6 research outputs found

    Applying safe flooring in housing environments related to the independent elderly : evaluating suitability flooring technology to absorb impact in the event of a fall

    Get PDF
    Aplicat embargament des de la data de defensa fins el dia 3/6/2022This research has been developed with the intention of investigating a different generation of pavements. Most of the current pavements have the same basic standard characteristics and this ensures that living conditions are comfortable, safe, and pleasant for the majority of citizens. But a small group of pavements is designed with a specific purpose: to reduce injuries related to people's falls to the ground; They are called CF (compliant flooring in English). A detailed study of CF flooring systems is warranted to assess their usability for vulnerable groups such as the elderly. This study is structured in six chapters. The first chapter has dealt mainly with bibliographic studies and statistical data consulted on official and international websites. This section evaluates the importance of the increase in the elderly population, life expectancy, and threats to the safety and health of the elderly, especially, and their secondary effects. The scope of the research has been carried out internationally, in Europe and within Spain, and finally, specifically for Catalonia. The second chapter presents a brief overview of the interior flooring, specifically considering its comfort and safety during use. The importance and direct relationship between the sole of the foot and the gait mechanism with respect to the type of pavement have been verified. Many factors that influence this have been investigated, such as the physics and biomechanics of the body when walking, the kinematics of falls, and the dynamics of impact. In addition, a general description of the behavior of materials for use in pavements has been made to better understand the behavior of CF systems. In addition, the most suitable strategies to cope with falls and reduce injuries are discussed. Examining other products with appreciable energy-absorbing and shock-reducing capabilities has been helpful in the proposed pre-designs, all of which have been made based on numerical analysis and related standards. The third chapter is already dedicated to the study of technology and research on the most suitable CF systems; studies from academic, commercial, and architecture departments, in general, are included. In this section, some standard tests related to the various selected materials are developed and several examples of similar products are studied. The fourth chapter includes field research (on-site) and analysis of case studies. Several notable flooring companies around the world were contacted by mail, specifically examining those products whose manufacturers claimed to be shock absorbers. This part of the investigation was slowed down by the delay in shipments. Once they arrived, a real environment was sought where they could obtain the opinion of the elderly and the personnel assigned to their care. All the practice tests were carried out in a residence for the elderly in Barcelona for about two months, focusing on the study of the current pavements of the center and the current derived problems related to users.This entire process was completed by interviewing users and caregivers with predefined questionnaires. It should be noted that this allowed us to contrast the quantitative characteristics of the study in combination with the elements of qualitative research. Chapter Five deals with the results, discussions, suggestions for installation and improvement of pavement safety in risk areas. Simulations were also carried out on a possible base structure of the pavements with the finite element method (FEM). Chapter six presents guidelines for future developments. The author further investigated the materials and their structure and is presented them as a basis for future technical developments.The author considers that, with more detailed studies, it would be possible to use as CF system other materials, either natural or recycled based on agricultural products, which would increase the diversity of the CF system offer and promote more sustainable architectureEsta investigación se ha desarrollado con la intención de investigar una generación diferente de pavimentos. La mayoría de los actuales pavimentos tienen las mismas características básicas estándar y ello garantiza que las condiciones de vida sean cómodas, seguras y agradables para la mayoría de los ciudadanos. Pero un grupo reducido de pavimentos está diseñado con un propósito específico: reducir las lesiones relacionadas con las caídas al suelo de las personas; son los denominados CF (compliant flooring en inglés). Un estudio detallado de los sistemas de pavimentos CF está justificado para evaluar su posibilidad de uso para grupos vulnerables como los ancianos. Este estudio se estructura en seis capítulos. En el primer capítulo se han abordado principalmente los estudios bibliográficos y datos estadísticos consultados en sitios web oficiales e internacionales. En esta sección se evalúa la importancia del aumento de la población anciana. El ámbito de la investigación se ha realizado a nivel internacional, en Europa y dentro de España, y finalmente, específicamente para Cataluña. El segundo capítulo se presenta una breve panorámica del pavimento interior. Se ha constatado la importancia y relación directa entre la planta del pie y el mecanismo de andar con respecto al tipo de pavimento. Se han investigado muchos factores que influyen en ello. Además, se ha realizado una descripción general del comportamiento de los materiales al uso en pavimentos para comprender mejor el comportamiento de los sistemas de CF. Además, se discuten las estrategias más idóneas para hacer frente a las caídas y reducir las lesiones. Examinar otros productos con apreciables capacidades de amortiguación de energía y reducción de impactos ha sido de gran ayuda en los prediseños propuestos, todos los cuales se han realizado sobre la base de análisis numérico y los estándares relacionados. El tercer capítulo está dedicado ya al estudio de la tecnología y la investigación sobre los sistemas de C más idóneos; se incluyen estudios procedentes de departamentos académicos, comerciales y de arquitectura en general. En esta sección se desarrollan algunas pruebas estándar relacionadas con los diversos materiales seleccionados y se estudian varios ejemplos de productos similares. El cuarto capítulo incluye investigación de campo (in situ) y análisis de estudios de casos. Se contactó por correo con varias empresas notables de pavimentos en todo el mundo, y se examinaron específicamente aquellos productos cuyos fabricantes afirmaban ser amortiguadores. Esta parte de la investigación se vio ralentizada por la demora en los envíos. Una vez llegados se buscó un ámbito real donde poder recabar la opinión de las personas mayores y del personal adscrito a su cuidado. Todas las pruebas prácticas se realizaron en una residencia de ancianos de Barcelona durante unos dos meses, centrándose en el estudio de los actuales pavimentos del centro y los problemas actuales derivados relacionados con los usuarios. Todo este proceso se completó mediante entrevistas a usuarios y cuidadores con cuestionarios predefinidos. El Capítulo Cinco se refiere a los resultados, discusiones, sugerencias para la instalación y mejora de la seguridad del pavimento en áreas de riesgo. También se realizaron simulaciones sobre una posible estructura base de los pavimentos con el método elemento finito (FEM). El capítulo seis presenta directrices para desarrollos futuros. El autor investigó más a fondo sobre los materiales y su estructura, y se presenta como una base para desarrollos técnicos futuros. El autor considera que, con estudios más detallados, sería posible utilizar como CF otros materiales, bien naturales o reciclados a base de productos agrícolas, lo cual aumentaría la diversidad de la oferta de CF y fomentaría la arquitectura más sostenible.Postprint (published version

    Unsupervised monitoring of an elderly person\u27s activities of daily living using Kinect sensors and a power meter

    Get PDF
    The need for greater independence amongst the growing population of elderly people has made the concept of “ageing in place” an important area of research. Remote home monitoring strategies help the elderly deal with challenges involved in ageing in place and performing the activities of daily living (ADLs) independently. These monitoring approaches typically involve the use of several sensors, attached to the environment or person, in order to acquire data about the ADLs of the occupant being monitored. Some key drawbacks associated with many of the ADL monitoring approaches proposed for the elderly living alone need to be addressed. These include the need to label a training dataset of activities, use wearable devices or equip the house with many sensors. These approaches are also unable to concurrently monitor physical ADLs to detect emergency situations, such as falls, and instrumental ADLs to detect deviations from the daily routine. These are all indicative of deteriorating health in the elderly. To address these drawbacks, this research aimed to investigate the feasibility of unsupervised monitoring of both physical and instrumental ADLs of elderly people living alone via inexpensive minimally intrusive sensors. A hybrid framework was presented which combined two approaches for monitoring an elderly occupant’s physical and instrumental ADLs. Both approaches were trained based on unlabelled sensor data from the occupant’s normal behaviours. The data related to physical ADLs were captured from Kinect sensors and those related to instrumental ADLs were obtained using a combination of Kinect sensors and a power meter. Kinect sensors were employed in functional areas of the monitored environment to capture the occupant’s locations and 3D structures of their physical activities. The power meter measured the power consumption of home electrical appliances (HEAs) from the electricity panel. A novel unsupervised fuzzy approach was presented to monitor physical ADLs based on depth maps obtained from Kinect sensors. Epochs of activities associated with each monitored location were automatically identified, and the occupant’s behaviour patterns during each epoch were represented through the combinations of fuzzy attributes. A novel membership function generation technique was presented to elicit membership functions for attributes by analysing the data distribution of attributes while excluding noise and outliers in the data. The occupant’s behaviour patterns during each epoch of activity were then classified into frequent and infrequent categories using a data mining technique. Fuzzy rules were learned to model frequent behaviour patterns. An alarm was raised when the occupant’s behaviour in new data was recognised as frequent with a longer than usual duration or infrequent with a duration exceeding a data-driven value. Another novel unsupervised fuzzy approach to monitor instrumental ADLs took unlabelled training data from Kinect sensors and a power meter to model the key features of instrumental ADLs. Instrumental ADLs in the training dataset were identified based on associating the occupant’s locations with specific power signatures on the power line. A set of fuzzy rules was then developed to model the frequency and regularity of the instrumental activities tailored to the occupant. This set was subsequently used to monitor new data and to generate reports on deviations from normal behaviour patterns. As a proof of concept, the proposed monitoring approaches were evaluated using a dataset collected from a real-life setting. An evaluation of the results verified the high accuracy of the proposed technique to identify the epochs of activities over alternative techniques. The approach adopted for monitoring physical ADLs was found to improve elderly monitoring. It generated fuzzy rules that could represent the person’s physical ADLs and exclude noise and outliers in the data more efficiently than alternative approaches. The performance of different membership function generation techniques was compared. The fuzzy rule set obtained from the output of the proposed technique could accurately classify more scenarios of normal and abnormal behaviours. The approach for monitoring instrumental ADLs was also found to reliably distinguish power signatures generated automatically by self-regulated devices from those generated as a result of an elderly person’s instrumental ADLs. The evaluations also showed the effectiveness of the approach in correctly identifying elderly people’s interactions with specific HEAs and tracking simulated upward and downward deviations from normal behaviours. The fuzzy inference system in this approach was found to be robust in regards to errors when identifying instrumental ADLs as it could effectively classify normal and abnormal behaviour patterns despite errors in the list of the used HEAs

    Fuzzy Ambient Intelligence for Next Generation Telecare

    No full text

    Fuzzy Ambient Intelligence for Next Generation Telecare

    No full text

    A Mixed Methods Exploration of the Relationship between Activities within the Home and Health in Older People with Heart Failure: Implications for Lifestyle Monitoring

    Get PDF
    Introduction Older people and those with long-term conditions are more vulnerable to declining health. One experimental method of detecting early signs of a health decline is lifestyle monitoring (LM) based on the idea that the health state of an individual can be inferred via indirect measurement of home activities. This primarily qualitative research explored activities within the context of heart failure (HF), and range of factors that shape everyday activity. Quantitative analysis tested whether home activities vary according to the health state. Methods A mixed methods approach was utilised. Quantitative: analysis of secondary LM data explored associations between proxy activity and self-reported measures of health from 17 participants with HF, aged 60 years and over. Qualitative: twenty older people with HF were interviewed (and 11 partners) to explore whether activities changed during variations in their symptoms; and wider influences on everyday activity. Data was analysed using template analysis. Views of 6 specialist nurses, 27 attendees of a HF support group, and 2 experts on LM, were summarised. Results LM data analysis proved that proxy activity levels varied according to self-reported health states, within a significant proportion of the analysis. However results were complex, without any observable patterns in activity according to health. Qualitative enquiry confirmed that health does influence everyday activity but this occurs in a complex way, and is influenced by individual, psychological, contextual, and environmental factors. However during an exacerbation of symptoms common activities were undertaken to ease symptoms. Discussion This study adds to the understanding of everyday life lived within the context of HF, and debate about how to improve health monitoring technology. Home activity has many influences, and of these attitudes and psychological factors are key and thus this poses a challenge to LM based on the idea that the health state of an individual can be inferred from home activity. The technology therefore requires further consideration of purpose, methods, and target audience
    corecore