases to the area of patient diagnosis, based on clinical records. A fuzzy rule-based system for risk estimation of cardiovascular patients is proposed. It uses a group of fuzzy rules as a knowledge representation about data pertaining to cardiovascular patients. Several algorithms for the discovery of an easily readable and understandable group of fuzzy rules are formalized and analysed. The accuracy of risk estimation and the interpretability of fuzzy rules are discussed. Our study shows, in comparison to other algorithms used in knowledge discovery, that classifcation with a group of fuzzy rules is a useful technique for risk estimation of cardiovascular patients. © 2013 Old City Publishing, Inc

    Decision Making in the Medical Domain: Comparing the Effectiveness of GP-Generated Fuzzy Intelligent Structures

    Get PDF
    ABSTRACT: In this work, we examine the effectiveness of two intelligent models in medical domains. Namely, we apply grammar-guided genetic programming to produce fuzzy intelligent structures, such as fuzzy rule-based systems and fuzzy Petri nets, in medical data mining tasks. First, we use two context-free grammars to describe fuzzy rule-based systems and fuzzy Petri nets with genetic programming. Then, we apply cellular encoding in order to express the fuzzy Petri nets with arbitrary size and topology. The models are examined thoroughly in four real-world medical data sets. Results are presented in detail and the competitive advantages and drawbacks of the selected methodologies are discussed, in respect to the nature of each application domain. Conclusions are drawn on the effectiveness and efficiency of the presented approach
    corecore