122,057 research outputs found

    Cooperative robot and user friendly robot- new challenge in robotics

    Get PDF
    In the near future many aspect of our life will be encompassed by tasks performing in cooperation with robot. The application of robot in home automation, agriculture production and medical operations etc will indispensable. As a result robot needs to be made human-friendly and to execute tasks in cooperation with human. Researchers proposed many new field of research in Robotics. Cooperative robotics and User friendly robotics are two new area of robotics research. Some researcher is trying to make human like robot. Robots that will be imitate human characteristics in movement, learning etc. Other researchers trying to develop robots which will be entertain human. Another group trying to develop robots and/or control system or robots those will be work cooperatively. In this paper it is tried to gather information regarding these two fields in brief

    A review on reinforcement learning for contact-rich robotic manipulation tasks

    Get PDF
    Research and application of reinforcement learning in robotics for contact-rich manipulation tasks have exploded in recent years. Its ability to cope with unstructured environments and accomplish hard-to-engineer behaviors has led reinforcement learning agents to be increasingly applied in real-life scenarios. However, there is still a long way ahead for reinforcement learning to become a core element in industrial applications. This paper examines the landscape of reinforcement learning and reviews advances in its application in contact-rich tasks from 2017 to the present. The analysis investigates the main research for the most commonly selected tasks for testing reinforcement learning algorithms in both rigid and deformable object manipulation. Additionally, the trends around reinforcement learning associated with serial manipulators are explored as well as the various technological challenges that this machine learning control technique currently presents. Lastly, based on the state-of-the-art and the commonalities among the studies, a framework relating the main concepts of reinforcement learning in contact-rich manipulation tasks is proposed. The final goal of this review is to support the robotics community in future development of systems commanded by reinforcement learning, discuss the main challenges of this technology and suggest future research directions in the domain

    An introduction to swarm robotics

    Full text link
    Swarm robotics is a field of multi-robotics in which large number of robots are coordinated in a distributed and decentralised way. It is based on the use of local rules, and simple robots compared to the complexity of the task to achieve, and inspired by social insects. Large number of simple robots can perform complex tasks in a more efficient way than a single robot, giving robustness and flexibility to the group. In this article, an overview of swarm robotics is given, describing its main properties and characteristics and comparing it to general multi-robotic systems. A review of different research works and experimental results, together with a discussion of the future swarm robotics in real world applications completes this work

    Automation and robotics technology for intelligent mining systems

    Get PDF
    The U.S. Bureau of Mines is approaching the problems of accidents and efficiency in the mining industry through the application of automation and robotics to mining systems. This technology can increase safety by removing workers from hazardous areas of the mines or from performing hazardous tasks. The short-term goal of the Automation and Robotics program is to develop technology that can be implemented in the form of an autonomous mining machine using current continuous mining machine equipment. In the longer term, the goal is to conduct research that will lead to new intelligent mining systems that capitalize on the capabilities of robotics. The Bureau of Mines Automation and Robotics program has been structured to produce the technology required for the short- and long-term goals. The short-term goal of application of automation and robotics to an existing mining machine, resulting in autonomous operation, is expected to be accomplished within five years. Key technology elements required for an autonomous continuous mining machine are well underway and include machine navigation systems, coal-rock interface detectors, machine condition monitoring, and intelligent computer systems. The Bureau of Mines program is described, including status of key technology elements for an autonomous continuous mining machine, the program schedule, and future work. Although the program is directed toward underground mining, much of the technology being developed may have applications for space systems or mining on the Moon or other planets

    Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 4: Supplement, Appendix 4.3: Candidate ARAMIS Capabilities

    Get PDF
    Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions, in the years 1985-2000, so that NASA may make informed decisions on which aspects of ARAMIS to develop. The study first identifies the specific tasks which will be required by future space projects. It then defines ARAMIS options which are candidates for those space project tasks, and evaluates the relative merits of these options. Finally, the study identifies promising applications of ARAMIS, and recommends specific areas for further research. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks

    Cooperative robot and user friendly robot - new challenge in robotics

    Get PDF
    In the near future many aspect of our life will be encompassed by tasks performing in cooperation with robot. The application of robot in home automation, agriculture production and medical operations etc will indispensable. As a result robot needs to be made human-friendly and to execute tasks in cooperation with human. Researchers proposed many new field of research in Robotics. Cooperative robotics and User friendly robotics are two new area of robotics research. Some researcher is trying to make human like robot. Robots that will be imitate human characteristics in movement, learning etc. Other researchers trying to develop robots which will be entertain human. Another group trying to develop robots and/or control system or robots those will be work cooperatively. In this paper it is tried to gather information regarding these two fields in brief. The cooperative robots and user friendly robots are directly or/and indirectly interact with human. Therefore, human characteristics such as faces, voices, gesture, and movements play an important role in design and control of such robots. The more human-like the robot appears, the higher the expectations of people interacting with it are. All the aspects of human, physical, movements and sensing ability, interacting with environment must be considered to design user friendly and cooperative robots. Biograph

    Robotics Technologies in Urban Smart Waste Management

    Get PDF
    Urban waste management is a critical issue due to population growth and urbanization, requiring sustainable and innovative approaches. Robotics technologies offer promising solutions to optimize waste collection, sorting, and recycling processes in urban environments. By incorporating robotics into waste management systems, cities can enhance efficiency, reduce environmental impact, and improve urban sustainability. Robotics can automate tasks, reduce manual labor, and improve safety by minimizing human exposure to hazardous environments. They can also enhance waste monitoring and tracking, enabling real-time data collection and analysis. Artificial intelligence can result in predictive maintenance systems, reducing downtime and improving system reliability. However, the environmental impact and cost-effectiveness of robotic waste disposal systems in urban environments need further research. Future research should focus on advanced G-IoT applications, cybersecurity concerns, and evaluating the impact of IoT on waste reduction and resource optimizatio

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    A Series-Elastic Robot for Back-Pain Rehabilitation

    Get PDF
    Robotics research has been broadly expanding into various fields during the past decades. It is widely spread and best known for solving many technical necessities in different fields. With the rise of the industrial revolution, it upgraded many factories to use industrial robots to prevent the human operator from dangerous and hazardous tasks. The rapid development of application fields and their complexity have inspired researchers in the robotics community to find innovative solutions to meet the new desired requirements of the field. Currently, the creation of new needs outside the traditional industrial robots are demanding robots to attend to the new market and to assist humans in meeting their daily social needs (i.e., agriculture, construction, cleaning.). The future integration of robots into other types of production processes, added new requirements that require more safety, flexibility, and intelligence in robots. Areas of robotics has evolved into various fields. This dissertation addresses robotics research in four different areas: rehabilitation robots, biologically inspired robots, optimization techniques, and neural network implementation. Although these four areas may seem different from each other, they share some research topics and applications
    corecore