11 research outputs found

    Future Directions in Machine Learning

    Get PDF

    RoboCup 2D Soccer Simulation League: Evaluation Challenges

    Full text link
    We summarise the results of RoboCup 2D Soccer Simulation League in 2016 (Leipzig), including the main competition and the evaluation round. The evaluation round held in Leipzig confirmed the strength of RoboCup-2015 champion (WrightEagle, i.e. WE2015) in the League, with only eventual finalists of 2016 competition capable of defeating WE2015. An extended, post-Leipzig, round-robin tournament which included the top 8 teams of 2016, as well as WE2015, with over 1000 games played for each pair, placed WE2015 third behind the champion team (Gliders2016) and the runner-up (HELIOS2016). This establishes WE2015 as a stable benchmark for the 2D Simulation League. We then contrast two ranking methods and suggest two options for future evaluation challenges. The first one, "The Champions Simulation League", is proposed to include 6 previous champions, directly competing against each other in a round-robin tournament, with the view to systematically trace the advancements in the League. The second proposal, "The Global Challenge", is aimed to increase the realism of the environmental conditions during the simulated games, by simulating specific features of different participating countries.Comment: 12 pages, RoboCup-2017, Nagoya, Japan, July 201

    Applications of Machine Learning in Cryptography: A Survey

    Full text link
    Machine learning techniques have had a long list of applications in recent years. However, the use of machine learning in information and network security is not new. Machine learning and cryptography have many things in common. The most apparent is the processing of large amounts of data and large search spaces. In its varying techniques, machine learning has been an interesting field of study with massive potential for application. In the past three decades, machine learning techniques, whether supervised or unsupervised, have been applied in cryptographic algorithms, cryptanalysis, steganography, among other data-security-related applications. This paper presents an updated survey of applications of machine learning techniques in cryptography and cryptanalysis. The paper summarizes the research done in these areas and provides suggestions for future directions in research

    MELINDA: A Multimodal Dataset for Biomedical Experiment Method Classification

    Full text link
    We introduce a new dataset, MELINDA, for Multimodal biomEdicaL experImeNt methoD clAssification. The dataset is collected in a fully automated distant supervision manner, where the labels are obtained from an existing curated database, and the actual contents are extracted from papers associated with each of the records in the database. We benchmark various state-of-the-art NLP and computer vision models, including unimodal models which only take either caption texts or images as inputs, and multimodal models. Extensive experiments and analysis show that multimodal models, despite outperforming unimodal ones, still need improvements especially on a less-supervised way of grounding visual concepts with languages, and better transferability to low resource domains. We release our dataset and the benchmarks to facilitate future research in multimodal learning, especially to motivate targeted improvements for applications in scientific domains.Comment: In The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21), 202

    Machine Learning in Acute Ischemic Stroke Neuroimaging

    Get PDF
    Machine Learning (ML) through pattern recognition algorithms is currently becoming an essential aid for the diagnosis, treatment, and prediction of complications and patient outcomes in a number of neurological diseases. The evaluation and treatment of Acute Ischemic Stroke (AIS) have experienced a significant advancement over the past few years, increasingly requiring the use of neuroimaging for decision-making. In this review, we offer an insight into the recent developments and applications of ML in neuroimaging focusing on acute ischemic stroke

    A Survey of Machine Learning Techniques for Video Quality Prediction from Quality of Delivery Metrics

    Get PDF
    A growing number of video streaming networks are incorporating machine learning (ML) applications. The growth of video streaming services places enormous pressure on network and video content providers who need to proactively maintain high levels of video quality. ML has been applied to predict the quality of video streams. Quality of delivery (QoD) measurements, which capture the end-to-end performances of network services, have been leveraged in video quality prediction. The drive for end-to-end encryption, for privacy and digital rights management, has brought about a lack of visibility for operators who desire insights from video quality metrics. In response, numerous solutions have been proposed to tackle the challenge of video quality prediction from QoD-derived metrics. This survey provides a review of studies that focus on ML techniques for predicting the QoD metrics in video streaming services. In the context of video quality measurements, we focus on QoD metrics, which are not tied to a particular type of video streaming service. Unlike previous reviews in the area, this contribution considers papers published between 2016 and 2021. Approaches for predicting QoD for video are grouped under the following headings: (1) video quality prediction under QoD impairments, (2) prediction of video quality from encrypted video streaming traffic, (3) predicting the video quality in HAS applications, (4) predicting the video quality in SDN applications, (5) predicting the video quality in wireless settings, and (6) predicting the video quality in WebRTC applications. Throughout the survey, some research challenges and directions in this area are discussed, including (1) machine learning over deep learning; (2) adaptive deep learning for improved video delivery; (3) computational cost and interpretability; (4) self-healing networks and failure recovery. The survey findings reveal that traditional ML algorithms are the most widely adopted models for solving video quality prediction problems. This family of algorithms has a lot of potential because they are well understood, easy to deploy, and have lower computational requirements than deep learning techniques

    Intelligent simulation of coastal ecosystems

    Get PDF
    Tese de doutoramento. Engenharia Informática. Faculdade de Engenharia. Universidade do Porto, Faculdade de Ciência e Tecnologia. Universidade Fernando Pessoa. 201
    corecore