50,881 research outputs found

    Data Analytics in Higher Education: Key Concerns and Open Questions

    Get PDF
    “Big Data” and data analytics affect all of us. Data collection, analysis, and use on a large scale is an important and growing part of commerce, governance, communication, law enforcement, security, finance, medicine, and research. And the theme of this symposium, “Individual and Informational Privacy in the Age of Big Data,” is expansive; we could have long and fruitful discussions about practices, laws, and concerns in any of these domains. But a big part of the audience for this symposium is students and faculty in higher education institutions (HEIs), and the subject of this paper is data analytics in our own backyards. Higher education learning analytics (LA) is something that most of us involved in this symposium are familiar with. Students have encountered LA in their courses, in their interactions with their law school or with their undergraduate institutions, instructors use systems that collect information about their students, and administrators use information to help understand and steer their institutions. More importantly, though, data analytics in higher education is something that those of us participating in the symposium can actually control. Students can put pressure on administrators, and faculty often participate in university governance. Moreover, the systems in place in HEIs are more easily comprehensible to many of us because we work with them on a day-to-day basis. Students use systems as part of their course work, in their residences, in their libraries, and elsewhere. Faculty deploy course management systems (CMS) such as Desire2Learn, Moodle, Blackboard, and Canvas to structure their courses, and administrators use information gleaned from analytics systems to make operational decisions. If we (the participants in the symposium) indeed care about Individual and Informational Privacy in the Age of Big Data, the topic of this paper is a pretty good place to hone our thinking and put into practice our ideas

    PABED A Tool for Big Education Data Analysis

    Full text link
    Cloud computing and big data have risen to become the most popular technologies of the modern world. Apparently, the reason behind their immense popularity is their wide range of applicability as far as the areas of interest are concerned. Education and research remain one of the most obvious and befitting application areas. This research paper introduces a big data analytics tool, PABED Project Analyzing Big Education Data, for the education sector that makes use of cloud-based technologies. This tool is implemented using Google BigQuery and R programming language and allows comparison of undergraduate enrollment data for different academic years. Although, there are many proposed applications of big data in education, there is a lack of tools that can actualize the concept into practice. PABED is an effort in this direction. The implementation and testing details of the project have been described in this paper. This tool validates the use of cloud computing and big data technologies in education and shall head start development of more sophisticated educational intelligence tools

    ‘A double-edged sword. This is powerful but it could be used destructively’: Perspectives of early career education researchers on learning analytics

    Get PDF
    Learning analytics has been increasingly outlined as a powerful tool for measuring, analysing, and predicting learning experiences and behaviours. The rising use of learning analytics means that many educational researchers now require new ranges of technical analytical skills to contribute to an increasingly data-heavy field. However, it has been argued that educational data scientists are a ‘scarce breed’ (Buckingham Shum et al., 2013) and that more resources are needed to support the next generation of early career researchers in the education field. At the same time, little is known about how early career education researchers feel towards learning analytics and whether it is important to their current and future research practices. Using a thematic analysis of a participatory learning analytics workshop discussions with 25 early career education researchers, we outline in this article their ambitions, challenges and anxieties towards learning analytics. In doing so, we have provided a roadmap for how the learning analytics field might evolve and practical implications for supporting early career researchers’ development

    Big data for monitoring educational systems

    Get PDF
    This report considers “how advances in big data are likely to transform the context and methodology of monitoring educational systems within a long-term perspective (10-30 years) and impact the evidence based policy development in the sector”, big data are “large amounts of different types of data produced with high velocity from a high number of various types of sources.” Five independent experts were commissioned by Ecorys, responding to themes of: students' privacy, educational equity and efficiency, student tracking, assessment and skills. The experts were asked to consider the “macro perspective on governance on educational systems at all levels from primary, secondary education and tertiary – the latter covering all aspects of tertiary from further, to higher, and to VET”, prioritising primary and secondary levels of education

    The Potential for Student Performance Prediction in Small Cohorts with Minimal Available Attributes

    Get PDF
    The measurement of student performance during their progress through university study provides academic leadership with critical information on each student’s likelihood of success. Academics have traditionally used their interactions with individual students through class activities and interim assessments to identify those “at risk” of failure/withdrawal. However, modern university environments, offering easy on-line availability of course material, may see reduced lecture/tutorial attendance, making such identification more challenging. Modern data mining and machine learning techniques provide increasingly accurate predictions of student examination assessment marks, although these approaches have focussed upon large student populations and wide ranges of data attributes per student. However, many university modules comprise relatively small student cohorts, with institutional protocols limiting the student attributes available for analysis. It appears that very little research attention has been devoted to this area of analysis and prediction. We describe an experiment conducted on a final-year university module student cohort of 23, where individual student data are limited to lecture/tutorial attendance, virtual learning environment accesses and intermediate assessments. We found potential for predicting individual student interim and final assessment marks in small student cohorts with very limited attributes and that these predictions could be useful to support module leaders in identifying students potentially “at risk.”.Peer reviewe

    Assessing collaborative learning: big data, analytics and university futures

    Get PDF
    Traditionally, assessment in higher education has focused on the performance of individual students. This focus has been a practical as well as an epistemic one: methods of assessment are constrained by the technology of the day, and in the past they required the completion by individuals under controlled conditions, of set-piece academic exercises. Recent advances in learning analytics, drawing upon vast sets of digitally-stored student activity data, open new practical and epistemic possibilities for assessment and carry the potential to transform higher education. It is becoming practicable to assess the individual and collective performance of team members working on complex projects that closely simulate the professional contexts that graduates will encounter. In addition to academic knowledge this authentic assessment can include a diverse range of personal qualities and dispositions that are key to the computer-supported cooperative working of professionals in the knowledge economy. This paper explores the implications of such opportunities for the purpose and practices of assessment in higher education, as universities adapt their institutional missions to address 21st Century needs. The paper concludes with a strong recommendation for university leaders to deploy analytics to support and evaluate the collaborative learning of students working in realistic contexts

    Philosophy of education in the age of digital reason

    Get PDF
    In this conversation, Michael A. Peters discusses his philosophy of education in and for the age of digital media. The first part of the conversation classifies Michael Peters’ work in three interlocked themes: philosophy, political knowledge economy, and academic publishing. It explores the power of dialogue for philosophical inquiry, positions dialogue in relation to human learning, and analyses the philosophical thesis of postdisciplinarity. It assesses the role of “big data” and “learning analytics” in (educational) research, and links various approaches to inquiry with creativity. The second part of the conversation introduces the notion of “philosophy as pedagogy,” and introduces Michael Peters’ philosophy of technology. It inquires the role of educational philosophy in the contemporary network society, and explores links between postmodernism / poststructuralism and (neo)Marxism. The third part of the conversation explores the relationships between universalism and the Internet, locates digital postcolonialism, and looks into legacy of the Frankfurt School for learning in the age of digital media. Finally, it discusses Michael Peters’ lifelong fascination with Ludwig Wittgenstein, and outlines the main trajectories of Wittgenstein’s work into present and future of educational philosophy

    Guest Editorial: Ethics and Privacy in Learning Analytics

    Get PDF
    The European Learning Analytics Community Exchange (LACE) project is responsible for an ongoing series of workshops on ethics and privacy in learning analytics (EP4LA), which have been responsible for driving and transforming activity in these areas. Some of this activity has been brought together with other work in the papers that make up this special issue. These papers cover the creation and development of ethical frameworks, as well as tools and approaches that can be used to address issues of ethics and privacy. This editorial suggests that it is worth taking time to consider the often intertangled issues of ethics, data protection and privacy separately. The challenges mentioned within the special issue are summarised in a table of 22 challenges that are used to identify the values that underpin work in this area. Nine ethical goals are suggested as the editors’ interpretation of the unstated values that lie behind the challenges raised in this paper

    Comprendiendo el potencial y los desafíos del Big Data en las escuelas y la educación

    Full text link
    In recent years, the world has experienced a huge revolution centered around the gathering and application of big data in various fields. This has affected many aspects of our daily life, including government, manufacturing, commerce, health, communication, entertainment, and many more. So far, education has benefited only a little from the big data revolution. In this article, we review the potential of big data in the context of education systems. Such data may include log files drawn from online learning environments, messages on online discussion forums, answers to open-ended questions, grades on various tasks, demographic and administrative information, speech, handwritten notes, illustrations, gestures and movements, neurophysiologic signals, eye movements, and many more. Analyzing this data, it is possible to calculate a wide range of measurements of the learning process and to support various educational stakeholders with informed decision-making. We offer a framework for better understanding of how big data can be used in education. The framework comprises several elements that need to be addressed in this context: defining the data; formulating data-collecting and storage apparatuses; data analysis and the application of analysis products. We further review some key opportunities and some important challenges of using big data in educationEn los últimos años, el mundo ha experimentado una gran revolución centrada en la recopilación y aplicación de big data en varios campos. Esto ha afectado muchos aspectos de nuestra vida diaria, incluidos el gobierno, la manufactura, el comercio, la salud, la comunicación, el entretenimiento y muchos más. Hasta ahora, la educación se ha beneficiado muy poco de la revolución del big data. En este artículo revisamos el potencial de los macrodatos en el contexto de los sistemas educativos. Dichos datos pueden incluir archivos de registro extraídos de entornos de aprendizaje en línea, mensajes en foros de discusión en línea, respuestas a preguntas abiertas, calificaciones en diversas tareas, información demográfica y administrativa, discurso, notas escritas a mano, ilustraciones, gestos y movimientos, señales neurofisiológicas, movimientos oculares y muchos más. Analizando estos datos es posible calcular una amplia gama de mediciones del proceso de aprendizaje y apoyar a diversos interesados educativos con una toma de decisiones informada. Ofrecemos un marco para una mejor comprensión de cómo se puede utilizar el big data en la educación. El marco comprende varios elementos que deben abordarse en este contexto: definición de los datos; formulación de aparatos de recolección y almacenamiento de datos; análisis de datos y aplicación de productos de análisis. Además, revisamos algunas oportunidades clave y algunos desafíos importantes del uso de big data en la educació
    corecore