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Abstract 

The simulation of physical, chemical and biological processes in coastal ecosystems is used as a 

way to understand the system internal dynamics and to predict its evolution over time, in 

order to promote behaviours environmentally friendly and to induce effective and efficient 

management of the ecosystem as a whole. 

The complexity and diversity of those processes encompass wide areas of knowledge, involving 

many researchers and research teams for their mathematical modelling. Each research team 

adopts a given programming language to translate the model to a computer application, 

simulating the processes that they are specialists and are interested in, rarely thinking about 

the possibility of its integration with other models developed by other research teams, that 

simulate complementary processes. These applications are normally self-contained and, when 

used in a management context, require a lot of extra work to export and import results from 

one application to another, in order to share the knowledge acquired and complement the 

simulation. Furthermore, they do not integrate any kind of human rationality embedded to 

help a decision making activity. 

The work presented in this document explores the capacity for the realistic simulation of 

complex systems, working consistently, integrating results generated by processes simulated 

in distinct applications and placing the human reasoning in the middle of the decision making 

system. It presents a framework for modelling and simulating coastal ecosystems and an 

associated methodology for creating an Environmental Decision Support Systems (EDSS). Both 

are based on object oriented programming (OOP) and, in the case of the EDSS, on Autonomous 

Intelligent Agents. The modelling software simulator (EcoDynamo) is written in C++ and 

includes several object dynamic link libraries (DLLs) for the simulation of the different physical 

and biogeochemical processes. These libraries were designed to be linked with different model 

shells, possibly written in different programming languages, for the sake of portability and 

reusability. A high level communication language (ECOLANG) was developed to allow the 

communications between EcoDynamo and the agents and applications that belong to the 

system. ECOLANG was designed to describe ecological systems in terms of regional 

characteristics, living agent’s perceptions and actions and is independent from any hardware 

or software platform. The framework (Ecological Simulation Network – EcoSimNet) was 

developed to easily integrate and bring together the several pieces of the system – the 

simulator is the core of the framework and all the agents/applications communicate with it; 
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the agents have, also, the ability to communicate with each other and can define several 

scenarios for the simulation in order to optimize their own objectives. To improve the speed of 

the simulation process, the infrastructure provides mechanisms to integrate several 

simulators, enabling the parallel simulation of different configuration scenarios to increase the 

simulation speed. The EDSS uses the Analytic Hierarchy Process methodology (AHP) to 

integrate multiple qualitative and quantitative conflicting criteria. The user gives a structure 

with a pairwise comparison between criteria based on its importance, and a priority ranking of 

the pre-processed scenarios is achieved. To validate the portability of the DLLs, some objects 

were integrated in the COHERENS simulator (written in Fortran), and some processes 

simulated by COHERENS were invoked by the EcoDynamo simulator. 

To validate the EcoSimNet framework, the simulation system was used both to simulate the 

Sungo Bay model (People’s Republic of China) and Ria Formosa (Algarve, Portugal). The 

simulation system was used to simulate several distinct ecosystem configurations in order to 

demonstrate its flexibility. The framework was also used to optimize different scenarios with 

bivalve farming areas, and the EDSS was used with different management scenarios in the Ria 

Formosa lagoon (Portugal). The experiments performed indicate that these tools may be 

widely used by people involved in the management of coastal areas to integrate 

environmental, economic and social issues in the decision process, without an in-depth 

knowledge of modelling methodologies. 
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Resumo 

A simulação de processos físicos, químicos e biológicos em ecossistemas costeiros é utilizada 

como uma forma de entender a dinâmica interna do sistema e prever a sua evolução ao longo 

do tempo, a fim de promover comportamentos ambientalmente amigáveis e para induzir a 

gestão eficiente e eficaz do ecossistema como um todo. 

A complexidade e a diversidade dos processos abrangem grandes áreas do conhecimento, 

envolvendo muitos investigadores e equipas de investigação para a sua modelação 

matemática. Cada equipa de investigação adopta uma linguagem de programação traduzindo 

o modelo para uma aplicação de computador, simulando os processos em que são 

especialistas e estão interessados, raramente pensando na possibilidade da sua integração 

com outros modelos desenvolvidos por outras equipas de investigação, que simulam 

processos complementares. Estas aplicações são normalmente auto-suficientes e, quando 

usadas num contexto de gestão, exigem muito trabalho extra para exportar e importar os 

resultados de uma aplicação para outra, a fim de partilhar o conhecimento adquirido e 

completar a simulação. Além disso, não integram qualquer tipo de racionalidade humana para 

auxiliar uma actividade de tomada de decisão. 

O trabalho apresentado neste documento explora a capacidade de simulação de sistemas 

complexos, trabalhando de forma consistente, integrando os resultados gerados por 

diferentes processos simulados e colocando o factor humano no meio do processo de tomada 

de decisão. Apresenta uma plataforma para modelação e simulação de ecossistemas costeiros 

e uma metodologia associada à criação de um Sistema de Apoio à Decisão Ambiental 

(Environmental Decision Support System - EDSS). Ambos são baseados em programação 

orientada a objectos (OOP) e, no caso do EDSS, em Agentes Inteligentes. O software do 

simulador (EcoDynamo) é escrito em C++ e inclui várias bibliotecas de objectos de linkagem 

dinâmica (Dynamic Link Libraries - DLLs) para a simulação dos diferentes processos físicos e 

biogeoquímicos. As bibliotecas foram concebidas para serem utilizadas por outros programas 

de simulação, possivelmente escritos em diferentes linguagens de programação, permitindo 

portabilidade e reutilização. Uma linguagem de comunicação de alto nível (ECOLANG) foi 

desenvolvida para permitir a comunicação entre o EcoDynamo, os agentes e as aplicações que 

pertencem ao sistema. A ECOLANG foi projectada com o objectivo de descrever os sistemas 

ecológicos, considerando características regionais, as percepções e as acções dos agentes e é 

independente de qualquer plataforma de hardware ou software. A plataforma EcoSimNet 
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(Ecological Simulation Network) foi desenvolvida para integrar e reunir as diversas partes do 

sistema - o simulador é a aplicação central da plataforma e todos os agentes/aplicações 

comunicam com ele; os agentes têm, também, a capacidade para comunicar uns com os 

outros e podem definir vários cenários para a simulação, a fim de optimizar os seus próprios 

objectivos. Para melhorar a velocidade do processo de simulação, a infra-estrutura dispõe de 

mecanismos para integrar vários simuladores, permitindo a simulação paralela de diferentes 

cenários de configuração, aumentando a frequência de geração de resultados. O EDSS usa o 

método AHP (Analytic Hierarchy Process) para integrar múltiplos critérios antagónicos, 

descritos qualitativa ou quantitativamente. Neste método o utilizador insere a importância dos 

critérios numa matriz, comparando-os aos pares, e o AHP apresenta uma ordem de prioridade 

para os cenários pré-processados.  

Para validar a portabilidade das bibliotecas dinâmicas, alguns objectos foram integrados no 

simulador COHERENS (escrito em Fortran) e alguns processos simulados pelo COHERENS foram 

invocados a partir do simulador EcoDynamo. 

Para validar a plataforma EcoSimNet, o sistema foi utilizado com o modelo de Sungo Bay 

(República Popular da China) para optimizar diferentes cenários de cultura de bivalves, e o 

EDSS foi utilizado com diferentes cenários de gestão da Ria Formosa (Portugal). As 

experiências realizadas indicam que estas ferramentas podem ser utilizadas na gestão das 

zonas costeiras, integrando as questões ambientais, económicas e sociais no processo de 

decisão, por utilizadores sem um conhecimento profundo das metodologias de modelação. 
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Résumé 

La simulation des propriétés physiques, chimiques et biologiques dans les écosystèmes côtiers 

est utilisé comme un moyen de comprendre la dynamique interne et de prédire leur évolution 

au fil du temps, afin de promouvoir des comportements respectueux de l'environnement et à 

induire une gestion efficace de l'écosystème dans son ensemble. 

La complexité et la diversité des processus englobent de vastes domaines de connaissances, 

impliquant de nombreux chercheurs et équipes de recherche pour leur modélisation 

mathématique. Chaque équipe de recherche adopte un langage de programmation pour 

traduire le modèle d'une application informatique pour simuler les processus qui sont des 

spécialistes et sont intéressés par, rarement penser à la possibilité de son intégration avec 

d'autres modèles élaborés par d'autres équipes de recherche, qui simulent des processus 

complémentaires. Ces applications sont généralement autonomes et, lorsqu'il est utilisé dans 

un contexte de gestion, exigent beaucoup de travail supplémentaire pour exporter et importer 

les résultats d'une application à une autre, afin de partager les connaissances acquises et de 

compléter la simulation. En outre, ils ne s'intègrent pas n'importe quel type de rationalité 

humaine intégrés pour aider à une décision faisant de l'activité. 

Le travail présenté dans ce document explore la capacité de la simulation de systèmes 

complexes, en travaillant de manière cohérente, intégrant les résultats générés par les 

processus simulés dans des applications distinctes et à la mise au raisonnement de l'homme 

dans le milieu du processus décisionnel. Il présente un cadre pour la modélisation et la 

simulation des écosystèmes côtiers et une méthodologie associée pour créer un Système 

d'Aide à la Décision Environnementale (Environmental Decision Support Systems - EDSS). Les 

deux sont basés sur la programmation orientée objet (POO) et, dans le cas de l'EDSS, sur les 

agents autonomes intelligents. Le simulateur logiciel de modélisation (EcoDynamo) est écrit en 

C++ et comprend plusieurs bibliothèques d'objets de liens dynamiques (Dynamic Link Library - 

DLL) pour la simulation de les différents processus physique et biogéochimiques. Ces 

bibliothèques ont été désigné pour être lié avec des différent simulateurs, peut-être écrites 

dans des langages de programmation différents, permettant la réutilisation et la portabilité. 

Un langage de haut niveau (ECOLANG) a été développé pour permettre les communications 

entre EcoDynamo, les agents et les applications qui appartiennent au système. ECOLANG a été 

désigné pour décrire des systèmes écologiques en termes de caractéristiques régionales, les 

perceptions et les actions des agents et est indépendante de tout matériel ou plate-forme 
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logicielle. La plate-forme EcoSImNet (Ecological Simulation Network) proposée a été conçu 

pour intégrer facilement et de réunir les pièces du système à plusieurs - le simulateur est le 

noyau du plate-forme et tous les agents/applications communiquer avec lui; les agents ont, en 

outre, la capacité de communiquer les uns avec les autres et permet de définir plusieurs 

scénarios pour la simulation afin d'optimiser leurs propres objectifs. Pour améliorer la rapidité 

du processus de simulation, l'infrastructure fournit des mécanismes pour intégrer plusieurs 

simulateurs, permettant la simulation parallèle des scénarios de configuration différentes pour 

augmenter la fréquence de génération de résultats. L'EDSS utilise la méthode AHP (Analytic 

Hierarchy Process) pour intégrer de multiples critères contradictoires, décrit qualitativement 

ou quantitativement. L'utilisateur donne une structure avec une comparaison par paires entre 

les critères en fonction de son importance, et l'AHP réalise un ordre de priorité des scénarios 

prétraitement. 

Pour valider la portabilité des DLLs, certains objets ont été intégrées dans le simulateur 

COHERENS (écrit en Fortran), et certains processus simulés par COHERENS ont été invoquées 

par le simulateur EcoDynamo. 

Pour valider la plate-forme EcoSimNet, le système a été utilisé avec le modèle Sungo Bay 

(République Populaire de Chine) afin d'optimiser les différents scénarios avec répartition des 

zones de conchyliculture, et le score EDSS a été utilisé avec différents scénarios de gestion 

dans la lagune de Ria Formosa (Portugal). Les expériences réalisées montrent que ces outils 

peuvent être largement utilisés dans la gestion des zones côtières à intégrer les enjeux 

environnementaux, économiques et sociaux dans la prise de décision, pour les utilisateurs sans 

une connaissance approfondie des méthodes de modélisation. 
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1  Introduction and Objectives 

1.1  Motivation 

Human activities always had a prominent influence on the natural environment. Today, there 

is a growing awareness that the decisions and actions taken on the environment have 

consequences that can be very penalizing in the future, for the environment and for the living 

beings, particularly human beings. This is one of the reasons why environmental decision 

support systems began to have increasing interest in the scientific and business activities.  

Coastal ecosystems always performed an important role in the life of human beings. They 

represent a small part of the area and volume of the oceans but, because they are the 

interface between land and sea, they allow an enormous amount of possible activities for work 

and leisure and guarantee several basic services to humanity such as food production, waste 

water treatment, shelter for harbour activities, leisure places, etc. 

Over the last decades, human population migrated intensively from inland towards coastal 

boundaries and, nowadays, at least 60% of the human population lives within 60km from the 

sea (Watson et al., 1996). These numbers are also relevant in Portugal where almost 80% of 

the population lives within 50km from the sea (INE, 2008) - Figure 1-1.  

Fourteen of the seventeen largest megacities are located along coasts. Coastal regions contain 

the lion’s share of humanity’s infrastructure. The activities of human society in industry, 

transportation and trade, energy processing, tourism, recreation, communications and services 

are all concentrated along coasts (Olsen et al., 2009). In recent decades, after some ecological 
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disasters, scientists and the various stakeholders are becoming aware that they must work 

together to ensure the appropriate management of those areas in order to maintain the 

overall quality of the ecosystems compatible with development strategies – that is what is 

commonly called Integrated Coastal Zone Management - ICZM (MAOTDR, 2007). 

Aquaculture, touristic and harbour activities, urban development and human leisure converge 

to the coastal ecosystems, forcing loads of fresh water inputs, rich in organic and mineral 

nutrients derived from agricultural, urban and industrial effluents and domestic sewage 

(Duarte et al., 2007). 

 

Figure 1-1: Population density - Portugal 2007 (INE, 2008: 44) 

Coastal regions generate a disproportionate share of the global consumption of the manmade 

and natural resources, and the resulting generation of wastes. How humanity manages its 

activities and the impacts we produce on coastal ecosystems is one of the great challenges of 

the twenty-first century (Olsen et al., 2009). The sustainable development strategies for these 

ecosystems must include all the known interests in each region and should explain, 
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undoubtedly, why some actions must be forbidden, why some decisions must be taken and 

the benefits achieved by these options in the medium or long term for each ecosystem. These 

strategies may include short-term targets (when ecosystem threats may lead to immediate 

collapse in terms of ecological balance), but should be designed for future generations. The 

inclusion of the system stakeholders’ in the decision-making process is crucial to ensure the 

commitment of the population to the decisions taken, even if their consequences may have 

some immediate negative effect on the day life of each community. 

The use of simulation and ecological models is becoming a widespread tool in the 

management of coastal ecosystems towards a sustainable development strategy. Therefore, it 

is important to integrate human reasoning in the models, decisions and actions over the 

ecological systems. This task is very hard to include and none of the traditional simulation 

processes and models includes “human behaviour” because it is not easy to model, even if 

human decisions are limited by legal regulations and laws. 

The fragmented legal framing of the administration responsibilities facilitates an overlap of 

competences between different entities, leaving a simple question like: “Is it advisable to 

enlarge an opened navigation channel (due to tourism pressure and boat navigation 

demands)?” without an immediate answer. A positive answer to the previous question raises 

another complex one: “What will be the future consequences and/or benefits?”  

The huge number of possible combinations, generated by the different management decisions 

and options, the opposite interests of the stakeholders and the institutional authorities, and 

the slowness of the decision processes, increases the difficulty to implement automatic real-

time management policies (Pereira et al., 2007). 

The International Geosphere-Biosphere Programme (IGBP) launched in 1993 the Land-Ocean 

Interactions in the Coastal Zone (LOICZ) project (http://www.loicz.org), integrating scientists 

from across the globe to investigate changes in the biology, chemistry and physics of the 

coastal zone. The human dimensions were addressed in 2003, with the inclusion of research in 

areas like social, political and economic sciences. One of its objectives is the use of “research 

results to explore the role humans play in the coastal zone, their vulnerability to changing 

environments, and the options to protect coasts for future generations”. 

The European Union is contributing also to the LOICZ project and is being expend considerable 

financial and political effort in gaining a better understanding of the factors that affect 

European coastal waters, their interaction with river basins and the effect of land-use on 
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resulting fluxes of contaminants to coastal zones. The DITTY project  was one European Project 

integrated in this effort and attained to develop the scientific and operational bases for a 

sustained and rational utilization of the available resources in Southern European Lagoons, 

taking into account all the relevant impacts from agriculture, urban and economic activities 

that affect the aquatic environment, by developing information technology tools tailored for 

these type of ecosystems (EC, 2003). 

In the DITTY project, the participation of economists and stakeholders, in parallel with 

researchers specialized in the area, put considerable emphasis on the modelling phase as well 

as on detailed socio-economic assessment of management options. During the project 

implementation, it became evident the need to further explore the potential hybridization 

between ecological modelling and computer sciences, namely the provision of computer 

frameworks to integrate models developed by different research teams in different computer 

platforms and programming languages, exchange data generated by those models during the 

simulation phase, and develop the basis for common information technology tools and 

environmental decision support systems. It was the kick-off for the work presented in this 

document. 

To corroborate this potential, during the first decade of the twenty-first century several 

journals appear in this hybrid area, emphasizing the integration of artificial intelligence 

techniques with environmental sciences – journals like “Ecological Informatics” and “Ecological 

Complexity” have joined the wide established journals edited by Elsevier, “Ecological 

Modelling” and “Ecological Engineering”, among others. Also the list of conferences around 

the environmental and sustainable development themes increased significantly, and every 

week one international conference happens anywhere in the world 

(http://www.conferencealerts.com/environment.htm). 

1.2  Objectives 

The main objective of this work is to develop an integrated computational system for 

modelling, optimizing and managing coastal ecosystems with the help of intelligent agents, 

designed to be used by the end users of the sites (non-experts of environmental sciences) and 

capable of realistically simulate complex systems, integrating other simulators in order to 

ensure compatibility and portability of models and processes. 

For that, six specific objectives must be achieved by the research, answering the following 

questions: 

http://www.conferencealerts.com/environment.htm
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 Is it possible to build a simulator for realistic ecosystem simulations, with the ability to 

include or remove sub-processes of simulation in accordance with the modelling 

goals? 

 Is it possible to build a flexible simulator capable of simulating distinct ecological 

systems and/or distinct system characteristics with minimum change in the core 

simulation modules? 

 Is it possible to integrate modelled processes, built in legated platforms, with new 

simulators and computer systems, sharing the mathematical knowledge of different 

research teams? 

 Is it possible to optimize the simulation of complex ecological systems using intelligent 

agents and optimization and machine learning methodologies? 

 Is it possible to combine the use of mathematical models with multiple and opposite 

decision criteria in the effective management of real coastal ecosystems? 

 Is it possible to integrate all the previous into an harmonious intelligent simulation 

system, easy to extend and easy-to-use by the human decision makers? 

1.3  Document Organization 

This document is divided into six chapters and is organized as follows: 

 In this chapter the work was introduced and its main objectives presented. 

 The next two chapters present the background necessary to understand all the 

scientific and technological areas that are involved in this project. The state-of-the-art 

of ecological modelling and simulation is presented in chapter 2, agent-based 

simulation, optimization and machine learning techniques, and decision support 

systems are presented in chapter 3. 

 Chapter 4 describes the methodology followed in this work, presenting the 

applications built to implement the ideas proposed in the project (simulator, visualizer, 

agents and decision support system (DSS)), the definition and the implementation of 

the framework needed to establish the network for the applications’ communications 

(EcoSimNet platform and ECOLANG messages). The proposed DSS (based on the AHP 

methodology) is described more deeply as well as the strategy followed for the 

generation and the simulation of several different scenarios.  

 Chapter 5 presents some results of relevant outputs generated by the simulation 

experiments and opens a discussion/analysis of the results obtained. 
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 The document ends with a chapter dedicated to the conclusions and to point for 

future possible developments. 

 In the annexes the reader can find the user’s manual of the simulator application, the 

detailed diagrams of the EcoDynamo simulation classes, the detailed description of the 

ECOLANG messages and protocol, and the description of Farmer Agent configuration 

files used in the work. 
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2  Concepts and State-of-the-Art: 

Modelling and Simulation 

“The whole is simpler than the sum of its parts.” 

Willard Gibbs 

2.1  Introduction 

It is difficult to date historically the beginning of the usage of models by humans – a simple 

sketch, or a scheme, with directions to some destination, may be seen as models. A road map 

may be seen as a more sophisticated model and, as a function of its scale, it could represent 

roads with more or less detail. 

A model is always a simplification of reality and will “never contains all the features of the real 

system, because then it would be the real system itself” (Jørgensen and Bendoricchio 2001). 

For a model, to be understandable and useful, it must contain the characteristic features that 

are essential in the context of the problem to be solved, discarding those that will complicate 

the system without any advantages for the intended purposes.  

Engineering is a wide field where models are fruitfully designed and applied. Each model has 

always one main objective. Therefore, many different models could be developed for the same 

subject, selecting the appropriate version according to the goals the modeller wants to 

achieve. 

Models can be physical (miniaturized cosmos) or described by mathematical relations and 

equations resuming the main characteristics of the system and run by a computer program. 
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The rapid progresses achieved in computers’ hardware and software development over the 

last decades have exponentially increased the usage of mathematical models across almost all 

fields of science, and simulation is now widely used to test or predict researchers’ theories. 

This is particularly relevant in the fields of physical, chemical, biological and ecological 

sciences, engineering, health and weather forecast domains. 

Following sections present basic concepts and state-of-the-art related with simulation, models 

and ecological modelling. 

2.2  Models and Simulation 

Human beings always tried to understand the environment and to explain the laws or rules 

governing its operation. While trying to explain the reality they realized that nature is very 

complex and difficult to explain as a whole. Not giving up the idea, they began by trying to 

understand simple phenomena, or those that seemed simple.  

The first step began by the tentative to replicate natural phenomena, on a smaller scale, and 

then extract the understanding of its mode of operation – it was the advent of physical 

models. It was successful in many cases, unsuccessful in many more, but more complex 

processes of nature continued unexplained, because no physical model could be built to fit the 

objective. Over time, physicists and mathematicians proposed analytical expressions to explain 

some of those real processes. Simple systems of equations began to be constructed to 

represent the understanding of the processes and the knowledge acquired about them – it 

was the advent of mathematical models. 

As presented in the introduction of this chapter, assumptions made about real or imaginary 

systems and their behaviour conducted the researchers to build mathematical models to 

understand how the systems work or to build new systems to do something imagined. Models 

have been constructed for almost every possible system - factories, communications and 

computer networks, integrated circuits, highway systems, flight dynamics, biological systems, 

national economies, social interactions, and imaginary worlds. In each of these environments, 

a model of the system has proved to be more cost effective, less dangerous, faster, or 

otherwise more practical than experimenting with real system. The process of designing 

models and conducting experiments with those models is called simulation (Smith, 1998b). 

A model doesn’t capture all the system reality and complexity, as it is impossible for a 

mathematical model to represent them. Typically, a model tries to describe, as simply as 
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possible, the processes under study, discarding all the characteristics that are not important 

for that purposes. The researcher adjusts the functions and parameters of the mathematical 

model until an acceptable degree of fidelity between the model and the system is achieved. 

This degree of fidelity is revealed by the results generated by the simulation model (Jørgensen 

and Bendoricchio, 2001). 

As simulations are created from the minds of human designers, and even though every effort 

is made to ensure accuracy, compromises are always made and mistakes are inevitable. All 

simulations must be tested to establish their accuracy and appropriateness for the specific 

problems they have been developed to solve. Some authors (Sargent, 1991; Smith, 1998b) 

define this as a three-phase process: verification, validation and accreditation (VV&A). These 

phases are applied to the simulation development cycle and assume that the real world system 

to be replicated is identified, and a conceptual model of it is defined. The conceptual model is 

then encoded as a computer program. Sargent (1991) popularized the modelling process 

schema (Figure 2-1) where the three items (system, mathematical model and computerized 

model) form the vertices of a triangle where the VV&A phases are used to ensure that the 

transformation from one point to the next is accurate. 

 

Figure 2-1: Simulation, Verification and Validation – adapted from (Sargent, 1991) 

The system (real or proposed) to be modelled is the problem entity; the mathematical 

representation of the system is the conceptual model, developed for a particular study; and 

the computerized model is the mathematical model implemented on a computer as a 

program. The analysis and modelling phase helps in the construction of the conceptual model. 

The computer programming and implementation phase builds the computerized model. The 
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experimentation phase conducts computer experiments on the computerized model to obtain 

inferences about the problem entity and completes the feedback loop of the system. 

Validation (or conceptual model validity) is the process of determining the extent to which the 

conceptual model is a reasonable representation of the proposed system. This phase is often 

described as answering the question: “Are we building the right product?” 

Verification (or computerized model verification) is the process of determining that the 

software developed is an accurate implementation of the conceptual model. This phase is 

often described as answering the question: “Are we building the product right?” 

Accreditation (or operational validity) is the determination that the simulation results are 

acceptable for the specified purpose over the domain of the model’s intended applicability. 

Each simulation addresses a specific class of problems and the solution obtained is only valid 

under the conditions imposed by those problems. This phase defines the set of problems for 

which the simulation is a good and useful tool. 

Several versions of a model are usually developed, during the modelling process, in order to 

obtain a satisfactory valid model. The data validity represented in the figure is defined to 

ensure that the data necessary for model building, model evaluation and testing, and to 

conduct the model experiments to solve the problem, are adequate and correct. 

Two fundamental questions are always faced by the computer scientists when they have to 

lead with a model: “how to describe the structure of a model”, and “how to present the 

results”?  

The format of the results supplied by the model is of great importance and, in most cases, it is 

compatible with several commercial or open source software applications to manage the 

results and present the conclusions in an attractive and easy readable manner. 

Simulations are often referred as either continuous or discrete. This discrimination is based on 

the manner in which the representation of the model (state variables) evolves. During 

continuous simulations the values of the state variables change continuously as time 

progresses. In discrete simulations the values of the state variables change when some event 

occurs, at distinct points in time (Smith, 1998b; Law, 2007). In practice, most simulations use 

both continuous and discrete state variables, and their classification is based on which one of 

these types is predominant. 
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As mentioned, a model only captures the important details of the real system or the system 

under study. The effects of the omitted details can be lost or aggregated into other variables 

included in the model. The inaccuracy introduced by either options must be evaluated and 

accepted by the developers. It can be the Achilles' heel of the model. 

Another constraint for the application of simulation models could be the scarcity of input data 

to describe the behaviour of the system. This aspect is always addressed prior to the 

development of a model to reduce its impact when the model is completed. 

These two limitations force the simulations to generate only approximate results and, most of 

the times, describe the system’s behaviour statistically. Simulation is good to provide 

measurements of general trends, but not exact data for specific situations, turning it a valuable 

tool to help making decisions without the need of experimentation with the real system and 

without requiring the construction of the entire system. This is particularly important in the 

areas covered by the social sciences, where simulation tools are being used broadly to test 

new paradigms of relationships without real experimentation. Also in fields like nuclear 

energy, it is safer to analyze possible effects through simulation than with real experiments. 

2.2.1  The Simulation Process 

The last decades of the 20th century evolved the simulation art to an iterative process with 

feedbacks between the experimental and the modelling work (Figure 2-2). 

Following the ideas documented by Smith (1998a), first it is necessary to explicitly define the 

problem that the model should address. The defined problem space fixes the objectives and 

requirements of the project and the required accuracy of the results. Also boundaries are 

defined between the problem and the environment. A model cannot be built without concrete 

definitions of hoped results. 

The definition of one appropriate conceptual model includes the algorithms to be used that 

describe the system, inputs required and outputs generated. The limitations of the model, and 

assumptions made about the system, must be well documented and clearly defined to 

determine its appropriate uses. At this phase, all potential models are compared, until a single 

one is chosen that meets the objectives and requirements of the problem. 

Once one solution has been chosen, it is necessary to collect input data to supply initial values 

for the parameters and information to the model. The data collected will also serve as valuable 
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information to validate the results of the simulations. It is, the most of the times, the most 

difficult task to achieve in the simulation process because it is the most prone to human error. 

After that, the software model is constructed based on the solution adopted and the data 

collected. Mathematical functions and formulas are expressed in one computer language 

following the principles of good software engineering. 

The phases that follow can be seen as the production phases: the design experiments phase 

must identify the most productive and accurate methods to run the simulations and generate 

the results; expensive simulation runs must be identified in order to avoid high costs and 

sparse results. 

In the execute simulation phase, the simulations are performed to generate the output data. 

When the models follow Monte Carlo approaches, many hundreds or thousands of simulations 

must be done to collect statistically reliable results. While the model is executed, output data 

is collected, organised and stored. 

 

Figure 2-2: The Simulation Development Process – adapted from (Smith, 1998a) 

The data collected during the execution phase are usually voluminous and distributed through 

time. Detailed data analysis must be performed to extract long-term trends and answers to 
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the questions that motivated the simulations. The information produced in this step can be 

combined in textual, tabular, graphical or animated forms. Modern applications and user 

interfaces have enriched the presentation of data to be easily understood by diverse 

audiences. 

All the analysed results of the simulations must be documented and disseminated to 

interested parties in order to identify the fitness of the results with the expected answers to 

the initial requirements problem.  

As simulation models are expensive and difficult to build, once a model is built it can be 

modified and expanded for use on related projects with new requirements, saving time and 

money. 

With some slight differences, Figure 2-3 shows the proposal made by Law (2007) for the 

simulation process. 

 

Figure 2-3: The Simulation Development Process – adapted from (Law, 2007) 

In this diagram it is emphasized the need to run a prototype of the simulation model to 

produce results that must be checked for consistency with existing data for calibration. The 

acceptance of the simulation model prototype as valid occurs after a careful sensitivity analysis 

to determine the factors that influence the performance and results. 
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2.2.2  Continuous Simulation 

Continuous simulation is used when the system is modelled over time and its representation 

made by state variables that change continuously as the time progresses. The simulation of 

continuous processes is usually represented by differential equations that reflect the rate of 

change of the state variables with time (Smith, 1998b; Law, 2007). 

The initial values of the variables (value of the state variables at time 0) must be supplied to 

the model, in order to solve the differential equations and to give the values of the state 

variables over time. When analytical solutions for the differential equations are not possible, 

which is typically the case, numerical-analysis techniques are used to solve the differential 

equations. 

There are many examples of this type of simulation. One of the most famous is the predator-

prey model, also known as parasite-host or Lotka-Volterra (Volterra, 1926; Lotka, 1956), where 

two populations interact with each other and compete for survival in a region (Roughgarden, 

1998). This is a very simple biological model where one biological species (prey) is passive and 

only eat, grows and reproduces itself, and the other (predator) depends on the prey as a food 

source: foxes-rabbits, sharks-prey fish, plant-herbivore, tumour cells-immune system, are 

some examples of these kinds of models. 

2.2.3  Discrete Simulation 

Discrete simulation is used when the system evolves over time and its representation is done 

by state variables that change instantaneously at separate points of time, caused by the 

emergence of events that change the state of the system. In this kind of simulation the 

modeller is focussed on the identification and description of the elements that characterize 

and are responsible for the system dynamics (Brito and Teixeira, 2001; Law, 2007). 

The representation of the system is achieved by a set of entities that are responsible for 

activities implemented by the system. The activities represent the actions made by the entities 

to change the internal state of the system – the overall state of the system is the set of all 

states of the various entities that are part of the system. 

This kind of simulations makes intensive use of concepts such as events and queues of 

entities. Each activity remains for a while and its conclusion will raise one or more events - one 

event is seen like one impulse that happens instantaneously and forces one system state 

transition. The system will rest in that state until a new event occurs. Events and activities are 
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two complementary views of the system dynamics. The queues of entities - typically 

implemented as waiting queues (first-in-first-out) or stacks (last-in-first-out) – are structures 

where each entity is placed while wait for the beginning of a new activity that will use it. 

2.2.4  Statistical Simulation 

When the complexity of the system is very high, and it is almost impossible to represent its 

behaviour by differential equations or through rules that describe its operation and activity, it 

is usual to apply statistical simulation on the system. This type of simulation does not operate 

on the model of the system but uses a set of statistical distribution functions to try to 

characterize the behaviour of the system (Johnson, 1987). 

The mere fact that it is not mandatory the creation of a model for the system, makes the 

statistical simulation a paradigm very interesting among researchers, because the system is 

seen as a black box, eclipsing the internal processes, and the inputs and outputs are related 

through statistical distribution functions. This is a field where the Monte Carlo methods are 

used intensively (Law, 2007). 

2.2.5  Stochastic Systems 

There are simulation models where the values of some parameters are not constant over time 

– for example, the number of pedestrians, by minute, that wait for the green light in a 

semaphore to traverse one crosswalk in the city over a day. Even if a mean value could be 

calculated, it is interesting to simulate what happens in reality to reflect system dynamics. This 

can be achieved by replacing a fixed mean value of the parameter by a statistical distribution 

function that represents the arrival of the pedestrians to that crosswalk over the day. This 

method transforms the deterministic simulation process in a stochastic simulation process 

(Brito and Teixeira, 2001). 

It is interesting to notice that the model in its conception remains deterministic, but the 

simulation process is stochastic. The stochastic behaviour of the parameters is included in the 

system through frequency tables, histograms or with the help of typical probability functions – 

for example, the Normal distribution, the Poisson distribution or exponential negative 

distributions are the most used (Law, 2007). 
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2.3  Ecological Modelling 

Ecological models are simplified views of nature used to solve scientific and/or management 

problems. Ecological models only contain the characteristic features that are essential in the 

context of the problem to be solved or described. Ecological models may be considered a 

synthesis of what is known about the ecosystem with reference to the considered problem. As 

opposed to a statistical analysis - a model is able to translate the modeller knowledge about 

the processes of the system, formulated in mathematical equations, and component 

relationships and not only relationships between data (Jørgensen and Bendoricchio, 2001). For 

the same ecosystem there could be different ecological models, selected in accordance to the 

model’s goals. 

An ecosystem, following Jørgensen and Bendoricchio (2001), may be defined as: 

“... a biotic and functional system or unit, which is able to sustain life and includes 

all biological and non-biological variables in that unit.” 

The study of ecosystems involves many sciences and areas of knowledge because of its 

complexity and heterogeneity. It is difficult, or almost impossible, to capture all the relevant 

aspects that explain ecosystem functioning. To understand and model an ecological system as 

a whole, scientists consider that it must include, at least, three types of processes: physical, 

chemical and biological (Jørgensen and Bendoricchio, 2001). 

In ecological models of aquatic systems, physical processes include flow and circulation 

patterns, mixing and dispersion of mass and heat, water temperature, settling of planktonic 

organisms and suspended matter, insulation and light penetration (Knauss, 1997; Jørgensen 

and Bendoricchio, 2001). 

The chemical processes include hydrolysis, redox and acid-base reactions, adsorption and ion 

exchange processes. The simulation of these processes is very important for setting up a good 

model of a whole ecosystem and detailed descriptions of them are available and widely 

accepted by modellers (Jørgensen and Bendoricchio, 2001). 

The biological processes include the biogeochemical cycles in aquatic environments, 

photosynthesis, algal, zooplankton, phytoplankton and fish population growth, and 

ecotoxicological processes (Jørgensen and Bendoricchio, 2001). 
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Chemical and physical processes are very well known when compared with the biological ones. 

The latter are much less established and, sometimes, only a rough description of their internal 

behaviour is known. The resulting model for an ecosystem always contains a trade-off 

between acceptable details of physical and chemical processes and a reasonable description of 

the bio-ecological processes. 

Carefully designed models, which include important processes and components, still omit 

details that aren’t important to the problem under consideration – many irrelevant details 

would cloud the main objectives of a model. However, these omitted details might have a 

strong influence on the predicted output those models produce (Scholten and Tol, 1998; 

Jørgensen and Bendoricchio, 2001). 

2.3.1  Space and Time Resolution 

For the modellers, one of the most important compromises is to find the optimal time and 

spatial scales of the model. Spatial grids acceptable for physical and chemical processes (10 to 

100 metres) are very detailed for biological processes, and similarly, seconds, minutes or hours 

are good time scales for physical and chemical processes, but hours, days and months may be 

appropriate time scales for biotic components of an ecosystem (Jørgensen and Bendoricchio, 

2001). Models with spatial resolution of a few square metres can be adequate for 

microbiologists but if the researchers focus on the study of large carnivores or nomad 

populations, a spatial resolution of thousands of square kilometres seems to be more 

adequate (Hutchinson, 1978). 

The space division must account for variations in horizontal and vertical dimensions. The 

simplest geometric representation is the zero-dimensional (0D) model, which simulates the 

system as a point and all changes are only time dependent. One-dimensional (1D) models 

assume that the system is characterized by a prevailing one-directional flow (horizontal or 

vertical) and the properties of the system vary along that direction and time. Two examples of 

systems simulated by one-dimensional models are rivers (1D horizontal) and narrow deep 

lakes (1D vertical to study stratification). 

When the system is large enough to present sensible variation of the properties, vertical 

and/or horizontal division is required and two or three-dimensional (2D or 3D) representations 

are more common. Models of deep large lakes, deep bays, dams or large river estuaries are 

examples of these representations.  
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Moving from 0D to 3D increases the morphological complexity of the model, and the model 

grid for an appropriate simulation of the physical processes. 

2.3.2  Physical Processes 

The principal physical processes in aquatic ecosystems include flow and circulation patterns, 

mixing and dispersion of mass and heat, water temperature, settling of planktonic organisms 

and suspended matter, insulation and light penetration (Jørgensen and Bendoricchio, 2001). 

One of the most relevant physical processes is the transport of mass in the fluid media of 

ecosystems: air and water. This process influences the movement of nutrients, food and 

pollutants. It is important to know which concentration a substance can assume in a given 

place at a given time, and how a substance moves within the medium. This process is 

described almost by the same equations in each one of the fluids, with different values for the 

parameters that describe the substance moving in it. 

Advection, diffusion and dispersion are the major processes of mass transport. Advection 

transports the substance solidly with the fluid in one direction without varying its 

concentration. The principle of conservation of mass applied to the fluid itself, or to a solute or 

suspended matter in the fluid, guarantees that the total mass of a conservative substance 

entering a fixed element of space in a given time must equal the increase in mass within the 

space, in that time. 

Diffusion is the movement acquired to minimize concentration gradients in a fluid, from a 

region of high to a region of low concentration. It is accepted that horizontal mass diffusion in 

ecosystems is generally unimportant, but its mathematical formulation must be included 

because it constitutes the base for the turbulence in transport, which is much more related to 

ecological processes than horizontal mass transport. It also plays an important role in the 

vertical mass transport, for example, to explain the release of soluble substances from 

sediments. 

Another important physical process, and a very primary principle of ecological modelling, is the 

mass balance – the fate of substances entering and leaving a system in various ways. The 

integration of the mass balance in ecological models is always simplified to make the system 

tractable. In aquatic systems one of the three assumptions is usually made: 

 the system is completely mixed, dominated by dispersion and zero-dimensional, like a 

lake;  
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 the system is dominated by advection, like a river (substances entering a branch of the 

river are leaving it in the same sequence as they enter) or 

 the system is affected by both advection and dispersion, like estuaries or coastal 

lagoons. 

The energetic factors are the drivers for the evolution of ecosystems. Solar energy is the main 

source of energy for all ecosystems. It works as the most important forcing function for heat 

budget, photosynthesis, primary production and photolysis. It is well established the fate of 

solar radiation that flows through the atmosphere and reaches the earth’s surface. Its intensity 

depends on the time of the year, the hour, the latitude of the place and the cloud cover 

(Brock, 1981). The equations that express the most important variables of this factor are 

globally accepted by the scientific community (Jørgensen and Bendoricchio, 2001). 

Another important variable to the functioning of ecosystems is the daily solar exposure – 

photoperiod – which depends on solar declination. In aquatic ecosystems it is important to 

consider the light extinction coefficient, because what matters for water thermodynamics and 

for photosynthetic activity and, therefore, for primary production is the light that penetrates 

the surface of the water. The light that reaches the surface is attenuated as it enters the water, 

because the various dissolved and particulate materials scatter or absorb it. Thus, light 

intensity is a function of depth and water contents. 

The air and water temperatures are other abiotic factors that drive the production of 

ecosystems. They are linked to solar radiation, but are influenced by factors like wind, 

humidity, cloud cover and pressure. At a seasonal time scale, temperature follows a 

deterministic behaviour driven by solar radiation, but at a short time scale of hours, days or 

weeks, temperature shows a stochastic behaviour driven by weather variations. The thermal 

capacity of the ecosystem (supplied by the large mass of air, water and land) contributes 

significantly to delay or reduce the influence of the variation in temperature due to solar 

exposure (Portela and Neves, 1994). 

The physical processes that explain the movement of not dissolved particulate matter from the 

water column to the benthic species, and vice-versa, are called settling and resuspension. The 

physics of the settling phenomenon is described by classical mechanics, but the physiological 

state of phytoplankton, for instance, affects the sedimentation rate. Resuspension is the 

process that removes a particle from the sediment and moves it to the water body. It depends 

on factors like the sediment type, its grain dimension and consolidation state, the kinetic 
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energy in the water and the drag forces generated; the presence of biological material over 

the sediments increases their glue effect and difficult resuspension. 

2.3.3  Chemical Processes 

The principal chemical processes include hydrolysis, redox and acid-base reactions, adsorption 

and ion exchange processes. 

It is important to notice that most chemical reactions occurring in the water ecosystems tend 

to be homogeneous – occur in a single phase (gas, liquid or solid). On the other hand, the time 

to complete one chemical reaction is much lower than the usual time step used to model 

ecosystem processes – so, the majority of ecological models deal with final steady-state 

chemical equilibrium of the system. 

The hydrolysis processes proceed with water, hydrogen ions and hydroxide ions, and result in 

the introduction of a hydroxyl group OH
-
 in the structure of the compound. It is an important 

process of organic and inorganic compounds in the aquatic environments. In this group of 

processes are included the solubility of heavy metals and the organic pollutants reactions with 

water. The inclusion of the hydrolysis of some organic compounds requires dynamic models, 

instead of the steady-state approach of the chemical equilibrium, because the long half-time 

of the reactions with those compounds can be several times longer than the model time step. 

The redox processes involves reduction-oxidation reactions with the participation of dominant 

inorganic ions present in the ecosystem. The reduction decreases the oxidation number of the 

component (molecule, atom or ion) and the oxidation increases the oxidation number. The 

existence or absence of oxygen in the aquatic environment can trigger redox reactions that 

modify the quality of the ecosystem – for example, one of the consequences of the 

eutrophication (anaerobic situation) in aquatic systems can be the release of phosphorous 

from sediments. Phosphorous in sediments is usually bound as iron phosphates; if the 

conditions are changed from aerobic to anaerobic, the anoxia caused by eutrophication will 

increase the phosphate available for algal growth (Jørgensen and Bendoricchio, 2001). 

Because almost all processes in the environment depend on PH, the acid-base reactions are of 

great interest. Examples: the ammonia is toxic to fish and the ratio of ammonium to ammonia 

is known to be dependent on PH; the fertility of fish and zooplankton eggs is highly dependent 

on PH; the release of heavy metals ions from soil and sediments increases very rapidly with 

decreasing PH. Many models include computations and predictions of PH. 
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Adsorption is, by definition, a partitioning or separation process whereby a species (adsorbate) 

is transferred from the dissolved phase in a fluid solution onto the surface of a solid substance 

(adsorbent); this process may be explained by an electrical attraction to the solid surface of 

components with a minor electrical charge and by minor free energy of adsorbate compared 

to the adsorbent one (Jørgensen and Bendoricchio, 2001). Adsorption is usually coupled with 

ion exchange in the nature and a description of the processes is often included in water quality 

modelling. 

2.3.4  Biological Processes 

The biological processes are of great importance for ecological modelling and some are very 

complex.  

The biogeochemical cycles in aquatic environments of macro constituents of organic matter 

are of great interest for ecological modelling, particularly the cycle of nutrients like carbon, 

oxygen, nitrogen, phosphorous and silicate. 

Figure 2-4 was extracted from (Jørgensen and Bendoricchio, 2001) and represents the general 

biogeochemical cycle of nutrients in an aquatic environment. Compartments are indicated by 

boxes. Arrows show some of the processes moving nutrients from one compartment to 

another. 

The nitrogen cycle is the most complex cycle of nutrients. Nitrogen cycle includes physical 

processes - reaeration (the passage of N2 from air to water) adsorption/ desorption between 

sediment and water, and settling of particulate nitrogen - and chemical processes - 

mineralization of the organic form to the reduced inorganic form, the decay of organic matter 

via ammonia transformation and hydrolysis of the dissolved ammonia. One biological process 

typical of the nutrient cycle is the uptake of plants: ammonium and nitrate are taken up from 

plants in order to grow. In Figure 2-4 it is showed that the primary producers interact with the 

dissolved organic and inorganic via respiration and exudation, while the secondary producers 

interact via excretion. These last three processes are usually included in the nitrogen cycle 

model. 

The phosphorous cycle is very similar to the nitrogen cycle. The most important processes in 

the phosphorous cycle are related with adsorption-desorption equilibrium between 

phosphorous in the sediment and in the pore water, followed by the diffusion to the water 
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column. As in the nitrogen cycle, the primary and secondary producers release the nutrient 

directly to the dissolved organic and inorganic pool via respiration, excretion and exudation. 

 

Figure 2-4: Biogeochemical cycle of nutrients in an aquatic environment  (Jørgensen and Bendoricchio, 
2001) 

For biotic life the oxygen is very important; it cycles in the environment and enters processes 

of the other elements in consequence of chemical reactions, respiration and production by 

photosynthesis. In aquatic environments, oxygen is modelled as the concentration dissolved in 

water as gas, and the contribution to the general mass balance is guaranteed by the 

reaeration, consumption and production processes. 

Different concentrations of oxygen in water and air raise the reaeration with a flow from air to 

water or vice versa, when the saturation in water is reached. The reaeration is a function of 

oxygen concentration in water, temperature, pressure and salinity, and also wind at the 

interface between water and air. As the temperature increases, the ability to maintain the 

oxygen dissolved in water decreases. When the oxygen concentration achieves very low values 

contemporaneously with high salinity and low pressures, it can be very harmful to the biota.  

Another process entering the oxygen cycle is the consumption; it accounts for the microbial 

degradation of organic matter, which requires oxygen to oxidize all the reduced compounds 

that are the products of the general reaction of organic matter degradation. The consumption 

of oxygen in aquatic environments is mainly due to the respiration of primary and secondary 
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producers living in water, the oxidation of chemical compounds dissolved in water, the 

degradation of dissolved and suspended organic matter, the oxidation of nitrogen, and the 

oxidation of settled organic matter and respiration of benthic biota. 

The production of oxygen is guaranteed by the photosynthesis process occurred in the 

phytoplankton. It is observed that the oxygen concentration is almost constant along the 

water column until the thermocline depth (about 5 metres). Below this depth the oxygen 

concentration drops quickly to low values reaching almost zero in the water-sediment 

interface, where the strong oxygen depletion is due to the anoxic sediments. 

The photosynthesis is the key process in closing the cycles of oxygen and carbon, reducing the 

oxidized form of carbon (carbon dioxide) and producing oxygen. It represents the production 

of the biomass at the basic level of an ecosystem. Some external factors limit the 

photosynthesis: the availability of energy (light and temperature) and the existence of 

inorganic matter (carbon dioxide). 

The growth of a population (algal, phytoplankton, fish, etc.) is always limited due to the 

availability of the resources in the environment: food, solar energy and space to grow. Of 

course, there are specific parameters for each species but those are the major constraints. For 

example, in the case of algal growth (primary producer) the general expression to calculate 

the variation of the biomass (measured by dry weight biomass or chlorophyll-a concentration 

or equivalent concentration of the more important nutrients) is function of the growth rate, 

respiration rate, exudation rate, non-predatory mortality rate, settling rate and loss due to 

grazing. 

Ecosystems are complex systems where a food web can be identified. The primary producers 

of aquatic systems (for example, algae) are grazed by the upper levels of the web. To include 

secondary producers in the model it is advisable to simulate the long-term behaviour of the 

system. The zooplankton growth can be pointed as a secondary producer example. Simulating 

a complete biogeochemical cycle of zooplankton growth model includes the consideration of 

grazing and excretion processes relating nutrients cycle between algae and zooplankton, 

respiration, mortality and settling processes that transfer dead biomass to detritus, and the 

feedback of decomposition from detritus to nutrients. 

In some models it is important to consider also the ecotoxicological processes. The 

biodegradation, the bioaccumulation and the equilibrium between spheres are the most 

common. The biodegradation is the biologically mediated conversion of organic compounds to 
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inorganic compounds. The bioaccumulation is described as the concentration of one 

compound in one of the spheres (atmosphere, lithosphere, hydrosphere and biosphere). There 

are processes that explain the transfers of components or elements between the spheres until 

equilibrium is achieved. Observation of trends in global changes of concentrations in the 

spheres might be of great importance as they may cause changes in life conditions on earth. 

2.3.5  Modelling Process in Ecosystems 

The modelling process in the environmental sciences needs, clearly, five components that 

must always be identified and defined: forcing functions, state variables, mathematical 

equations, parameters and universal constants (Jørgensen and Bendoricchio, 2001). 

Forcing functions, or external variables, are functions of an external nature that influence the 

state of the ecosystem. If the modeller has control over these functions they are called control 

functions. For instance, in a model that includes eutrophication the inputs of nutrients can be a 

controlled function. The influence of tide in coastal ecosystems or climatic functions, which 

influence the biotic and abiotic components of the system, can be viewed as not controllable 

forcing functions. 

The state of the ecosystem is described by the value of the state variables. The selection of 

these variables is, most of the times, obvious when the model is structured. In the 

eutrophication models the concentrations of nutrients and phytoplankton are fundamental 

variables. If the model is used for predicting the bivalve production, variables that reflect the 

biomass and the growth rate of the bivalve species are essential. If the model is used to ensure 

that the water quality of a lake or river is in accordance with the Water Framework Directive 

(EC, 2000), ammonia concentration is one of the obvious variables to consider.  

The physical, chemical and biological processes are represented by mathematical equations 

that describe the relationships between the forcing functions and the state variables. If the 

same process exists in different contexts, it is natural that it can be described by the same 

equations in several models. But this may not always be true if the models have different 

levels of detail, leading to differences in the level of complexity of mathematical equations; on 

the other hand, there may be interest in the inclusion of other factors to help describing the 

behaviour of the process. 

The parameters are coefficients in the mathematical representations of the processes. In a 

specific ecosystem their values are considered constants but in the literature many parameters 

are indicated as ranges instead of constants. This is particularly true for the biotic parameters – 
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for example the growth rate of a bivalve species. This is driven by the limited knowledge that 

exists for the values of the parameters in the biological processes; even if the parameters 

could assume constant values, in some ecological models that would be unrealistic because it 

does not consider the feedbacks of the real systems – the flexibility and adaptability of the 

ecosystems is inconsistent with the application of constant parameters in some models. 

Nowadays, some models attempt to use varying values for the parameters according to some 

ecological rules, in order to reflect this feedback influences.  

Almost every model uses universal constants, such as gas constants, atomic weights, and 

gravity, latitude or longitude values. 

One proposal for the modelling procedure of ecological systems was summarized by Jørgensen 

and Bendoricchio (2001) and Figure 2-5 reproduces the approach. In this summary it deserves 

emphasis the division in phases (observations, brainstorming, modelling, and management) 

that can facilitate the perception of the whole procedure and distinguish the intellectual effort 

of each step. 

The first step is always the definition of the problem, and the bounding in time, space and 

subsystems. After grasp the big picture, it is important to identify the dynamic processes and 

their causal relationships. The complexity of the system should be well thought – sometimes a 

simple system is more accurate to translate the reactions of the real system than a complex 

one. 

The quantity and quality of the available data is closely linked with the success of the 

calibration and validation of the model, and this is not a task easy to guarantee. The ideal 

would be to have real data available for all the selected state variables calculated by the 

model. 

Another step that can be helpful for the conceptualization of the complexity of the model 

would be the adjacency matrix. It should be a simple matrix where all the state variables are 

placed and where it is indicated if there is a direct relationship between two variables. The 

matrix will assist the construction of the conceptual model. In practice, great part of the 

models is designed after the data collection, but ideally the conceptual model should 

determine what data are needed to develop the model. 
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Figure 2-5: Modelling procedure for ecological systems - adapted from (Jørgensen and Bendoricchio, 
2001) 

Many processes could be enunciated by more than one mathematical equation and it is 

important to select the right ones to obtain the best results of the model. After the 

programming of the mathematical formulation, it is important to do a previous verification to 

the results shown by the model. It should be checked that the model is stable in the long term 

and react as expected. 

The sensitivity analysis of the model is carried out by the modeller changing the parameters, 

the forcing functions or the submodels, and observing the variations in the values of the most 

important state variables of the system. The objective of this analysis is to get one overview of 

the most sensitive components of the model. A good knowledge on the certainty of the 

parameters and forcing functions is a providential aid to the calibration phase (crucial step for 

the model acceptance), where the parameters estimation is improved in order to validate the 

results of the model. The validation is guaranteed testing the fitness between the output 

generated by the simulation model against an independent set of collected data. This fitness is 
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indicated by some validation criteria, and while it is not achieved the process must feedback to 

the conceptual model and restarted from there. 

When the model is validated, it is ready to be used by the community to do research, make 

prognoses or help the ecosystem management. 

The modelling procedure described in the preceding paragraphs is similar to the ones 

presented in the section 2.2.1 , where it was referred that all modelling processes must agree 

with VV&A phases. The accreditation phase implies that the researchers’ community accept 

the model and the simulations as good representations of the real system for the proposed 

objectives. Some authors refer three different significant steps in the modelling procedure – 

verification, calibration and validation (Jørgensen and Bendoricchio, 2001). These steps are 

similar to the former ones with slight differences - verification tests the internal logic of the 

model; calibration changes the values of the parameters belonging to the mathematical 

equations to adjust computed and observed data; validation performs objective tests over the 

model to see how outputs fit the collected and observed data. 

These considerations are particularly relevant regarding ecological models, where the 

biological and some chemical processes have a large uncertainty associated with equation’s 

parameters. After implementation, a first round of simulations is necessary to verify the 

internal logic of the model. Afterwards it is necessary to calibrate the model, i.e. make a 

second round of simulations to tune the internal model parameters in order to reproduce the 

observed data. This is a hard and tedious work requiring expertise and a very good 

understanding of the effects of the different parameters over the available variables (Scholten 

and Tol, 1998). When the interaction between the processes is intensive (like in the ecological 

models) this task is very time consuming. After calibration, the model is submitted to a third 

round of simulations to validate it, comparing the results generated with observed values that 

were not used in the calibration phase. Once the model is validated, it can be used as a 

predictive tool and simulations may be set up depending on the purposes for which the model 

was developed. 

The calibration phase of the model consumes a lot of man power and it is modeller dependant. 

However there are automatic calibration procedures, based on systematic and exhaustive 

generation of parameter vectors and using some convergence and validation methods, like 

Controlled Random Search (CRS) (Scholten and Tol, 1998; Scholten et al., 1998) or linear 

regression techniques (Mesplé et al., 1996). These techniques require a large number of model 

runs, are computational intensive, and are not efficient when applied to complex systems. 
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Another approach can be followed - the development of a self-learning tool that implements 

the learning process of the modeller with machine learning techniques – the Calibration Agent 

(Pereira et al., 2004a). 

2.3.6  Programming Languages in Ecological Simulation 

Aquatic ecosystems modelling and simulation is a field where almost every programming 

language has representatives. Several modelling tools have been developed for the simulation 

of hydrodynamic and biogeochemical processes in aquatic ecosystems. Until the end of the 

1970s, coupling hydrodynamic models to biogeochemical models was not common, and today 

problems linked to the different scales of interest remain. The time scale of hydrodynamic 

phenomena in coastal zones (seconds to hours) is much lower than that of biogeochemistry 

(few days to months). Over the last years, there has been an increasing tendency to couple 

hydrodynamic and biogeochemical models in a clear recognition of the importance of 

incorporating in one model the feedbacks between physical, chemical and biological 

processes.  

Modern ecological models link together the physical, chemical, biological and ecological 

submodels simulating at different scales space and time steps, and even different types of 

models (static, dynamic or structurally dynamic models). 

First ecological models were simulated based on structured programming: each application 

consists of a main program, where some global state variables describing the ecosystem under 

simulation are defined, and calls are made to several sub-routines, at each model time step. 

These subroutines calculate all processes represented in the model and the fluxes that affect 

each state variable. At the end of each simulation cycle, all state variables are updated as a 

function of the mentioned fluxes. In some cases, sub-routine calculations depend on general 

scope state variables that are defined and calculated elsewhere in the code. When this 

happens, it is difficult to reuse these subroutines in other source codes. In addition to these 

limitations, and depending on the compilers used, it is always a complex task to combine 

subroutines written in different source codes to build new models (Pereira et al., 2006). 

With the birth of the object-oriented programming (OOP) languages, a new simulation style 

has emerged: the idea is to define objects representing the real life objects. Several groups of 

variables and processes, that may correspond roughly to some subroutines of the previous 

approach, can be aggregated in classes that generate objects in runtime, with no need to use 

“global” state variables because each object should handle its own variables and should be 
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able to represent itself and to control its inputs, outputs and inner behaviour. The advantage 

here is that, by eliminating global scope variables, it is easier to avoid programming errors, 

when a variable is changed at several different sites in a program. Apart from that, objects 

have several properties inherent to the OOP approach that make them very useful in 

ecological modelling: encapsulation, inheritance and polymorphism (Weiss, 2000; Lippman et 

al., 2005). 

Encapsulation forces an object to reveal only the interfaces needed to interact with it 

providing public interfaces to the outside world; details that are not pertinent to the external 

use of the object should be hidden from other objects, preventing inadvertent usage that may 

corrupt its internal state. Moreover, the object implementation is separated from the interface 

and may evolve over time, in response to new knowledge or requirements, without requiring 

changes in its interface. This information hiding is the first step to modularity: it strengthens 

the existence of independent self-contained modules, which make their reusability easy in 

other applications.  

The concept of inheritance was directly borrowed from biology – it is a feature that represents 

the “is a” relationships between different objects, allowing an object to inherit the attributes 

and methods of another object, providing support to extend or tailor new behaviours in 

derived objects maintaining the base behaviour of the parent - it is like borrow a group of 

existing attributes and methods from an existing object instead of re-inventing the wheel. For 

example, dogs and cats look different, have different behaviours and characteristics but have 

many things in common because both are mammals. The mammal properties could be placed 

in the mammal class, and dogs and cats just add their own features – it is not necessary to 

repeat the mammal attributes and behaviour. 

Polymorphism allows two or more objects to respond to the same method in different 

manners – the “invoker” object communicates with different objects in a consistent manner 

without worrying about how many implementations of that method exist. Derived objects 

behave differently from the base object calling, at runtime, the appropriate method depending 

upon the type of object instantiated – different objects handle different types of data using an 

uniform interface. These features facilitate the building of more concise code and reduce the 

development cycle of a program.  

One example of OOP approach, and moving again to aquatic ecosystems modelling domain, is 

briefly explained: one may define a phytoplankton object that has a set of parameters and 

methods to change its variables (e.g. biomass) by simulating relevant physiologic processes. If 
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the implementation of a particular model needs the definition of new phytoplankton species, 

differing from the existing object in the values of some physiologic parameters and behaviour, 

and everything else being equal, it is not necessary to repeat the code or variables from the 

existent phytoplankton to each new species – only the new parameters and corresponding 

behaviour should be included. With polymorphism, several dynamic instances of the 

phytoplankton species may be created, each with their own parameter values and 

corresponding behaviour while sharing the common parameters and behaviours. With this 

approach it is easier to build models of different complexity. Furthermore, it if is necessary to 

change the behaviour for one of the modelled species, a descendant object may be created 

inheriting all from its ascendant and overloading only the methods that produce the desire 

behaviour. 

It is important to notice that the need to manage the model time step in each simulation 

remains unchanged with any of the methodologies described.  

2.4  Coastal Models and Simulators 

The coastal ecosystems science can be seen as the study of the inter-relationships existing in 

coastal ecological communities. To protect and manage the coastal resources effectively, it is 

essential to integrate the human activities, living organisms, physical and bio-chemical 

processes and natural phenomena. 

Models of aquatic ecosystems include biogeochemical processes, such as photosynthesis, 

nutrient cycling and grazing, and transport processes. The former are responsible for local 

changes of state variables, such as concentration of chemical constituents and biomass of 

different species or groups of species. The latter are responsible for the transport of pelagic 

variables across model domain and boundaries. 

The art of modelling is to make a model which includes all the properties in study, but no more 

than that. This is quite an intricate task and that’s why there are so many different research 

teams, all over the world, designing different models for identical systems. Different models 

may include different processes, described on a different way with more or less detail. The 

degree of detail may be determined by the importance assumed for the different processes in 

a particular ecosystem and also by the available knowledge. For example, some mathematical 

models can use a simplified description of hydrodynamic transport processes but a very 

detailed description of benthic biologic processes (Baretta and Ruardij, 1988), whereas other 

models may include very deep hydrodynamic details and relatively simple ecosystem biological 
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model (Luyten et al., 1999). Even when such a basic, important and well established process as 

photosynthesis is considered, it is difficult to find many models using exactly the same 

approach – several different mathematical formulations may be used to describe the 

relationship between light intensity and production (Duarte, 2005).  

In the last 40 years many theoretical studies have been developed to attempt to produce 

general rules for application in modelling of ecological systems with biological organisms. The 

Dynamic Energy Budget (DEB) theory (Kooijman, 1993) is a prominent theory on the way 

organisms manage their energy - this formal theory analyses the food and nutrient 

requirements organisms have, and how they incorporate the energy uptake and the use of 

substrates (food, nutrients, light) for maintenance, growth, maturation and reproduction. DEB 

theory is based in chemical and physical principles, says something about the energy that 

comes into and goes out of an organism, and it includes effects of temperature and chemical 

compounds in the microorganisms, animals and plants. For example, aging is presented as an 

effect of oxidation reactions in biological species. In practice, many well-known empirical 

models are included as special cases of the DEB theory. 

One interesting view of biological organisms in the coastal areas was presented by Dumbauld 

et al. (2009) where bivalves aquaculture is viewed as a disturbance which modifies the 

estuarine system in three ways:  

 Changes in material processes – bivalve process food and produce wastes; 

 Addition of physical structure – aquaculture introduces the cultured organisms and 

physical anchoring structures; 

 Pulse disturbances like harvest and bed maintenance disturb sediments – remove 

species in addition to the cultured organisms themselves, and change resource or 

habitat availability. 

Different modelling teams tend to adopt different modelling tools. First approaches, and 

perhaps the most spread, make use of structured programming – the EMS/Dollard estuary 

model described by (Baretta and Ruardij, 1988) and the 3D Marine Coastal COHERENS model 

described by (Luyten et al., 1999) are two examples of this methodology. However, nowadays, 

the object-oriented software is gained prominence and is attracting more and more research 

teams – EcoWin2000 (Nunes et al., 2003; Nobre et al., 2005; Ferreira et al., 2008), MOHID 

(Miranda et al., 2000) and EcoDynamo (Pereira and Duarte, 2005); EcoWin2000 and 

EcoDynamo are written in C++ and recent modules of MOHID are written in object oriented 

Fortran-95.  
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What is the best approach? Well, it is not easy to perform benchmarking exercises with 

different models because of two main reasons (Pereira et al., 2006): 

 There is not one modelling software suitable to solve all simulation challenges. 

 Different research teams generally are very reluctant to work with other modelling 

software than their own, for a particular project, because of the time usually needed 

to learn, understand and handle a new modelling tool. 

The obligation of Environmental Impact Assessments (EIA) in the current legislation of many 

countries, particularly in the European Union, is increasing the use of models in the 

environmental sciences. Some European Union Framework Directives - like the Water 

Framework Directive (EC, 2000) – already predict its usage, and it is natural that more 

environmental laws, in each country, begin the imposition of reference terms regarding the 

way different processes are simulated for aquatic ecosystems. This will enforce different 

research teams to work together, because EIA will be larger and complex, and will require 

multidisciplinary skills to be joined in order to obtain reliable results. Some research teams are 

actually working in integration tools and methodologies (Pereira et al., 2006) to allow 

modellers from different teams to share code, based on object oriented programming 

approach. 

One simple presentation of watershed, hydrodynamic and biogeochemical modelling (three 

fundamentally different realms of modelling) follows. 

2.4.1  Watershed Modelling 

The description of the water movement in a river basin, both in terms of hydrological cycle and 

hydraulic routing, is the scope of the watershed modelling (Chapelle et al., 2005b). Many of 

these models also include the transport of the constituents, precipitation, dissolving, 

dispersion and chemical reactions, and changing concentration of the constituents as water 

flows along. Many of them accounts realistically for detailed watershed morphology, land use 

and land cover distribution, point sources and water protection/management structures 

(pumping, channels of circulation, artificial impoundments). 

To provide real-time hydrologic forecasting, support watershed analysis, planning develop 

total maximum daily loads (TMDL), predict water quantity and quality planning and pollution 

control, many simulation models of such type are described in the literature (McDonald and 

Harbaugh, 1984; Haith and Shoemaker, 1987; Evans et al., 2002; Neitsch et al., 2002b; Smith et 

al., 2004; Chapelle et al., 2005b). Some models are highly specialized to simulate 
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environmental phenomena and components of pollution problems – predict localized 

pollutant transport – others incorporate more comprehensive assessment techniques – 

simulate pollutant loading, transport and transformation. 

The watershed models are used to provide forcing inputs to hydrodynamic and 

biogeochemical processes in coastal lagoons, and a model intercomparison analysis can be 

found in Chapelle et al. (2005b). 

2.4.2  Hydrodynamic Modelling 

Hydrodynamic models are tools built to describe and forecast fluid dynamics and related 

variables for a given aquatic environment – ocean, continental shelf, lagoon, etc. The base for 

the mathematical modelling of geophysical fluid dynamics are the Navier-Stokes’ equations, 

that are non-linear partial differential equations very difficult to solve. In the field of 

oceanography, mathematical models often use a simplified form of the equations, known as 

Boussinesq equations (Chapelle et al., 2005b). 

Reports referring three-dimensional (3D) hydrodynamic coastal models appeared in the late 

70s. The increasing availability of computer resources needed to run the models, triggered 

recent developments and widespread applications of Boussinesq-type equation models for 

studying wave propagation. The equations derived by Peregrine (1967) are often referred to as 

the standard Boussinesq equations - they describe the nonlinear transformation of irregular 

and multidirectional waves in shallow waters. 

The main differences between available three-dimensional hydrodynamic models rely on 

(Pereira et al., 2006): 

 The representation of the vertical dimension; 

 The numerical treatment given to turbulence; 

 The numerical methods used to solve the partial differential equations, such as finite 

differences or finite elements methods. 

The representation of the vertical dimension can use space transformation (“sigma models”) 

or work without any space transformation (“Z coordinate models”).  

The “sigma model” use the transformation of the vertical dimension developed by Phillips 

(1957) for meteorological models - the varying vertical coordinate in the physical domain is 

mapped to a uniform transformed space where sigma (σ) spans from 0 to 1. These models, 
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defined as “terrain-following” models, consider a flat bottom where boundary conditions are 

applied. The general used transformation is: 

                                  
    

 
 (1) 

Where: 

(x, y, σ, t) are the space and time coordinates in the sigma coordinate system; 

(x*, y*, z*, t*) are the space and time coordinates in the original coordinate system; 

D is the total water depth; 

h is the depth measured from z*=0. 

The major advantage of this system is the constant number of vertical layers over the whole 

computational field. One major disadvantage of this coordinate system is that σ will change 

with time if the total depth changes with time. Inverse transformation is needed for the 

calculation of the horizontal velocities or other variables of the model. 

An intercomparison exercise on several water circulation models applied to the Mediterranean 

Sea, reported in Beckers et al. (2002), revealed that no model performed better than the 

others and that there was a similar correlation between model characteristics and modeller’s 

skill in terms of results. A small presentation of six different hydrodynamic models follows. 

COHERENS 

The COHERENS model was developed by the Management Unit of the North Sea Mathematical 

Models (MUMM), Belgium, within the scope of the European Union Marine Science and 

Technology Programme during the 90's (Luyten et al., 1999) and made available for the 

scientific community. COHERENS is a 3D hydrodynamic model solving the Boussinesq 

equations with the hydrostatic assumption on a sigma space. COHERENS is also a model 

providing great care to solve turbulent phenomena and it proposes numerous different 

turbulent schemas. Special subroutines cope with the application of boundary conditions. 

COHERENS includes also other facilities, such as particle tracking, sediment movements as 

deposition and erosion of suspended organic and inorganic material, biogeochemical sub-

models, etc. 

The COHERENS software solves an advection-diffusion equation of the form: 

 
  

  
  (  )   (   )  , ( )   ( )-   (   ) (2) 
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Where: 

Y is a given scalar – temperature, salinity or a biogeochemical state variable; 

u is the velocity vector; 

SY the specific movement of Y; 

v the parameter for diffusion; 

P(Y) and D(Y) are any biogeochemical production or destruction terms, respectively. 

More information on equations can be found in (Luyten et al., 1999). 

COHERENS includes also a biological model characterizing primary production for a North Sea 

application and for Sacca di Goro lagoon, Italy (Chapelle et al., 2005b). The code, written in 

FORTRAN, is in the form of a collection of subroutines called by a main program, and is freely 

available from the COHERENS home page at the MUMM website 

(http://www.mumm.ac.be/EN/Models/Coherens/), with a complete documentation of more 

than 900 pages, describing all aspects of physics and the code, as well as some examples of 

uses including input and output files and a makefile skeleton. COHERENS model is a powerful 

tool to understand the physical and ecological processes and is easily implemented across a 

wide range of computing platforms (multiprocessor systems, UNIX workstations, Linux or 

DOS). 

Delft3D 

Another well known modelling system to investigate hydrodynamics, sediment transport, 

morphology and water quality is Delft3D, developed by Delft Hydraulics 

(http://www.deltares.nl/). It is decomposed in several modules, not only hydrodynamics but 

also directed to higher levels of marine ecosystems:  

 Delft3D-FLOW: is the heart of Delft3D and it simulates the multidimensional (2D or 3D) 

hydrodynamic processes – calculates non-steady flow and transport phenomena 

resulting from tidal and meteorological forcing on a curvilinear, boundary fitted grid, 

including the effect of density differences due to a non-uniform temperature and 

salinity distribution. The application is used to predict tidal, and wind induced flows in 

shallow areas, coastal areas, estuaries, rivers and lakes. In three dimensional 

simulations, the vertical grid is defined following the sigma coordinate approach. It has 

the possibility to decompose the domain in sub domains and take advantage of 

parallel processing, increasing flexibility, accuracy and efficiency. The Delft3d-Parflow 

http://www.mumm.ac.be/EN/Models/Coherens/
http://www.deltares.nl/
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is an operational version of Delft3D-Flow that enables the coupling of models with 

different dimensions (e.g. 2D with 3D models). 

 Delft3D-WAQ: is a general water quality module used to describe a wide range of 

water quality processes. It includes a library with the most usual processes considered 

in water quality problems like circulation and phytoplankton production. This module 

integrates the complexity of dynamic variability linked to physical processes with the 

processes that govern biogeochemistry. 

 Delft3D-SED: is the module responsible for the transport of cohesive and non-cohesive 

sediments to study sediment/erosion patterns. Generally used to calculate the short-

term transport of sediment and sand when the effect of bottom topography changes 

on flow conditions can be neglected. 

 Delft3D-PART: this module is applicable in all geographic regions where the FLOW 

method is applied, and simulates the transport processes and simple chemical 

reactions following particles in three spatial dimensions and over time – it is a 

Lagrangian simulation, opposed to a Eulerian approach that simulates concentrations 

in fixed sites. 

 Delft3D-ECO: module that simulates the biochemical and biological processes related 

with algal growth and nutrient dynamics relevant to predict eutrophication 

phenomena. It uses more detailed processes than the WAQ module and it is essential 

when the effects of management measures must be predicted. 

 Delft3D-WAVE: this module is used to simulate the propagation and transformation of 

random, short-crested, wind generated waves in coastal waters which extend to 

estuaries, tidal inlets, barrier islands with tidal flats and channels. Design studies for 

offshore and harbour installations, and coastal development and management are the 

obvious users of this module. 

 Delft3D-QUICKIN: module that generates and manipulate model bathymetries from 

the depth samples (raw acquired data) to the grid resolution of the model. 

 Delft3D-RGFGRID: this module generates orthogonal, curvilinear grids of variable size 

for the FLOW module allowing an high resolution grid size in the area of interest and a 

lower resolution in the model boundaries. 

POM 

The Princeton Ocean Model (POM) is a general circulation model, written in FORTRAN, where 

the equations of motion, mass and heat conservation are discretized on a staggered Arakawa-
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C (Arakawa and Lamb, 1977) finite difference grid and employing the sigma-coordinate 

(terrain-following) system for the discretisation of the vertical dimension (Blumberg and 

Mellor, 1987). It is a free surface ocean model with embedded turbulence and wave sub-

models, with wet-dry capability and able to simulate a wide-range of problems, like circulation 

and mixing processes in rivers, estuaries, shelf and slope, lakes, semi-enclosed seas and open 

and global ocean. The model also calculates temperature, salinity, 3D velocity fields and the 

turbulent kinetic energy (Chapelle et al., 2005b). 

Input and output data are described in text files, in the form of matrices, facilitating the 

visualization of the results in any application with graphical capabilities, like MatLab®. 

The Princeton Ocean Model was developed at the Princeton University, New Jersey, U.S., and 

is freely available at http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/index.html, the 

POM website. 

MARS3D 

The MARS3D model is a 3D hydrodynamic model (Lazure and Jegou, 1998; Lazure and Dumas, 

2008) developed at IFREMER (French Research Institute for Exploitation of the Sea). MARS3D, 

that stands for 3D hydrodynamic Model for Applications at Regional Scale, is subjected to 

Boussinesq and hydrostatic approximation, forced by river run-off, wind speed and direction, 

and uses a spatial discretization with a staggered Arakawa-C grid (Arakawa and Lamb, 1977) 

and vertical sigma coordinates. The model runs on Linux/Unix platforms and has been used 

mostly for studying the Atlantic seaboard and the Mediterranean sea. The visualization of the 

model outputs can be done with a GIS platform or with VisuMars, a post-processor graphical 

application developed also by IFREMER.  

MOHID 

MOHID (http://www.mohid.com/) is a three-dimensional water modelling system developed 

by a Portuguese team – Marine and Environmental Technology Research Centre (MARETEC) at 

Instituto Superior Técnico, Technical University of Lisbon. The use of object oriented 

programming allows the adoption of an integrated modelling philosophy, considering physical 

and biogeochemical processes, at different scales (nested models) and systems (watersheds 

and estuaries) (Neves, 1985; Miranda et al., 2000). 

MOHID is divided in three tools – MOHID Water, MOHID Land and MOHID Soil – to study the 

water cycle in different variants. A common framework is shared, facilitating the integration of 

http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/index.html
http://www.mohid.com/
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the mentioned tools. The usage of different time steps for different modules is one of the main 

advantages to harness the available computational power. The different tools can run in 

different processors, allowing parallel processing and communicating by MPI messages 

(Message Passing Interface), improving system performance.  

MOHID Water is a three-dimensional numerical program to simulate surface water bodies 

(oceans, estuaries, reservoirs). The module covers hydrodynamics (circulation patterns and 

velocity fields that transports the water properties), waves (wave diffraction and refraction 

and its influence on sediment transport), sediment transport (vertical and horizontal 

movements and bottom physical processes), water quality and ecology (primary and 

secondary production and nutrients’ cycle), plume dispersion and turbulence. 

EcoWin2000 

“EcoWin2000 is an ecological model for aquatic systems, developed using an object-oriented 

approach. It resolves hydrodynamics, biogeochemistry and can incorporate population 

dynamics for target species” (from EcoWin200 site: http://www.ecowin2000.com). This 

modelling tool was developed by the Portuguese team Geochemical and Ecological Modelling 

(http://www.ecowin.org) based at the Faculty of Sciences and Technology, New University of 

Lisbon, dedicated to the aquatic ecosystem research, and integrated in the Portuguese 

Institute of Marine Research – Centre for Ecological Modelling (IMAR-CEM). Initially developed 

as EcoWin (Ferreira, 1995) the application evolved and EcoWin2000 (E2K) provides a platform 

for integration with other models maintaining functionality of its own. It can be used for short-

term and for long-term simulations. Rather than integrating sub-models, the various 

components act as self-contained objects and can be added/removed from the simulations. 

The strength of this application resides in the biogeochemical model and the object-oriented 

approach that enables groups of objects to share state variables and, when desired, define 

new state variables or change the interactions among state variables without affecting the 

code already developed.  

The hydrodynamic simulation is centred in the transport object with its advection-diffusion 

equations - salinity, water flow and velocities are some variables calculated by this object - but 

EcoWin2000 is tailored to import these values from other models specialized in 

hydrodynamics, like Delft3D. 

http://www.ecowin2000.com/
http://www.ecowin.org/
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2.4.3  Biogeochemical Modelling 

The availability of equations based on physical laws of classical mechanics, known from the 

18th century, is one of the main differences between hydrodynamic and biogeochemistry 

models. The biogeochemical phenomena are generally described by equations that are not 

universally accepted by the research community and are, in most cases, empirical or semi-

empirical. 

There are scarce intercomparison analyses between biogeochemical models, mainly due to the 

lack of universally accepted equations for the description of biogeochemical phenomena. One 

of the first studies comparing biogeochemical models was reported in Skogen and Moll (2000) 

concerning the primary production of the North Sea using two ecological models. Both models 

gave similar results regarding annual mean primary production, its variability and the influence 

of river inputs. The terms “biogeochemical modelling” and “ecological modelling” are used 

most of the times as synonyms, and refer to mathematical modelling of ecosystems including 

biogeochemistry, with emphasis on nutrient cycles, physiologic processes (such as respiration 

and feeding), population level processes (such as reproduction and mortality), and community 

level processes (such as predation and competition) (Chapelle et al., 2005b). Biogeochemical 

models consist of biotic compartments (different biological species or functional groups) and 

abiotic compartments (dissolved substances and suspended matter), represented by state 

variables and described by differential or difference equations governing the transfer of 

materials between them. The subjectivity of the modellers, regarding the importance of 

different processes and variables, guides the choice of the variables and the model internals 

(Jørgensen and Bendoricchio, 2001).  

Ecological models group biological functional entities and make several simplifying 

assumptions about real systems. The generality of the authors – e.g. Jørgensen and 

Bendoricchio (2001), Gertsev and Gertseva (2004) – divide ecological models in stationary or 

time-dependent models. According to the same authors, the models can be classified as 

“models with lumped parameters”, when homogeneity is assumed along spatial coordinates 

(zero-dimensional models, 0D), or “models with distributed parameters”, when heterogeneity 

along spatial coordinates is considered (one- (1D), two- (2D) or three-dimensional (3D) 

models). Also, models can be considered continuous or discrete, according to the way time is 

represented, deterministic or stochastic, according to the type of mathematical relationships 

used, analytic or numeric, according to the way model equations are solved (cf. 2.2 ). 
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When spatial heterogeneity is considered, ecosystems may be divided in boxes of any size and 

shape (box-models) or are embedded in the same type of grids used in hydrodynamic models 

(grid-models). Exchange processes of pelagic variables between different boxes and between 

the ecosystem and its boundaries may be parameterized on the basis of steady-state balances 

of conservative state variables (Baretta and Ruardij, 1988) or from simulations with 

hydrodynamic models (Bacher, 1989; Raillard and Ménesguen, 1994; Ferreira et al., 1997). 

There are no specific universal equations that can be used to determine how material is 

transferred between compartments of an ecosystem model. A general equation of population 

growth, which accommodates most of the limiting processes in a closed system, has been 

formalised by Wiegert (1979): 

 
   

  
  ∑ (             )  (        )   ∑ (          )

 
   

 
    (3) 

The first sum represents the assimilated ingestion or uptake by species j from all other 

modelled species or abiotic sources. The middle term represents the losses due to 

physiological causes and natural death. The last sum represents the predation on species j by 

other species. The coefficients are defined as follows: 

eij - is the assimilation efficiency of species j using resource i; 

j - is the maximum specific ingestion/uptake rate of species j; 

pij - is the preference of species j for resource i; 

fij - is the limitation of ingestion/uptake of resource i by species j; 

j - is the specific loss rate due to natural mortality; 

j - is the specific loss rate due to excretion; 

j - is the specific loss rate due to respiration. 

These coefficients may depend on a variety of physiologic and behavioural interactions making 

them non-linear functions of the species or abiotic sources. The equations are not as well-

defined as the physical equations of motion, because they are not based on known 

quantitative laws, as those available in physics. It is common to simplify most of these 

coefficients to either constant values, functions of time or space, or functions of the physical 

forcing (Taylor, 1993). 

The type, quality and quantity of data available for a particular ecosystem, as well as some of 

its structural and functional characteristics, limit the number of processes that are represented 

in models, as well as the degree of detail used. In shallow-water ecosystems the relative 

importance of benthic processes tends to be larger than in deep-water ones. This may be one 
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of the reasons why there are more studies on benthic ecology in shallow-water ecosystems, 

and benthic species or species groups are generally included in models, with particular 

relevance to macroalgae, macrophytes and bivalve species. Since larger species are generally 

studied with more detail – those with more commercial importance – equations governing 

their growth include a lot of physiologic detail and, most of the times, there are a lot of 

equations and parameters for each species whereas, with other organisms, such as 

phytoplankton and zooplankton, several species are lumped into one variable (Chapelle et al., 

2005b). 

In the European project DITTY (EC, 2003) different biogeochemical models were compared. 

The examples focused (Ria Formosa, Portugal; Mar Menor, Spain; Etang de Thau, France; Sacca 

di Goro, Italy; Gulf of Gera, Greece) showed the diverse approaches employed, with some 

common features emerging among different models, regarding several biological variables and 

processes. Chapelle et al. (2005b) compared available models according to their state variables 

(water column and sediments), processes, time scale, forcing functions, coupling procedures, 

methodology of calibration/validation, sensitivity analysis, software, hardware and limitations. 

Table 2-1 presents some examples of ecological models applied to aquatic ecosystems, ranging 

from 0D to 3D, with the dates of publication and the software or the programming language 

used in implementation.  

Table 2-1: Examples of aquatic ecosystem models published between 1988 and 2004 (Pereira et al., 
2006) 

Authors Model dimensions Model application 

Baretta and Ruardij (1988) 1D 
Ems Estuary (Netherlands) ecosystem 
simulation (FORTRAN) 

Fasham et al. (1990) 0D 
North Atlantic mixed layer ecosystem model 
(FORTRAN) 

Bax and Eliassen (1990) 0D 
Modelling multispecies analysis in Balsfjord 
(Northern Norway) with SKEBUB model 

Taylor (1993) 0D North Atlantic mixed layer ecosystem model 

Ferreira (1995) 1D 
EcoWin applied to Tagus estuary (Portugal) 
and Carlingford Lough (Ireland) 

Lanhart et al. (1995) 3D 
ERSEM II – Ecosystem model of the North 
Sea (FORTRAN) 

van der Tol and Sholten (1997) 2D horizontal 
Ecosystem model of the Oosterschelde 
estuary (SMOES) (SENECA software) 

Fulton et al. (2004) 0D and 2D applications Generic bay ecosystem models 
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Several examples of ecological models, from very simple to very complex, can be found in the 

literature, namely in Bacher et al. (1998), Hawkins et al. (2002) and Duarte et al. (2003). 

Particularly complex is the last example: one ecological model developed for Sungo Bay, 

located in Shandong province, North-East of People’s Republic of China. 

2.5  Summary 

In this chapter the fundamental concepts of simulation and modelling were presented, with 

particular emphasis on themes related to ecological modelling and, more specifically, the 

simulation of coastal ecosystems. Examples of hydrodynamic and biogeochemical models were 

highlighted, focusing on the description of the main physical, chemical and biological 

processes. 

Also a description of programming languages used in ecological models was made, comparing 

the evolution of modelling techniques with the evolution of the programming languages 

paradigms. The object-oriented programming proposal is gaining some advantage in recent 

years because of its similarity with the modelling and behaviour of the living beings. 

Many of the described tools are complementary and can be sequenced, adapted and 

integrated to simulate the different parts of an ecosystem, generating valuable results for the 

understanding of each system as a whole. 
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3  Concepts and State-of-the-Art: Artificial 

Intelligence and Optimization 

“The ability to learn is one of the most fundamental 
attributes of intelligent behaviour” 

 (Michalski et al., 1984).  

3.1  Introduction 

Models are being used also as helpers for management purposes. The introduction of 

ecological modelling as a management tool began around 1970 (Jørgensen and Bendoricchio, 

2001). The idea behind this concept was to identify the relationships between environmental 

science, ecology, economics, ecological modelling and environmental management and 

technology. At those days, only a small number of people, mostly researchers and ecologists, 

were concerned about what today is called sustainable development. 

More recently, researchers in biological sciences began to use individual based models to 

distinguish the individual behaviour of biological species – the individual is the central object, 

and models explore the mechanisms through which population and ecosystem ecology arises 

from how individuals interact with each other and their environment. It was the birth of the 

individual-based models – IBM (Huston et al., 1988). 

The establishment of some modern artificial intelligence techniques and applications, namely 

the emergence of the concept of artificial agents (Wooldridge, 1999), multi-agent systems 

(Huhns and Stephens, 1999), and distributed artificial intelligence (Ferber, 1999; Weiss, 1999) 
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and machine learning techniques (Michalski et al., 1984), allow the researchers to build 

individuals with more sophistication, varying their behavioural rules, defining different internal 

models for the external world, and retaining memory of past events influencing their 

decisions. The computational advances made possible the emergence of a new approach for 

simulation known by many names – the agent-based modelling (ABM), agent-based simulation 

(ABS) or agent-based modelling and simulation (ABMS) (Macal and North, 2006). 

The integration of agents in the simulation system introduces a new level of complexity, 

because the agents have self interests and try to guide the simulations in order to maximize 

their own objectives. The existence of opposite interests can conduct to antagonistic results 

after several simulations’ runs. One way to solve these conflicts is the addition of a decision 

support module to the system, to weight the several interests in game and help the managers 

to take decisions about the ecosystem. 

Following sections present concepts and state-of-the-art on Artificial Intelligence topic, 

Machine Learning and optimization techniques, as well as decision support and management 

issues related with ecological models. 

3.2  Artificial Intelligence and “Fifth Generation” 

Models 

Models of ecosystems attempt to capture their intrinsic characteristics. However, ecosystems 

differ from most other systems by being extremely adaptive, having both the ability of self-

organization and a large number of feedback mechanisms. How can the researcher build 

models that are able to reflect these characteristics? Reliable prognoses can only be done by 

models with a correct description of ecosystem properties, including a proper description of 

adaptation capabilities, including shifts in species composition. Models including a dynamic 

description of model parameters to mimic self-organization are sometimes called “fifth 

generation” models (Jørgensen and Bendoricchio, 2001).  

Ecosystems are irreducible systems (Wolfram, 1984; Jørgensen, 1992a, 1992b): it is almost 

impossible to design simple experiments to reveal a biological relationship in all its details to 

transfer from one ecological situation and one ecosystem to a different situation in another 

ecosystem. For instance, the growth of living organisms is dependent on many interacting 

factors, which are functions of time and of feedback mechanisms that regulate all the factors 

and rates. This complexity prohibits the reduction to simple relationships that can be used 

repeatedly. It is the extremely high number of feedbacks and regulations that makes possible 
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for living organisms and populations to survive and reproduce in spite of changes in external 

conditions. Furthermore, the feedbacks are constantly changing and the adaptation itself is 

adaptable – if a regulation is not sufficient, another regulation process higher in the hierarchy 

of feedbacks will take over (Jørgensen and Bendoricchio, 2001).  

Ecosystems show a high degree of heterogeneity in space and time, and all their components 

are steadily moving and their properties steadily modifying – one ecosystem never returns to 

the same situation again. Every point is different from any other point and offers different 

conditions for the various life forms. This enormous heterogeneity explains the high number of 

different species on earth. Because ecosystems are not homogeneous in relation to properties 

concerning matter, energy and information, they may be considered anisotropic - they exhibit 

properties with different values, when measured along axes in different directions. These 

variations in time and space make it particularly difficult to model ecosystems and to capture 

their essential features (Jørgensen and Bendoricchio, 2001). 

The application of new tools and methods for model building became necessary as a result of 

limitations of available models. Object-oriented models boost the introduction of individual-

based models and helped artificial intelligence to enter in the world of modelling giving way to 

agent-based models, fuzzy models and knowledge-based models. 

The world is amazingly complex. Systems that need to be analyzed are becoming more and 

more complex: decision-making needs to be decentralized (e.g. deregulated electric power 

industry), the systems approach design limits (e.g. transportation networks) and there are an 

increasing number of interdependencies between physical and economic infrastructures 

(electricity, natural gas, telecommunications). New tools, toolkits and modelling approaches 

had to be developed to analyze the intrinsic complex systems that always existed but had 

never been analyzed due to the lack of tools - social systems and networks, economic markets 

and the diversity among economic agents. The organization of data into databases at fine level 

of granularity (micro-data) and the advancing computational power helped supporting micro-

simulations that would not have been plausible just a couple of years ago. 

In ecology, the individuality of the individuals and the locality of their interactions, within a 

population, are two basic principles that must be present in all ecological models (Jørgensen 

and Bendoricchio, 2001). Agent-based modelling (ABM) is a computer based methodology in 

which one set of independent agents interacts with the environment and with each other 

(representing the dynamics of complex systems with many interacting parts).  
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The integration of agents software to computer simulation gave rise to the so-called agent-

based simulation systems, allowing the introduction of mechanisms more similar to the 

behaviour and development of living beings, including their adaptability to new environments 

and natural conditions. This adaptability to new environments is integrated into the agent’s 

software through the use of optimization and machine learning techniques. This new field is 

grounded mainly in the biological and social sciences. 

Agent-based modelling and simulation (ABMS) appears as a new paradigm because it claims to 

separate the rules of the researchers and the business decision makers. The assumption to this 

approach is that the businesses use computers to support decision-making and researchers 

use electronic laboratories to support their research (Macal and North, 2006). 

3.2.1  Agent Definition 

Although there is no universal agreement on the precise definition of the term “agent”, 

available definitions tend to agree in more points than they disagree (Macal and North, 2006). 

Some relevant definitions, from the literature, follow: 

“A person or business authorized to act on another's behalf.” [dictionary.com] 

“One empowered to act for or represent another.” *www.thefreedictionary.com] 

“An autonomous agent is a system situated within and a part of an environment that 

senses that environment and acts on it, over time, in pursuit of its own agenda and so 

as to effect what it senses in the future.” (Franklin and Graesser, 1997) 

“An agent is an encapsulated computer system that is situated in some environment 

and that is capable of flexible, autonomous action in that environment in order to 

meet its design objectives.” (Jennings, 2000) 

“An agent is a computer system that is situated in some environment, and that is 

capable of autonomous action in this environment in order to meet its design 

objective.” (Wooldridge, 2002: 15) 

“An agent is anything that can be viewed as perceiving its environment through 

sensors and acting upon that environment through actuators.” (Russel and Norvig, 

2002: 32) 
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“An agent can be a physical or virtual entity that can act, perceive its environment (in 

a partial way) and communicate with others, is autonomous and has skills to achieve 

its goals and tendencies.” (Ferber, 1999) 

“An agent is just something that acts (...). But computer agents are expected to have 

other attributes that distinguish them from mere ‘programs’, such as operating under 

autonomous control, perceiving their environment, persisting over a prolonged time 

period, adapting to change, and being capable of taking on another’s goals. A 

rational agent is one that acts so as to achieve the best outcome or, when there is 

uncertainty, the best expected outcome.” (Russel and Norvig, 2002: 4) 

“Agent programs differ from regular software mainly by what can best be described 

as a sense of themselves as independent entities. An ideal agent knows what its goal 

is and will strive to achieve it. An agent should also be robust and adaptive, capable 

of learning from experience and responding to unforeseen situations with a repertoire 

of different methods. Finally, it should be autonomous so that it can sense the current 

state of its environment and act independently to make progress toward its goal.” 

(Maes, 1996) 

“An autonomous, reactive, pro-active computer system, typically with a central locus 

of control, that is at least able to communicate with other agents via some kind of 

communication language. Another common view of an agent is that of an active 

object or a bounded process with the ability to perceive, reason, and act.” (Weiss, 

1999: 583) 

“An agent is a computational system, situated in a given environment, which has the 

perception of that environment through sensors, has capacity of decision, acts 

autonomously in that environment and has capabilities for high-level communication 

with other agents and/or humans, in order to achieve a goal or to perform a function 

for which it was designed.” (Reis, 2003) 

“(…) intelligent agents will be a key technology as computing systems become ever 

more distributed, interconnected, and open. In such environments, the ability of 

agents to autonomously plan and pursue their actions and goals, to cooperate, 

coordinate, and negotiate with others, and to respond flexibly and intelligently to 

dynamic and unpredictable situations will lead to improvements in the quality and 

sophistication of software systems (…)” (Wooldridge and Jennings, 1995) 
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One different, and curious, definition of agent was done by Ted Selker, from IBM, during the 

90’s: 

"An agent is a software thing that knows how to do things that you could probably do 

yourself if you had the time." 

Some scientists consider that a formal definition is not easy to establish, and prefer to 

distinguish two general notions of the term “agent”: the weak and the strong concepts; the 

former one relatively uncontroversial and the latter more controversial (Wooldridge and 

Jennings, 1995; Hermans, 1996). The following properties are the basic and uncontroversial 

ones an agent must reveal (weak notion): 

 Autonomy: agent operates without the direct intervention of humans or others, and 

have some kind of control over its actions and internal state; 

 Social ability: agent interacts with other agents, and possibly humans, via some kind of 

agent communication language; 

 Reactivity: agent perceives its environment and responds in a timely fashion to 

changes that occur in it; 

 Pro-activeness: agent is able to exhibit behaviour by taking the initiative; 

 Temporal continuity: agent is continuously running processes, exchanging between 

active/passive processing. 

The strong notion requires that an agent must have properties that are more usually applied to 

humans: 

 Rationality: an agent will act in order to achieve its own goals; 

 Adaptivity: an agent must be able to adjust itself to the habits, working methods and 

preferences of its user; 

 Benevolence: is the assumption that an agent does not have conflicting objectives and 

will always try to do what it is asked for; 

 Collaboration: an agent should not unthinkingly accept (and execute) certain orders 

that could put in danger the environment or damage other agents; 

 Mobility: an agent can have the ability to move around the environment. 

From a practical point of view, and from the definitions above, Macal and North (2006) 

consider that agents must reveal the following characteristics: 
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  An agent must be identifiable and self-contained. It is discrete, with a set of 

characteristics and rules governing its behaviour and decision-making capability, has a 

boundary and one can easily determine whether something is part, or not, of an agent. 

 An agent should be goal-oriented, having goals to achieve with respect to its 

behaviour. An agent can compare the outcome of its behaviour relative to its goals 

(not necessarily objectives to maximize). 

 An agent is situated, living in an environment in which it can interact with other 

agents. Agents have communication skills and capabilities to respond to the 

environment, recognize and distinguish cooperative and antagonist agents. 

 An agent is autonomous and self-directed. It must function independently in its 

environment and in the interaction with other agents. 

 An agent must be flexible, with ability to learn and adapt its behaviours based on its 

experience. This requires some kind of memory and the existence of processes that 

modify its rules of behaviour. 

3.2.2  Multi-Agent Systems Definition 

After the agent’s definition it is important to define what is understood by multi-agent 

systems. Once again, there are several definitions in the literature: 

“A multi-agent system is a loosely coupled network of problem-solver entities that 

work together to find answers to problems that are beyond the individual capabilities 

or knowledge of each entity.” (Durfee et al., 1989) 

The definition given by Jacques Ferber (1999) seems to be the more meaningful for the 

research in ecology and environmental sciences: 

“A multi-agent system (MAS) contains an environment, objects and agents (the 

agents being the only ones to act), relations between all the entities, a set of 

operations that can be performed by the entities, and the changes of the universe in 

time and due to these actions.” (Ferber, 1999) 

Sometimes one image is better than one thousand words and Figure 3-1, from Jennings (2000), 

illustrates the typical structure of a multi-agent system. 
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Figure 3-1: Typical structure of a multi-agent system (Jennings, 2000) 

“The system contains a number of agents, which interact with one another through 

communication. The agents are able to act in an environment; different agents have 

different ‘spheres of influence’, in the sense that they will have control over – at least 

be able to influence – different parts of the environment. These spheres of influence 

may coincide in some cases, which may give rise to dependency relationships between 

the agents.” (Wooldridge, 2002: 105) 

From the above definitions, six components can be identified in one MAS (Bousquet and Le 

Page, 2004): 

 An environment, usually a space; 

 A set of situated objects – at a given moment it is possible to associate any object with 

a position in the environment; 

 A set of agents (maybe a subset of objects), representing the active entities in the 

system; 

 A set of relations, that link objects (and agents) to one another; 

 A set of operations, making it possible for the agents to perceive, produce, transform 

and manipulate objects; 

 Operators with the task of representing the application of the agents’ actions and the 

reaction of the world to this attempt of modification (laws of the universe). 

Michael Wooldridge points the autonomy and the agent’s view of the world (environment) as 

the more relevant characteristics of an agent to be part of a MAS (Wooldridge, 2002). Even if 

the communication capacity of an agent is reduced, it can make part of one multi-agent 

system because the result of its actions will be reflected in environmental changes and will be 

perceived by the other components of the MAS, as well as the agent perceives changes in the 
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environment as a result of actions from other agents. Also important is the understanding of 

the type of interactions that take place between the agents. 

Typically, multi-agent systems research refers to software agents. However, the agents in a 

multi-agent system could be robots, humans or human teams. A multi-agent system may 

contain combined human-agent teams. Multi-agent systems can manifest self-organization 

and complex behaviours even when the individual strategies of all their agents are simple. 

Usually, MAS rely on a bottom-up approach, and one issue in MAS is formalizing the necessary 

coordination among agents answering questions in key areas like (Bousquet and Le Page, 

2004): 

 Decision-making - What mechanisms of decision-making are available to the agents? 

How does agent relate perceptions, representations, and actions? 

 Control - Is there any hierarchical relationship among agents? Are they synchronized? 

 Communication - What kinds of messages do agents exchange? What is the messages’ 

syntax? 

As seen in previous section (cf. 3.2.1 ) agents could be classified as showing weak or strong 

notions of agency, according to their attributes (Wooldridge and Jennings, 1995). The weak 

notion of agency, which comes from Distributed Computing and Distributed Artificial 

Intelligence, sees agents as a paradigm of network based cooperative automation. MAS can 

simplify problem-solving by dividing the necessary knowledge into subunits, by associating an 

intelligent independent agent to each subunit, and by coordinating the agents’ activity. The 

strong notion of agency, from Artificial Intelligence (AI), leads toward an anthropomorphic 

view where agents are seen as conscious, cognitive entities that have feelings, perceptions and 

emotions just like humans. 

Since the beginning, fundamental research is being conducted on the problems associated 

with the architecture of the agents, the representation of agents’ decisions and protocols for 

communication. 

Agents Architectures 

The internal structure of an agent is dependent on the objectives that the agent must comply. 

Reactive agents represent, perhaps, the most widely implemented architecture, but when 

human actions are considered in the ecosystem, architectures place more emphasis on 

deliberation (Bousquet and Le Page, 2004). Production rules are very often used to simulate 
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the deduction process of an agent facing environmental stimuli, and are usually mixed with 

parameterized functions or other kinds of formalizations, generating more structured 

architectures capable to process competitive tasks or belief-desire-intention architectures. 

Architectures based on the evolutionary metaphor use algorithms mimed from the theory of 

evolution and designed to understand adaptation, like genetic algorithms (Holland, 1975). 

Architectures for competitive tasks have many links with robotics and animats - the idea is to 

consider that different input stimuli activate different tasks. Tasks could be activated in parallel 

creating a behaviour system that can be complex. Each task typically is weighted and has a 

threshold value for its activation; the activation level is calculated taking into account the 

intensity of the stimuli, for example (extracted from Bousquet and Le Page (2004)): 

    ( )   
  ( )

∑   ( )
 
   

  ( )      (4) 

where, 

ai(t) is the activation level of task i in instant t; 

w(t) is the weight of task i in instant t; 

xi(t) is the stimulus intensity i in instant t; 

n is the number of tasks. 

If the activation level, calculated for the task, is greater than its threshold level, the task is 

activated. The subsumption architecture, proposed by Brooks (1991), is a possible architecture 

designed to select tasks. It embodies the fundamental ideas of decomposition into layers of 

task achieving behaviours, and different activities are represented by different levels. In this 

architecture, each layer is composed by a simple finite state machine, with a handful of states, 

internal variables and timers, which run asynchronously sending and receiving messages. 

There is no central locus of control and the finite state machines are data-driven by the 

received messages. The arrival of messages or the expiration of a designated time period 

causes the finite state machines to change state. Layers are controlled by suppression and 

inhibition mechanisms. The upper levels are capable of suppressing the inputs of the lower 

levels and inhibiting their outputs (Brooks, 1991). It is important to notice that this 

architecture has few applications in ecology, due to its simplicity. 

Architectures based on neural networks emphasises the learning capacity of the agents. The 

perception-action relation is modelled by a network whose connections evolve. In an early 

work published in 1992, Collins and Jefferson endow ants with neural network so that they are 
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capable of learning (Collins and Jefferson, 1992). Although each individual ant performs 

typically only 20 to 42 distinct behaviours, the objective of the study focus on two central 

tasks: the search for food and its recovery to a central location. Several neural networks are 

embedded in the ant to enable the execution of different tasks, namely one to learn to 

explore, and one to learn to transport. Another work with application of these methods is 

found in Dagorn et al. (2000), who seeks to understand the movements of predatory fishes 

within their environment. In this example, artificial individuals were compared with real fishes 

(three species of tuna, three species of billfishes and one species of shark) in pelagic regions of 

the tropical oceans. When evolution is the focus of the research, coupling neural networks 

with genetic algorithms is becoming increasingly common (Chen and Hare, 2006). 

In his work on bird flight, Reynolds makes the agent’s decision dependent from the additions 

of physical forces. It applies vector calculation in force fields resulting from the attraction or 

repulsion of other agents (Reynolds, 1987). In his approach, agents represent elementary 

particles. This type of modelling is easily found in fields related to fluid dynamics – water flow, 

crowd dynamics, urban traffic flow, or mass animal movements. In some resource 

management applications the decision-making processes of economically rational agents is 

simulated. These agents can use models based on operational research (gradient calculation) 

or microeconomics (utility maximization) to obtain an optimal solution in the presence of 

constraints. Also, agents can use decision-making methods based on multi-criteria analysis. In 

any of these examples the architecture is based on parameterized functions, which makes 

difficult the characterization of an individual rationality of the agent (Bousquet and Le Page, 

2004). 

The belief-desire-intention (BDI) architecture, which comprises objectives, representation, and 

involvement in individual or collective actions, is another base for the cognitive agents. 

However, most applications for ecological problems pay attention mostly on understanding 

the coordination or the relations of the agents with the environment. Very simple BDI agents 

are used in ecological systems and the spatial representation is, beyond question, the 

primordial cognitive dimension that must be present in all ecological systems’ applications. 

The most widely used method for the spatial representation is the memorization of space and 

resources building a mental map of the environment. In social sciences the notion of 

reputation is another cognitive dimension used to model agent’s interactions. Agents may 

have beliefs about other agents, depending on their individual experience or as a result of their 

social reputation. These beliefs may be used to guide their level of commitment to collective 
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resource management (Rouchier et al., 2001; Mathevet et al., 2003; Bousquet and Le Page, 

2004). 

Agents Interactions 

The interactions between agents are an essential part of each multi-agent system. Applied to 

ecology, three major types of interactions may occur: communication among agents, physical 

interactions (growing, eating, puting), and interactions mediated by the environment.  

Unlike in other areas of research involving agents, in ecological applications it is not very 

common the use of direct interaction through the exchange of messages between agents. One 

of the few studies documented is from Baray (1998) where predators communicate to 

surround a prey. Another interesting work involves agents representing humans as part of the 

ecosystem and simulates negotiations among Bolivian farmers and exchanges of contracts, 

goods, and services (Paz Betancourt et al., 1996). 

Physical interactions, like predating and eating, are often used in ecological models. The most 

used kind of interactions are those mediated by the environment, namely, the relation 

between organisms and their environment - the physical space and the resources. Each agent’s 

action transforms the common environment with a retroactive effect on other agents – the 

dynamics of the environment can be used as a medium for collective adaptation (Bousquet 

and Le Page, 2004). Many applications of this approach (swarm intelligence, co-evolution, 

world model) are published and, basically, use the environment as a set of signals for 

movement, reproduction and nourishment. 

Development Tools 

MAS applications are generally developed with an object-oriented language and some of them 

use platforms, that can be dedicated or generic. 

Generic frameworks like the well known Swarm (Minar et al., 1996; Bonabeau et al., 1999),  

StarLogo1 (Resnick, 1996) and NetLogo2 (Gilbert and Troitzsch, 2005; Vidal, 2007) are robust 

and user-friendly, and are widely documented. To describe the cognitive aspects of the agents 
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some modelling languages also exist, like SDML3 (Strictly Declarative Modelling Language), a 

modelling language where all knowledge is declarative, and represented on rule bases and 

databases. 

Examples of dedicated platforms are much more numerous: they are structurally-fixed models, 

equipped with one user interface through which the user sets the parameter values and 

analyses the results of the simulations. For example, MANTA (Drogoul and Ferber, 1992) is a 

dated system focused on problems of foraging or task specialisation in a society of insects; 

BacSim (Kreft et al., 1998) models microbiological bacterial colony growth and is available 

online4 for demonstration; Formosaic (Liu and Ashton, 1998) deals with fragmented forestry 

dynamic, simulating forest dynamics in landscape mosaics; OSMOSE (Shin and Cury, 2001) 

generates virtual fish species interacting via predation. All dedicated platforms try to explain a 

concrete problem but most of them maintain a distance between the modeller and the end-

user, with a heavy negative consequence: great part of many excellent models have been 

quickly forgotten due to the lack of evolution after being supplied to the end-users (Lorek and 

Sonnenschein, 1998). 

Platforms for social and ecological simulations provide utility programs to simulate ecosystems 

and resource management problems. Frameworks like Ecosim (Lorek and Sonnenschein, 

1998), use C++ objects and a simulation engine based on discrete events, or Cormas (Bousquet 

et al., 1998), written in Smalltalk, are highly generic and can be directly linked with 

geographical information systems (GIS) to integrate the evolved spatial support. 

3.2.3  Individual-Based Modelling 

At the end of the 1980s a new approach was developed: the individual-based modelling (IBM). 

Two ideas were behind the development of this approach that intents to simulate the global 

consequences of local interactions of a population (Huston et al., 1988): first, the need to take 

into account the individual because of its genetic uniqueness and, second, the fact that each 

individual is situated and its interactions are local. Each individual is modelled as an object, and 

different objects represent different individuals, with unique genetic characteristics (Kreft et 

al., 1998; Jørgensen and Bendoricchio, 2001).  
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When IBM was introduced it was well received and now a very large number of publications 

and experiments refer to it. The proceedings of the conference “Individual-based models and 

approaches in ecology” (DeAngelis and Gross, 1992), held in 1990, constitute the first 

fundamental literature on this issue. 

Individuals might represent plants and animals in ecosystems, vehicles in traffic, or 

autonomous characters in animation and games. Traditional modelling techniques averaged 

the characteristics of the population, and models attempted to simulate changes in these 

characteristics. IBM contravenes this approach paying attention to each individual, modelled 

as an entity that interacts with the environment and the other individuals. The behaviour, 

characteristic parameters and possible interactions are defined individually, supplying means 

to track individual progress throughout the time. 

If the individuality of the individuals is placed in one agent, a sub-type of this approach is 

referred as Agent-oriented Individual Based Modelling (AIBM). 

The web site maintained by Craig Reynolds (http://www.red3d.com/cwr/ibm.html) is probably 

the most frequently referenced regarding IBM related research. Even though the website has 

not been, apparently, updated recently, it remains one of the most referenced by modellers 

using IBM. Online resources include software toolkits for implementing individual-based 

models, links to online IBM applications, and links to offline resources, journals, conferences 

and to academic and commercial laboratories and groups. Interesting are the wide areas 

where this technique is/was tested, from ecology and biology, human and social sciences, 

economics, traffic and vehicle simulations, animation and interactive multimedia. 

IBM can be spatially explicit meaning that the individuals are associated with a location and 

can move around their environment – natural model for an animal in an ecological simulation. 

If the subject of the simulation is a plant, the individual doesn’t exhibit mobility. 

3.2.4  Agent-Based Modelling and Simulation 

When IBM is transformed in AIBM, this kind of simulation falls in the scope of multi-agent 

systems (MAS) simulations. However there are some differences between both. IBM was 

developed by ecologists to understand the role of diversity, or heterogeneity in ecosystems, 

introducing the notion of the individual – each "agent" corresponds to an autonomous 

individual in the simulated domain. MAS are highly influenced by the computer and social 

sciences, and give more emphasis on the decision-making process of the agents and to the 

social organization in which these individuals are embedded. Furthermore, as Bousquet and Le 

http://www.red3d.com/cwr/ibm.html
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Page note, “an agent is not necessarily an individual”, it can be the representation of any level 

of organization (Bousquet and Le Page, 2004). 

Agent-based modelling and simulation (ABMS) is the paradigm that covers the more recent 

studies and advances in the field of modelling and simulation comprised with interacting 

autonomous agents. ABMS has strong roots in the fields of multi-agent systems, and robotics, 

from the field of Artificial Intelligence and Distributed Artificial Intelligence (DAI). Its main 

objectives are in modelling human social and organizational behaviour, and individual 

decision-making (Bonabeau, 2002). This forces the need to represent social interaction, 

collaboration, group behaviour and the emergence of higher order social structure. The 

objective became to reproduce the knowledge and reasoning of several heterogeneous agents 

that need to coordinate and jointly solve planning problems. Instead of concentrating only in 

the agent and its autonomy, the researchers focused on the organization of multiple agent 

interactions (Huhns and Stephens, 1999). 

The theoretical foundations of ABMS derive from many fields of science (computer, 

complexity, systems dynamics, management, and social sciences) and from traditional 

modelling and simulation. Moreover the construction of ABMS systems is supported by the 

notion that systems are built “bottom-up”, contrasting to the “top-down” systems view taken 

by the Systems Dynamics (Macal and North, 2006). ABMS tends to be descriptive, modelling 

the individuals behaviour, instead of identify optimal behaviours, the traditional operations 

research approach. 

ABMS has its historical roots in complex adaptive systems (CAS), originally motivated by 

research in adaptation and emergence of biological systems, which have the ability to self-

organize and reorganize dynamically their components, in order to survive and excel in their 

environment. Properties like aggregation (enable groups’ formation), nonlinearity (inexistence 

of simple extrapolation), flows (allowing the transfer of resources and information between 

agents), and diversity (agents behave differently from one another) and mechanisms like 

tagging (each agent has its name and recognize it), internal models (agents reason about their 

world), and building blocks (each component is composed by simpler components) provide the 

basic tools to design agent-based models. Simple rules result in emergent organization and 

complex behaviours. 

Examples of ABMS can be found in a very wide range of sciences and provide a method to 

reformulate certain questions in the social and natural sciences. For instance, in social 

sciences, agents represent people or groups of people that use cognitive psychology and game 
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theory to rationalize the strategies to establish relations; agents’ relationships represent 

processes of social interaction (Gilbert and Troitzsch, 2005). In anthropology, recent 

developments are being done with large-scale agent-based simulations of ancient civilizations 

to help explain their growth and decline, based on archaeological data. The study reported by 

Kohler et al. (2005) attempts to examine the collapse of the Classical Maya civilization, 

mimicking the processes of population growth and resource usage and see how well the 

software’s predictions coincide with the archaeological record. In sociology, attempts have 

been made to model social life as interactions among adaptive agents who influence one 

another in response to the influences they receive. In linguistics, ABMS have been used to 

provide the agents with language and to organize communication protocols. In cognitive 

science, agent-based models of emotion, cognition, and social behaviour are being developed 

based on the notion that a person´s emotional state impacts its behaviour and its social 

interactions. Economic sciences were, perhaps, the field in which AIBM had more influence, 

and changed some classical assumptions of standard micro-economy (Macal and North, 2006): 

 Economic agents are rational and are able to optimize their behaviour – do individuals 

and organizations really optimize? Observations on people and organizations made by 

Herbert Simon, Nobel Laureate in Economics (1978) and with pioneer works on the 

field of Artificial Intelligence, led him to develop the notion of “satisficing” (satisfy with 

suffice) (Manktelow, 2000), with agents choosing what even not being optimal will 

make them happy enough. 

 Economic agents are homogeneous, having identical characteristics and rules of 

behaviour – agent diversity universally occurs in real-world and many natural 

organizations, from ecology to industry, are characterized by populations whose 

diversity maintains their stability and robustness. 

 There are decreasing returns to scale from economic processes, decreasing marginal 

utility, marginal productivity, etc. – dynamic processes of rapid exponential growth in 

economic systems showed that positive feedbacks can create self-sustaining processes 

that quickly take a system from its starting point to a faraway state. 

 The long-run equilibrium state of the system is the primary information of interest – 

the transient states that are encountered along the way to a long-run state are often 

of interest, and not all systems come to an equilibrium. 

One permanent issue is the agents’ interactions with a collective environment. The ecology, 

for which the environment is a fundamental question, must play a key role in specifying 
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concepts and developing appropriate tools, despite the scientific disciplines mobilized to 

examine this problem. 

The rich breeding ground of this interdisciplinary movement interested several research 

groups to use multiagent systems in different ways, so multiagent systems are now a generic 

term (Ferber, 1999) for: 

 Interacting physical agents (collective robotics); 

 Systems of interactive software agents (softbots) used in distributed planning tasks, 

scheduling applications, and search engines; 

 Simulations of multi-agent systems, also called multi-agent simulations. 

The concepts and techniques of the last item are widely used in the ecological modelling 

practices, and references to ecology are frequent on the multi-agent simulation field. Works 

on interaction structures in bumble bee colonies, reported from Hogeweg and Hesper (1983), 

and the Craig Reynold’s “Boids” model (Reynolds, 1987), which imitate the behaviour of 

groups of migrating birds, were experienced before the notion of MAS but the methodology 

behind the works seems to use the same approach. The first works registered representing the 

notion of reactive agents and emergent behaviour in the society are related with ant colonies 

and reported by several authors during the first years of 90’s decade, namely Drougol and 

Ferber (1992). Environmental applications use MAS to model the interactions between social 

dynamics (society) and natural systems, normally devoted to ecosystem management like 

water management (Lansing and Kremer, 1993) or fisheries (Bousquet et al., 1994). 

According Bousquet and Le Page (2004), with MAS and ecosystem management the paradigm 

shifts from “dynamics under constraints” to interactions, from a systemic to an organizational 

point of view and, in modelling tools, from stocks and flows to behaviour and interactions. 

Agent modelling concerns with modelling agent interactions, as much as modelling agent 

behaviours, and the primary issues of agent interactions are who is connected to who and the 

mechanisms governing the nature of the interactions. The topology of the network, where the 

agents belong, defines the neighbourhood of each one and the potential social interaction 

patterns. Traditionally, the social networks did not change their structure over time or as a 

result of agent actions (static networks). But the real-world networks change their 

configuration and it is important to understand why they expand or shrink. Dynamic network 

analysis is a new field that incorporates the mechanisms of network growth and change, based 

on agent interactions processes – the objective is to understand the agent rules that govern 
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how networks are structured, and how quickly the information roam through the network 

(Macal and North, 2006). 

3.3  Intelligent Optimization Techniques 

Researchers involved with ecological systems are used to study and deal with problems of 

great complexity, derived mainly by the number of independent variables for which it must 

assign a value (instantiation) – the decision variables. When those problems are integrated 

with management issues, it is important to find the best solution from some set of available 

alternatives, the one for which a given criteria or objective function evaluates to an optimum 

value (maximum or minimum). Typically, the admissible values for the decision variables are 

constrained through a number of conditions, and the value assigned to some variables can 

constraint the value of others. A solution is an instantiation of values for all decision variables. 

The set of available alternatives is defined as the set of all feasible solutions or the solution 

space, and the number of independent variables that need an instantiation value will 

determine the complexity of the solutions.  

This is known as an optimization problem and can be formalized in several ways. Following the 

formalization enounced by Moreira (2008) the optimization problem (P) can be defined as the 

tuple: 

    (       ) (5) 

where: 

  *       + is the set of decision variables; 

  *       + is the variables’ domains; 

  *       + is the set of constraints among variables; 

n is the number of decision variables; 

m is the number of constraints; 

f  is the objective function, with               →    

The solution space (S) is defined as the set of all feasible solutions: 

    *   *(     )   (     ) + |                        + (6) 

The optimization problem is solved when a feasible solution      satisfies the condition: 

             (  )    ( )                    (7) 

             (  )    ( )                    (8) 
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When the goal is to minimize the objective function it is used the formalization given by 

equation 7 – in this case, the objective function is referred as the cost function or the penalty 

function. Equation 8 is used when the goal is to maximize the objective function, also known as 

utility function or benefit function. It is not unusual to have a set of optimal solutions instead of 

an optimal solution. 

There are several techniques and algorithms that can be applied to assist in finding the optimal 

solution, and their application depends on the type of problem under study. According to the 

variable’s domain values, the optimization problem can be divided in two main categories: 

those where solutions are continuous (encoded as real numbers) and those where solutions 

are discrete (discrete values). The group of combinatorial problems where the objective is to 

find an optimal combination of solution components from a countable (finite or infinite) set, is 

considered a subset of the latter category, even if some of the decision variables have a 

continuous domain. 

The general approach to solve difficult combinatorial problems is based on search algorithms –  

pick one initial solution from the solution space (search space) of the problem and generate 

and evaluate new solutions in order to find the best one. The generation of the new candidate 

solutions is what distinguishes the different search algorithms. 

The most obvious possible algorithm is to test all the feasible solutions in the solution space 

and return those (or that) for which the value of the objective function has the minimum (or 

maximum) value. It is a very simple algorithm to implement using a systematic generation of 

all the solutions, guarantying the completeness of the search. This method is known as brute-

force search or exhaustive search and is only practicable when the search domain is relatively 

small – as the instance size of the search domain increases, the run time to find the best 

solution increases exponentially, making it necessary to elaborate more refined algorithms 

that turns possible, in polynomial or bounded time, to reduce the number of generated and 

evaluated solutions without compromising the completeness of the solution. 

All algorithms that run in polynomial time systematically prune the solution space, discarding 

those parts for which there is evidence that the solution cannot be there. Methods like branch 

and bound (Lawler and Wood, 1966; Realff and Stephanopoulos, 1998), A* algorithm (Hart et 

al., 1968) or dynamic programming (Bellman, 1957; Bellman, 1958; Bellman, 2003) proved to 

be more efficient than exhaustive search, but cannot provide a solution in polynomial time in 

certain problems. 
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Another obvious approach is random search that perambulate from the search space by 

picking randomly candidate solutions. It is a very inefficient method that does not guarantee 

completeness, but that is used initially by almost all other algorithms to generate the first or 

initial solution, and is the foundation of the stochastic search - used with some guidance is a 

very powerful method to successfully find a solution. 

The paradigm of local search is to explore the neighbourhood of a given solution in order to 

find a better solution, improving it iteratively. The new solution is derived from the current 

one by a user-given mutator procedure. It is simple and can easily drive to a good solution, but 

the success of the search is directly related with the generation of the neighbours - the 

mutator procedure. This strategy executes a move to a neighbour if and only if the objective 

function progress in the right direction, stopping when no improvement is possible. Algorithms 

using this approach must be advised to detect and overcome local optima solutions, where the 

value of the objective function is better than in any of its neighbours, but is not the global 

optimum value. 

The well known Hill Climbing algorithm (uphill or downhill, depending on whether the 

objective function pretends maximization or minimization) is easily coded but may lead to 

poor quality solutions, if the search space has many local optima or large uplands (plateaux – 

regions where all solutions generate the same value for the objective function). In this case, 

several runs of the algorithm can be executed, starting always with a random initial solution 

and analyzing the results. Accepting non-improving solutions to continuing, or varying the size 

of the neighbourhood, are alternative methods to surpass the existence of local optima. 

3.3.1  Metaheuristics 

A metaheuristic is a high-level algorithmic technique specialized to solve a specific 

optimization problem where it is hard to find an optimal solution in a bounded time (Black, 

1998). It can also be seen as a high-level strategy approach that guides other heuristics in 

search for a feasible solution. A good heuristic usually indicates a shortcut to the right 

solution, giving a better solution and is, generally, very problem-dependent.  

From the dictionary a heuristic is: 

“a commonsense rule (or set of rules) intended to increase the probability of solving 

some problem.” *wordreference.com] 
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“a usually speculative formulation serving as a guide in the investigation or solution 

of a problem.” *dictionary.com+ 

“a problem-solving technique in which the most appropriate solution, of several found 

by alternative methods, is selected at successive stages of a program for use in the 

next step of the program.” *dictionary.com+ 

More sophisticated definitions, directed to optimization problems, can be found in the 

literature. Two definitions by Reese and Pearl were referenced in Moreira (2008): 

“… heuristics are criteria, methods, or principles for deciding which among several 

alternative courses of action promises to be the most effective in order to achieve 

some goal. They represent compromises from two requirements: the need to make 

such criteria simple and, at the same time, the desire to see them discriminate 

correctly between good and bad choices. A heuristic may be a rule of thumb that is 

used to guide one’s action.” (Pearl, 1984) 

“…technique which seeks good (i.e. near-optimal) solutions at a reasonable 

computational cost without being able to guarantee either feasibility or optimality, or 

even in many cases to state how close to optimality a particular feasible solution is.” 

(Reeves, 1993) 

Algorithms that use probabilistic decisions could be much more powerful if they associate 

more than one heuristic to their decision-making processes in order to find good solutions, 

decreasing the computational time to produce high quality solutions – this strategy is known 

as metaheuristic. Typically, algorithms that use sophisticated metaheuristics maintain a pool 

with several candidate solutions and memorize old solutions, avoiding wasting time with 

repeated solutions. There is no commonly accepted definition for the term metaheuristic, but 

in the last few years some researchers tried to propose a definition: 

“A metaheuristic is formally defined as an iterative generation process which guides a 

subordinate heuristic by combining intelligently different concepts for exploring and 

exploiting the search space, learning strategies are used to structure information in 

order to find efficiently near-optimal solutions.” (Osman and Laporte, 1996) 

“A metaheuristic is an iterative master process that guides and modifies the 

operations of subordinate heuristics to efficiently produce high-quality solutions. It 

may manipulate a complete (or incomplete) single solution or a collection of solutions 
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at each iteration. The subordinate heuristics may be high (or low) level procedures, or 

a simple local search, or just a construction method.” (Blum and Roli, 2003) 

“Meta-heuristics are widely acknowledged as essential tools to address difficult 

problems in numerous and diverse fields (…). In fact, meta-heuristics often offer the 

only practical approach to solving complex problems of realistic scale. (…) Heuristics 

do not, in general, guaranty optimality. Moreover the performance often depends on 

the particular problem setting and data. Consequently, a major issue in meta-

heuristic design and calibration is not only how to build them for maximum 

performance, but also how to make them robust, in the sense of offering a 

consistently high level of performance over a wide variety of problem settings and 

characteristics.” (Crainic and Toulouse, 2003) 

Compared to exact search methods, such as branch-and-bound, metaheuristics cannot ensure 

a systematic exploration of the entire solution space, but they attempt to examine only parts 

where, according to certain criteria, the researcher believes good solutions may be found. Well 

designed metaheuristics avoid getting trapped in local optima or cycling over visited solutions 

and provide reasonable assurance that the search has not overlooked promising regions. 

Like iterative searches, metaheuristics for optimization problems may be described as a “walk 

through neighbourhoods” (Crainic and Toulouse, 2003), a search trajectory through the search 

space of the problem at hand. Movements from a given solution to another on the 

neighbourhood, unlike the classical heuristics, do not necessarily improve the solution. 

Methods like Tabu Search (Glover, 1986, 1989, 1990; Glover and Laguna, 1997) and Simulated 

Annealing (Kirkpatrick et al., 1983; Siarry et al., 1997), or a mix of them (Mishra et al., 2005), 

implement one move at each iteration, while Evolutionary Computation/Genetic Algorithms 

(Holland, 1975) may generate several new candidate solutions (individuals) at each iteration 

(generation). The two last algorithms may inflect drastically the search trajectory of the 

solution, creating new “active” neighbourhood. 

The fundamental desirable properties of metaheuristics include (Hansen and Mladenovid, 

2001; Blum and Roli, 2003): 

 Simplicity: Metaheuristics are strategies that guide the search process on a simple and 

clear principle which should be widely applicable. 

 User-friendliness: Heuristics should be well defined, easy to understand and easy to 

use. 
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 Effectiveness: Metaheuristic goal is to efficiently explore the search space in order to 

find good solutions (near-optimal solutions) in bounded CPU time. 

 Efficiency: Metaheuristic algorithms are approximate and usually non-deterministic, 

and may incorporate mechanisms to avoid getting trapped in confined areas of the 

search space, providing optimal or near-optimal solutions for most realistic instances. 

 Coherence: Metaheuristic algorithms range from simple local search procedures to 

complex learning processes, and the various steps of heuristics follow naturally from 

the principle of the metaheuristic. 

 Robustness: Metaheuristics are not problem-specific and the basic concepts permit an 

abstract level description for various problems, giving good solutions for a variety of 

instances in each of these problems. 

 Innovation: Metaheuristics may make use of domain-specific knowledge in the form of 

heuristics that are controlled by an upper level strategy, leading to new type of 

applications. 

Although each metaheuristic algorithm has its own behaviour and characteristics, a generic 

procedure can be defined, sharing some fundamental components and common elements 

(Crainic and Toulouse, 2003): 

1. Initialization – a method to create an initial solution - s; 

2. Neighbourhood – each solution has a set of corresponding neighbours - N(s); 

3. Neighbourhood selection criteria – when more than one neighbourhood is defined, a 

rule must exist to decide which one will be selected; 

4. Candidate selection – only one subset of moves is examined at each iteration. A 

selection criterion must specify how solutions are picked for inclusion in the candidate 

list; 

5. Acceptance criterion – moves are evaluated and the best solution is selected; 

6. Stopping criteria – metaheuristics must impose the criteria to stop the search: 

computing time, number of iterations, rate of improvement, etc. More than one 

criterion may be defined to control various phases of the search. 

This generic metaheuristic procedure describes the main classes of metaheuristics: 

Evolutionary Computation (EC), Simulated Annealing (SA), and Tabu Search (TS), considered by 

some authors as belonging to the local stochastic search algorithms. 



3 Concepts and State-of-the-Art: Artificial Intelligence and Optimization 

- 66 - 

In short, metaheuristics are high level strategies for exploring search spaces by using different 

methods, where a dynamic balance between diversification and intensification must remain. 

Diversification refers to the broad exploration of the search space and intensification refers to 

exploitation of regions with high-quality solutions. The terms were originally used by Glover 

and Laguna (1997) and their initial meaning becomes more and more accepted by the whole 

field of metaheuristics. The balance between diversification and intensification is important to 

quickly identify regions with high-quality in the search space, and not to waste too much time 

in regions of the search space already explored or which provide low-quality solutions (Blum 

and Roli, 2003). 

The next sections describe some well known optimization algorithms, namely the individual 

based, or trajectory methods, and the population based methods. The selection of the 

algorithms was influenced by their usage, or intended usage, in problems like ecosystem 

management and optimization. 

3.3.2  Individual Search Metaheuristics 

Search methods for optimization like Simulated Annealing, Tabu Search, Greedy Randomized 

Adaptive Search Procedure, or Variable Neighbourhood Search can be grouped in the 

Individual Search Optimization Algorithms or Trajectory Methods.  

These methods work on one or several neighbourhood structures imposed on the members 

(solutions) of the search space. The term trajectory methods is also used because the search 

process performed by these methods is characterized by a trajectory in the search space, 

where a successor solution may or may not belong to the neighbourhood of the current 

solution. The algorithm starts from an initial solution (the initial state) and describes a 

trajectory in the search space, whose dynamics depends on the strategy used. 

Simulated Annealing and Tabu Search algorithms described are the basic local search 

algorithms, with simple strategies, and the latter ones use more general complex and 

explorative strategies that may incorporate other algorithms as components. 

Simulated Annealing (SA) 

Simulated Annealing (SA) has inherited the name inspired by the steel cooling technique 

thermal annealing, which aims to obtain perfect crystallizations by a slow enough temperature 

reduction to give atoms the time to attain the lowest energy state – solid materials are first 

heated past melting point, and then gradually cooled back to a solid state. The rate of cooling 
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directly influences the structural properties of the final product. A detailed analogy with 

annealing in solids provides a framework for optimization of the properties of very large and 

complex systems. SA is an algorithm technique to find a good solution by trying random 

variations of the current solution. A worse variation is accepted as the new solution with a 

probability that decreases as the computation proceeds. The slower the cooling schedule, or 

rate of temperature’s decrease, the more likely the algorithm is to find an optimal or near-

optimal solution (Kirkpatrick et al., 1983).  

SA algorithm attempts to use the same metaphor, and similar statistical process, to guide the 

search through the search space (Kirkpatrick et al., 1983; Eglese, 1990; Siarry et al., 1997). The 

temperature control determines the probability of accepting worse solutions to continue, 

escaping from local optima; the cooling schedule controls how this probability evolves: while 

the temperature is high (initially) many non-improving solutions are accepted, but as long as 

temperature decreases very few worse solutions are accepted towards the end. 

One major disadvantage that makes sometimes awkward the use of SA, is its extremely slow 

convergence in very complex nonlinear optimization problems. But the structure of the 

algorithm facilitates its parallelization and there are several successful parallel SA 

implementations that greatly speedup its performance and generation of results (Ram et al., 

1996; Crainic and Toulouse, 2003). 

Tabu Search (TS) 

The ability to memorize previous tested solutions can greatly improve the convergence to a 

solution in space search algorithms. Because SA is a repetitive process, it is possible to store 

and process information from previous solutions to guide and enhance its efficiency. This is the 

base concept of Tabu Search (TS) – the memory-based strategy used to guide the search 

phases of the procedure (Glover, 1989, 1990; Hansen and Jaumard, 1990; Glover and Laguna, 

1997; Youssef et al., 2001). Pure TS heuristics explore locally the domain by moving from one 

solution to the best available solution in the neighbourhood – inferior quality solutions are 

accepted only as a strategy to escape from local optima. Short-term tabu memory records 

recent visited solutions to avoid repeating or inverting the search. Medium or long-term 

memories can record statistical information relative to the solutions found so far, to learn 

about the solution space (e.g. frequency of certain attributes in the best solutions) and guide 

the search. Moves based on these types of memories are named intensification (search 
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around a good solution) and diversification (search in a region of the solution space not yet 

explored). 

Variable Neighbourhood Search (VNS) 

The Variable Neighbourhood Search (VNS) is a metaheuristic proposed in Hansen and 

Mladenovid (1999, 2001, 2003), which applies a strategy based on dynamically changing 

neighbourhood in the search. Using systematically this idea and a local search routine, leads to 

a new metaheuristic adapted to be widely applicable. 

Contrary to other metaheuristics based on local search methods, like TS, VNS does not follow a 

trajectory but explores increasingly distant neighbourhoods of the current incumbent solution, 

and jumps from this solution to a new one if, and only if, an improvement has been made 

(Hansen and Mladenovid, 2001). A local search algorithm is applied repeatedly to get from 

these neighbouring solutions the local optima. It is possible to use several neighbourhoods, 

constructing different neighbourhood structures and performing systematic searches. 

In the initialization step of the VNS, a set of neighbourhood structures must be defined to start 

the search. The neighbourhoods are arbitrary, but often a sequence |  |  |  |    

|     | with increasing cardinality is defined. An initial solution x is generated and a stop 

condition is determined (e.g. maximum CPU time allowed, maximum number of iterations, 

maximum number of iterations between two improvements, etc.). While the stopping 

condition is not met, the main cycle is repeated. The main cycle has three phases: shaking, 

local search and move. In the shaking phase, a solution x’ is randomly selected from the kth 

neighbourhood of the current solution x. The x’ solution is the starting point of the local 

search, that can use any of the neighbourhood structures, and supplies, at the end, a new 

solution x’’ that is compared with x. If it is better, x’’ replaces x and the algorithm restarts with 

k=1 (move), otherwise k is incremented and a new shaking phase starts with a different 

neighbourhood. At the end of the main cycle, x is the best solution and is returned (Hansen 

and Mladenovid, 2001). 

The objective of the shaking phase is to disturb the solution providing a good starting point for 

the local search. When no improvements are achieved, the process of changing 

neighbourhoods supplies a diversification to the local search – possibly moving from a “bad” 

place to a “good” place in the search space and evolving to better solutions. 
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Reduced VNS (RVNS), Variable Neighbourhood Decomposition Search (VNDS) and Skewed VNS 

(SVNS) are some known extensions of the VNS aiming to solve more efficiently very large 

problem instances. 

RVNS intended to increase speed (or effectiveness) at the possible cost of an increase in 

solution value. As local search routine is the most time-consuming phase of the basic VNS, in 

RVNS this phase is simply discarded (Hansen et al., 2001). Solutions are drawn at random in 

increasingly far neighbourhoods of the best-so-far solution and replace it if and only if they 

give a better objective function. RVNS is very helpful when the quickly obtainment of a good 

solution is desirable, even if it is not necessarily very close to the optimum. 

VNDS includes a heuristic and a modification of the basic scheme within a successive 

approximations decomposition method (Hansen et al., 2001). For a given solution x, all but k 

variables are fixed in the local search phase. As in VNS, the search phase starts with a random 

solution x’, within which one unfixed variable is chosen at random; instead of performing local 

search in the whole solution space, with x’ as the starting point, the search is done in the one-

dimensional space of the unfixed variable that has been chosen. The new value for this 

variable is returned into the solution x’’ and the objective function is updated. The move phase 

of the VNS is maintained: if the new solution is better than the incumbent, then a move is 

made (x is replaced by x’’) and k=1 again; otherwise, k is incremented and a look for 

improvements is restarted now in the subspace with two unfixed variables, and so on. The only 

difference between the basic VNS and VNDS is in the local search phase – instead of applying 

the local search method in the whole solution space, at each iteration a sub-problem is solved 

in some subspace of the neighbourhood. 

SVNS provides an efficient exploration of the “valleys” (or “mountains”) far from the 

incumbent solution. A good source of information for understanding how heuristics work 

could be the study of the topology of local optima and the corresponding valleys (or 

mountains) of the objective function of the problem considered. A study from Hansen et al. 

(2000) showed that local optima tend to coalesce at the bottom of large valleys (or at the top 

of large mountains).  

When there are several valleys (or mountains) the VNS has a problem: few iterations will 

quickly determine the best solution in a large region (the bottom of a large valley, or the top of 

a large mountain in that region), but it will be very difficult to find a better solution near it. 

When the best solution is found in a large region it is necessary to go quite far to obtain an 

improved one. In other words, when the basic VNS moves far from incumbent solution, it 
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tends to degenerate into multi-start, which is not a good metaheuristic. One way, over many, 

to overcome this problem is to make some compensation for distance of the new solution 

from the incumbent solution; the test for acceptance of a move will evaluate the objective 

function compensated with that “measured” distance – this is the scheme for the skewed VNS 

(Hansen et al., 2000; Hansen and Mladenovid, 2003). 

Changes in the neighbourhood in the search for good solutions is a simple and powerful tool, 

and several authors have integrated other metaheuristics with the VNS method. Example of 

the alternatively use of VNS and tabu search to solve the Nurse rostering problem is found in 

Burke (2004). A multi-level TS is proposed in Kovačevid-Vujčid et al. (1999) to solve continuous 

min-max problem, where each level represents a ball of different size in the vicinity of the 

current solution, i.e., different neighbourhoods, and a tabu list is constructed for each level. 

Greedy Randomized Adaptive Search Procedures (GRASP) 

Most of the problems found in industry and government are computationally intractable, by 

their nature, or sufficiently large to preclude the use of exact algorithms, and the use of 

heuristic methods are usually employed to find good solutions, not necessarily optimal. The 

Greedy Randomized Adaptive Search Procedures (GRASP) were developed during the 1980’s 

(Feo and Resende, 1989) with the objective of solving, in bounded time, complex 

combinatorial optimization problems. These methods are based on empirical observed 

behaviours especially in industries. 

A GRASP is an iterative process consisting of two phases: a construction phase and a local 

search phase or improvement phase. The best-so-far solution is kept as the result (Feo and 

Resende, 1995). In the construction phase a feasible solution is iteratively constructed, one 

element at a time, based on a greedy function that measures the benefit of selecting each 

element and order all elements in a candidate list – the restricted candidate list (RCL). The 

heuristic updates the benefits associated with every element, reflecting the changes brought 

on by the selection of the last element. A probabilistic component randomly chooses one of 

the best candidates, not necessarily the top candidate. The solution is then improved via local 

search, the list of solutions updated, and the iterative process is repeated until a termination 

criterion is satisfied, such as a maximum number of iterations have occurred, or a maximum 

computation time is attained. 

The local search phase is launched in each iteration by successively replace the current 

solution by a better solution in the neighbourhood, and it terminates when no better solution 
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is detected in the neighbourhood. The local search phase can require exponential time from an 

arbitrary starting point so an efficient construction phase, which produces good initial 

solutions, can improve the efficiency of the improvement phase (Feo and Resende, 1989). 

The randomized nature of the greedy construction phase - also referred as semi-greedy or 

randomized greedy (Hart and Shogan, 1987) - often generates a wide variability of solutions in 

the same amount of time, which facilitates the parallelization of the algorithm, and the 

obtainment of multiple solutions. The best of these GRASP solutions is generally significantly 

better than the single solution obtained by a single random starting point (Feo and Resende, 

1995). Moreover, parallelization allows the use of different strategies for local searches, that 

can be improved with sophisticated techniques and algorithms, like those mentioned in the 

previous sections (Hart and Shogan, 1987). 

Due to its random adaptive nature, it is intuitive that the usual way to increase the quality of 

the best-so-far solution is to augment the number of iterations. 

3.3.3  Population Search Metaheuristics 

Search methods for optimization like Evolutionary Computing (Genetic Algorithms, Scatter 

Search) or Ant Colony Optimization can be grouped in the Population Search Optimization 

Algorithms. These methods follows a different philosophy than the previously mentioned 

(section 3.3.2 ) – they incorporate a learning component in the sense they implicitly or 

explicitly try to learn correlations between decision variables to identify high-quality areas in 

the search space. 

Population-based methods deal, in every iteration of the algorithm, with a set of solutions 

rather than a single solution, providing a natural and intrinsic way for the exploration of the 

search space. Obviously, the final performance of the algorithm depends strongly on the way 

the population is manipulated. In the Evolutionary Computing algorithms a population of 

individuals is modified by recombination and mutation operators, and in the Ant Algorithms a 

colony of artificial ants is used to construct solutions guided by pheromone trails and heuristic 

information. 

Genetic Algorithms (GA) 

Genetic algorithms (GA) belong to the larger class of evolutionary methods and were inspired 

by the evolution processes of biological organisms. The extraordinary book “On the Origin of 

Species”, from Charles Darwin, edited for the first time in 1859, introduced a new paradigm in 
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biological sciences about species evolution and natural selection - when natural populations 

are studied over many generations, they appear to evolve according to the principles of 

natural selection and survival of the fittest to produce “well adapted” individuals (Crainic and 

Toulouse, 2003). The algorithms that mimic this biological process are the Genetic Algorithms 

and are referred by numerous researchers (Holland, 1975; Cardon et al., 2000; Youssef et al., 

2001; Amirjanov, 2006). With the evolution of the computers’ hardware and software the 

paradigm was enriched with hybridization and local heuristics. 

The basic idea follows closely the philosophy of the theory of evolution: an initial population 

of solutions evolves by generating new individuals out of combinations of existing individuals. 

At each iteration, some individuals from the current population, are selected as parents for the 

generation of new individuals (reproduction) that will improve the population. The candidate 

selection of the parents is based only on the value of some fitness function, and new 

individuals are generated by the appliance of the crossover operator over the selected 

parents. Mutation operators intervene to modify the definition of individual characteristics of 

the new generation to improve their fitness and the diversity of the population. A survival 

operator is applied finally to determine which of the parents and offsprings advance to the 

next generation – in principle the more adapted to the environment. Good heuristics in the 

operators will loop through iterations, gradually converging to better solutions. The criteria for 

the algorithm’s termination can be the achievement of a maximum number of generations, the 

achievement of a sufficient fitness within a population, or the attainment of a maximum 

computation time. The GA terminology equates generation with one iteration of the algorithm, 

chromosome with a single solution, and population with the group of chromosomes currently 

active. 

GA are easily integrated with other optimization algorithms, like hill climbing, furnishing 

schemes to move the population away from local optima. 

Scatter Search (SS) 

Scatter search (SS) and its generalized form called Path Relinking (Glover et al., 2000) is an 

evolutionary approach originated from strategies for creating composite decision rules and 

surrogate constraints. The scatter search methodology differs from other evolutionary 

procedures, like genetic algorithms, by providing unifying principles for joining solutions based 

on generalized path constructions (in both Euclidean and neighbourhood spaces) and by 

utilizing strategic designs where other approaches resort on randomization (Glover et al., 
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2000, 2003). Foundations of scatter search are intimately related to tabu search metaheuristic, 

supplying SS additional advantages based on intensification and diversification that explore the 

use of adaptive memory and associative memory mechanisms. 

Scatter search operates with a population of feasible solutions, the reference set, like other 

evolutionary methods, and employs procedures for combining these solutions to create new 

ones, the trial solutions. The most distinguishable feature of the evolutionary approaches is its 

intimate association with the tabu search (TS) metaheuristic, and its adoption of the principle 

that search can benefit by incorporating special forms of adaptive memory, along with 

procedures particularly designed for exploiting that memory. Unlike “populations” in genetic 

algorithms, the reference set of solutions in SS is relatively small, typically with 20 solutions or 

less. 

One of the main aspects of SS is the creation of composite decisions, the manner in which it 

combines solutions and undertake advantages to exploit these combinations (Glover et al., 

2000). The idea is to generate new rules by creating numerically weighted combinations of 

existing rules suitably restructured, so that their evaluations embodied a common metric. 

Information about the desirability of alternative choices is captured in different forms by 

different rules, and this can be effectively explored integrating a mechanism that combines 

several rules to generate new ones, instead of using the standard strategy of selecting 

different rules one at a time. Additionally, after reaching a local optimum, the method 

continues varying the values of the parameters to build combined rules and producing 

additional trial solutions.  

Another important aspect of SS is the introduction of associated procedures to combine 

constraints – a mechanism that generate weighted combinations, called surrogate constraints 

(Glover et al., 2000). Subsets of constraints, considered to be most critical relative to trial 

solutions, are isolated and produce new weights that reflect the degree to which the 

component constraints are satisfied or violated. The principal function of the surrogate 

constraints is to provide ways to evaluate choices that could be used to generate or modify 

trial solutions (Glover et al., 2003). 

In evolutionary algorithms two or more solutions are randomly chosen from the population 

and crossed over and combined to generate one or more offsprings. In contrast, SS chooses 

two or more elements of the reference set in a systematic way with the purpose of creating 

new solutions, guarantying the injection of diversity in the reference set.  
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The basic SS template could be resumed as follows (Glover et al., 2000, 2003): 

 Generate a set of starting solution vectors, guarantying a certain degree of diversity, 

and define heuristic processes as an attempt to improve these solutions. Designate a 

subset of the “best” solution vectors to be the reference set (best as synonymous of 

diverse). 

 Create new solutions as structured combinations of subsets of the current reference 

solutions. 

 Apply the heuristics defined in the first step to improve the solutions generated in the 

last one. The result of this step may be feasible and unfeasible solutions. 

 Extract a collection of the “best” improved solutions from the previous step, and add 

them to the reference set. The notion of the “best” must be broad, making the 

objective value one among several criteria for evaluating the merit of the newly 

created solutions. Repeat the last three steps until the reference set does not change. 

 Diversify the reference set, restarting from the first step. The process ends when a 

specified iteration limit is achieved. 

The structured combinations of the SS must be designed with the goal of creating weighted 

centres of selected subregions, generating dispersion patterns that project new centres into 

regions outside the original reference solutions, facilitating the desired diversity. 

The strategies used to select the subsets that will be combined in the second step of the 

algorithm are designed to make use of a type of clustering that allow the construction of new 

solutions within and across the clusters. 

The scatter search can be briefly referred as the join of the following methods (Glover et al., 

2000, 2003): 

 A diversification generation method – to generate a collection of diverse trial solutions. 

 An improvement method – to transform a trial solution into one or more enhanced 

trial solutions. 

 A reference set update method – to build and maintain a reference set consisting of 

the best solutions found (typically no more than 20), guarantying quality and diversity 

of the membership. 

 A subset generation method – to produce a subset of the reference set solutions as a 

basis for creating combined solutions. 
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 A solution combination method – to transform a given subset of solutions produced by 

the subset generation method into one or more combined solution vectors. 

Ant Colony Optimization (ACO) 

One imaginative nature inspired metaheuristic was introduced in the 90’s by Marco Dorigo and 

colleagues (Dorigo et al., 1991, 1996; Dorigo and Gambardella, 1997) to help achieving 

solutions for hard combinatorial optimization problems. An analogy with the way ant colonies 

function when looking for food has suggested the definition of the Ant System. Ant Colony 

Optimization (ACO) is one of the algorithms that belong to the ant colony algorithms family, 

covered by the Swarm Intelligence methods (Bonabeau et al., 1999), and is a probabilistic 

technique originally developed to search the optimal path in a graph. 

Ant algorithms are multi-agent approaches to solve difficult combinatorial problems, like 

travelling salesman problem (TSP) or quadratic assignment problem (QAP), and were inspired 

by the observation of real ant colonies, in particular the interesting foraging behaviour of ant 

colonies and how ants can find shortest paths between food sources and their nest (Dorigo et 

al., 1999). The complex and well structured social behaviour revealed by the ant colonies 

emerges from relatively simple behaviours of the colony’s individuals. 

While walking from the nest to food sources, and vice-versa, real ants deposit on the ground a 

substance called pheromone (in varying quantities), forming in this way a pheromone trail, or a 

marked path. When an isolated ant detects a previously laid trail it can decide, with high 

probability, to follow it, reinforcing the trail with its own pheromone. The collective behaviour 

that emerges is a form of positive feedback loop, where the more ants follow a trail, the more 

attractive that trail becomes for being followed (Dorigo et al., 1991) – the probability with 

which an ant chooses a path increases with the number of ants that previously choose the 

same path. This basic behaviour is the basis for a cooperative interaction which leads to the 

emergence of shortest paths. 

The ant algorithms are models derived from the study of artificial ant colonies, and are used as 

an optimization tool. They are based on a parameterized probabilistic model – the pheromone 

model – that is used to model the chemical pheromone trails (Blum and Roli, 2003). The 

artificial ants have some memory, they are not completely blind, and live in an environment 

where time is discrete. Solutions are constructed incrementally by the artificial ants, adding 

opportunely defined solution components to a partial solution under consideration. Results 

obtained with ant systems emphasize the presence of synergetic effects in the interaction of 
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ants and the quality of the solutions increases when the number of ants working on the 

problem grows, up to reach an optimal point.  

The communication and cooperation between ants is possible by distributed memory 

implemented as pheromone deposited on edges of a graph. In any step of the algorithm each 

ant gives a sign of its activity by modifying the problem representation, changing the 

probability with which the same decision will be taken in the future. If an ant chooses between 

different options and the choice is being particularly good, then in future that choice will 

appear as more desirable than it was before. In the early stages of the process a heuristic 

should help the ants’ decision but, as the experience gained by ants increases, that heuristic 

looses importance and more relevance is potentiated to the problem representation. In each 

step of the algorithm one procedure must update the pheromone values according to the 

quality of the solutions constructed. The basic method is to update all pheromone values 

accordingly to a pheromone evaporation rate. This is necessary to avoid the premature 

convergence of the algorithm to suboptimal regions of the search space, and it can be seen as 

a forgetting mechanism that allows the exploration of new regions in the search space, 

favouring the diversification strategy. 

The swarm simulation system (Minar et al., 1996) was, perhaps, the first platform that made 

intensive use of the ant algorithm concepts – it is a multi-agent software platform for the 

simulation of complex adaptive systems, where the basic unit of simulation is an object called 

a “swarm” that contains a collection of agents executing a schedule of actions, and the 

representation of time. Swarms can be themselves agents and can be part of other swarms. 

The Ant Colony System (ACS) (Dorigo and Gambardella, 1997) is a version of the ACO 

framework that has very good performance derived by two major differences in the algorithm 

implementation. The first one is related with the update of the pheromone trails – it is done 

offline, after all the ants had built a solution. Pheromone is added to the arcs used by the ant 

that found the best solution since the start of the algorithm. The second difference is in the 

way the ants decide which component to move next – the rule is called pseudo-random-

proportional: while some moves are chosen deterministically (in a greedy manner), other 

moves are chosen by the usual rule - in a probabilistic way. These method forces ants update 

pheromone only online step-by-step, favouring the emergence of other solutions than the best 

so far. 

Another well-known algorithm that extends the ACO metaheuristic is the MAX-MIN Ant 

System (MMAS) (Stützle and Hoos, 1997, 2000). Like ACS, the pheromone trails are only 
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updated offline, receiving additional pheromone the arcs that were used by the best ant 

iteration or the best ant since the start of the algorithm. The pheromone values are restricted 

to an interval [         ] and all the pheromone trails are initialized to their maximum value 

    , preventing that the probability to construct a solution falls below a certain value greater 

than zero, never vanishing the chance of finding a global optimum. 

Due to its simplicity, there were many successful implementations of parallelized versions of 

the algorithm – one example may be found in Stützle (1998). Since its genesis, the distribution 

of search activities over many simple agents (ants), that use very simple basic actions, eases 

the parallelization of the computational effort, exploring the emergence of global properties 

from the interaction of the agents. 

3.3.4  Optimization Metaheuristics Discussion 

The high performance achieved by the great majority of metaheuristics is driven by concepts 

like intensification and diversification (introduced earlier in section 3.3.1 ). Depending on the 

paradigm behind a particular metaheuristic, intensification and diversification are achieved in 

different ways. Every metaheuristic approach should be designed with the aim of effectively 

and efficiently explore the search space, in order to obtain a search algorithm clever enough to 

intensively explore areas of the search space with high quality solutions – intensification - and 

to move to unexplored areas of the search space when necessary – diversification (Glover and 

Laguna, 1997). These terms were presented in the definition of the Tabu Search metaheuristic 

and became more and more referenced in other fields. For instance, in Evolutionary 

Computation the term exploitation is related with intensification, and the term exploration is 

related with diversification, although based in short term strategies tied on randomness, while 

the original meaning of the terms emphasizes the notion of high level strategies based on the 

usage of memory. 

Locality is the concept that emerges and gives meaning to intensification and diversification; 

locality implies the notion of area of the search space, or region, and it is something fuzzy 

because it depends on the characteristics of the search space and on the definition of distance 

in each search space.  

Two definitions drawn from the literature about intensification and diversification: 

 “The main difference between intensification and diversification is that during an 

intensification stage the search focuses on examining neighbours of elite solutions. 

(...) The diversification stage on the other hand encourages the search process to 
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examine unvisited regions and to generate solutions that differ in various significant 

ways from those seen before.” (Glover and Laguna, 1997) 

“Intensification is to search carefully and intensively around good solutions found in 

the past search. Diversification, on the contrary, is to guide the search to unvisited 

regions. These terminologies are usually used to explain the basic elements of Tabu 

Search, but these are essential to all the metaheuristic algorithms. In other words, 

various metaheuristic ideas should be understood from the viewpoint of these two 

concepts, and metaheuristic algorithms should be designed so that intensification and 

diversification play balanced roles.” (Yagiura and Ibaraki, 2001) 

There are also strategies explicitly aimed to dynamically change the balance between 

intensification and diversification during the search. A fairly simple strategy is used in 

Simulated Annealing (SA), where an increase in diversification and simultaneous decrease in 

intensification can be achieved by “reheating” the system and then cooling it down again 

(which corresponds to increasing parameter T and decreasing it again according to some 

scheme). Such scheme is called non-monotonic cooling scheme. Another example can be 

found in Ant Colony System (ACS) that uses an additional component to introduce 

diversification during the solution construction phase - an ant reduces the pheromone values 

on the nodes of the construction graph that it visits, while it is walking on the graph to build a 

solution. The effect of this action is reducing the probability of other ants to follow the same 

path. This update mechanism is called step-by-step online pheromone update rule, and its 

interplay with the other update rules leads to oscillating balance between intensification and 

diversification (Blum and Roli, 2003). 

Most metaheuristic components have both effects: intensification and diversification. 

Following the objective function amplify the intensification effect, and diversification is 

achieved by the use of randomness or by following a criterion other than the objective 

function. 

The appliance of techniques that enable the metaheuristics hybridization is a promising and 

actual field of research – some of the techniques described in the previous sections are 

hybridizations. Common forms of hybridizations are:  

 including components from one metaheuristic into another – component exchange 

among metaheuristics; 

 enabling two or more algorithms to exchange information - cooperative search; 
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 integrating metaheuristics and systematic methods. 

The component exchange among metaheuristics is, perhaps, the most popular method and 

concerns to the use of trajectory methods in population-based methods. Population methods 

are very powerful on the concepts of recombining solutions to obtain new ones, facilitating the 

existence of larger steps in the search space than the steps done by trajectory methods. But, 

when good solutions appear, mechanisms must exist that influence the search in the hope of 

finding better solutions between those solutions and the current. One of the strengths of 

trajectory methods is the more structured way they explore a promising region in the search 

space, reducing the danger of being close to good solutions but missing them. Thus, 

metaheuristics hybrids that in some way manage to combine the strengths of population-

based methods with the advantages of the trajectory methods are often very successful (Blum 

and Roli, 2003). 

The cooperative search (Hogg and Huberman, 1993; Hogg and Williams, 1993) is a loose form 

of hybridization and consists of a search performed by different algorithms that exchange 

information about states, models, solutions or other search space characteristics. Cooperative 

search typically run search algorithms in parallel execution with a varying degree of 

communication – the algorithms can be different or instances of the same algorithm running 

with different parameters settings. Nowadays this technique has gained increasing attention 

because of the potential of parallel implementations of metaheuristics. 

Integration of metaheuristics and systematic methods has produced effective algorithms 

when applied to real world problems. A very successful example is the combination of 

metaheuristics and Constraint Programming (CP) (Pesant and Gendreau, 1996, 1999). CP 

enables to model a combinatorial optimization problem constraining admissible values for 

variables and domains. Every constraint is associated to a filtering condition algorithm that 

deletes those values from a variable domain that do not contribute to feasible solutions. 

Constraints are activated as soon as the domain of any variable involved as been changed. 

Then the filtering algorithm is applied, propagating the constraint through the variables’ 

domain until there are no more values to be removed, or at least one domain is empty. A CP 

system can be seen as the interaction between components (constraints) which communicate 

through shared variables (Blum and Roli, 2003). 

There are three main approaches for the integration of metaheuristics and systematic 

techniques: 
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 A metaheuristic and a systematic method are sequentially applied (or executed 

interleaved). The solutions produced by the metaheuristic can be used as heuristic 

information by the systematic search, or the systematic algorithm can generate a 

partial solution that will be completed by the metaheuristic. It can be seen as an 

instance of cooperative search with rather loose integration. 

 Metaheuristic use systematic methods to efficiently explore the neighbourhood, 

instead of simply enumerate the neighbours or randomly sampling the 

neighbourhood. This approach combines the advantages of a fast search space 

exploration made by the metaheuristic and the efficient neighbourhood exploration 

performed by the systematic method, and is effectively fruitful when the 

neighbourhood to explore is very large. 

 Introduce strategies or concepts from either class of algorithms into the other. This 

approach preserves the search space exploration on a systematic method, but 

sacrifices the exhaustive nature of the search (Harvey and Ginsberg, 1995). The 

hybridization is usually achieved by integrating concepts developed for metaheuristics 

(e.g. probabilistic choices) into the systematic methods – using a probabilistic 

backtracking instead of a deterministic (chronological) backtracking, if the search tree 

algorithm is used. 

Although metaheuristics are different – some of them are trajectory methods (SA, TS, VNS, 

GRASP) and others are population-based (GA, SS, ACO) – and are based on different 

philosophies, all the algorithms are based on intensification and diversification to efficiently 

explore a search space. It is possible to identify subtasks where some metaheuristics perform 

better than others, opening way to the hybridization of metaheuristics that can boost the 

performance of the search considerably.  

3.4  Machine Learning Techniques  

 “Machine Learning is the study of computer algorithms that improve automatically 

through experience.”(Mitchell, 1997) 

Machine Learning (ML) is the subfield of AI concerned with programs that learn from 

experience, i.e., the research on computational approaches to learning. Computer programs 

typically execute the procedures supplied to them, very efficiently, but do not self-improve 

with experience. Research in machine learning concerns with building computer programs able 



Intelligent Simulation of Coastal Ecosystems 

- 81 - 

to generate new knowledge or improve available knowledge, previously placed by human 

instructors, by using input information (Michalski and Kodratoff, 1990). 

Intelligent agents are an example of self-learning software where perceptions should be used 

to improve agent’s ability to act in the future, not only to act in the moment (Russel and 

Norvig, 2002). Learning results from the interaction between the agent and the world (objects, 

agents and environment), and from the perception by the agent of its own decision-making 

process. 

The importance of the work in machine learning continues to appeal researchers in expert 

systems development, computer vision, speech understanding, problem solving, autonomous 

robotic, decision support systems, intelligent tutoring systems and so on. The inclusion of ML 

in ecological models is a tentative to apply concrete techniques to problems of practical 

significance, transferring the ML programs from university laboratories to the external world. 

Russel and Norvig present a general model for learning agents (Russel and Norvig, 2002) with 

four essential components (Figure 3-2). While the performance element takes perceptions and 

decides on actions, the learning element takes some knowledge about the performance 

element and some feedback on how the agent is doing, and determines how the performance 

element should be modified to do better in the future. The critic element tells to the learning 

element how well the agent is doing, based on a performance standard given to the agent, and 

the problem generator element is responsible to suggest actions that will lead to new 

experiences. 

The way how feedback provided to the agent is manipulated, against its actions, determines 

the kind of learning process used. Common algorithms are the supervised learning (agent has 

one function that predicts the outcome of an action - labelled examples - and the feedback 

generally tells the agent what the correct outcome is; it improves the function that maps 

actions to desired outputs), the unsupervised learning (agent has no hint about the outcome 

of an action; it builds a model from scratch – unlabelled examples) and the reinforcement 

learning (agent observes the impact of its action over the environment, and receives a reward 

or punishment from the environment that guides the learning algorithm in order to maximize 

the rewards). In the literature the semi-supervised learning is also referred as the combination 

of labelled and unlabelled examples to build the appropriate function for decision. 
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Figure 3-2: General model for learning agent (Russel and Norvig, 2002) 

Examples of supervised learning algorithms and techniques include, among others, artificial 

neural networks, Bayesian statistics, case-base reasoning, decision tree learning or nearest 

neighbour algorithm, and applications where they are applied comprise bioinformatics, 

information retrieval, pattern recognition, object recognition in computer vision, handwriting 

and speech recognition, within many others. The typical output of these algorithms could be a 

class label (in classification) or a real number (in regression). 

Artificial neural networks (ANN) are an abstraction from the current understanding of the 

functioning of the animal nervous system - synapses are simulated by nodes containing a 

transfer function (usually nonlinear sigmoid). Incident edges are divided into inputs and 

outputs; the inputs are summed proportionally according to weights attached to each edge, 

then the output values are generated by the transfer function. The feed-forward multi-layer 

perceptron, where the edges feed only forward from one level to the following, is the simplest 

representation and is the most commonly used; the layered architecture could have only a 

single internal layer. Each ANN must be trained before its usage in order to calculate/distribute 

the weights attached to each edge, and a wide variety of algorithms are available for 

minimising the error function; perhaps the most known and used algorithm is the back-

propagation, that is a gradient descent algorithm for minimising the error function. Also 

several research works were carried out in order to reduce the excessive number of neurons 

and synaptic weights. Hu et al. (1991) relate one of those works where the authors replace the 

original weight matrix by a product of two smaller matrices so that the number of 
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multiplications required is reduced. To reduce the hidden units, they exploit the correlation 

among the outputs of the hidden neurons in the same layer. 

The information embedded in a neural network is very machine dependent and this is an 

obstacle to extract meaningful knowledge from the inner data.  

Decision tree induction is a traditional and well-respected method for generating predictive 

models from data (Quinlan, 1986). It proceeds by recursively partitioning the data according to 

values of attributes; most algorithms work from the root node of the tree downward, 

generating progressively more refined definitions for the classes being learnt. The algorithms 

are usually greedy, partitioning the data at each level based on which attribute gives the best 

value of whatever criterion is in use to judge the quality of data partitions. In most algorithms, 

the partitioning is continued until a further heuristic criterion, deliberately designed to 

generate overfitting, is triggered. The resulting tree is then pruned to give optimum 

generalisation performance on an independent test dataset. Decision tree induction may be 

extended to generate decision rules instead: the unpruned decision tree is converted into a 

logically equivalent rule set, then pruning is conducted on the rule set rather than the tree. 

Decision rule pruning can permit generalisations which are not available in decision tree 

pruning, and the resulting rules can sometimes be more comprehensible to human readers. 

The comprehensibility of decision tree learning comes at a significant cost: the language learnt 

by decision tree systems is not universal, so it may be impossible for the decision tree system 

to accurately fit a dataset simply because it cannot represent the information contained in the 

dataset. 

Clustering and dimensionality reduction are, perhaps, the most known classic examples of 

unsupervised learning (Ghahramani, 2004), but it is also included in some artificial neural 

networks (ANN), blind source separation, generative topographic maps, among others. 

Applications with unsupervised learning simply receive inputs and do not obtain neither 

supervised target outputs nor rewards or punishments from the environment. Formal 

frameworks for unsupervised learning build representations of the input data that can be used 

for decision making, predicting future inputs, and so on. Even without any feedback from the 

environment the process uses probabilistic models to find patterns in the input data, and 

beyond what can be considered pure unstructured noise. 

Along with the development of the ANNs, the Fuzzy Set Theory has been efficiently used for 

extracting information from ecological data. Inspired in the biological behaviour it is an 

extension of the classical meaning of the term “set”, and formulates specific logical and 
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arithmetical operations for processing imprecise and uncertain information (Zadeh, 1965; 

Zimmermann, 1987). The fuzzy rule-based models are often employed to capture the 

approximate mode of reasoning that plays an essential role in dealing with uncertain and 

imprecise data. The output of each rule is a linear function of the input variables and the final 

output of all rules is the weighted average of each rule’s output. In ecological data, 

Adriaenssens et al. (2006) used fuzzy knowledge-based models for prediction of macro 

invertebrates in watercourses, Chen and Hare (2006) used a combination of neural networks 

and fuzzy logic models for analysis of the pacific halibut recruitment, and Salski and Holsten 

reported fuzzy and neuron-fuzzy approaches to modelling cattle grazing on pastures with low 

stocking rates (Salski and Holsten, 2006) or to modelling feeding of Greylag Geese on reed 

(Salski and Holsten, 2009). 

Reinforcement learning (Kaelbling et al., 1996; Sutton and Barto, 1998) is closely related to the 

fields of decision theory (in statistics and management science), and control theory (in 

engineering). The fundamental problems studied in these fields are often formally equivalent, 

and the solutions very close, although different aspects of the problem and the solution are 

usually emphasized (Ghahramani, 2004). Environments with more than one machine (or 

computer) with learning capabilities can be much more dynamic, derived from the multiple 

adapting machines. 

3.4.1  Ecological Modelling and Machine Learning 

Integration 

Ecological modelling is concerned with the development of models that deal with the 

relationships among members of living communities, and between these communities and 

their abiotic environment. The latter can be highly nonlinear ecological models have to reflect 

this to be realistic. The ML technique of artificial neural networks is widely used to build 

models of population dynamics of algae (Recknagel et al., 1997), aquatic fauna and water 

quality (Schleiter et al., 1999), production in coastal areas with upwelling (Barciela et al., 1999), 

fish abundance and spatial occupancy (Brosse et al., 1999), phytoplankton primary production 

(Scardi and HardingJr, 1999) and prediction of zooplankton biomass variance (Aoki et al., 

1999). However the models produced are like black-box models – hardly to inspect and 

understand. 

The use of symbolic machine learning techniques allow the construction of models that can be 

inspected, modified, used and verified by researchers and experts, and have the potential to 

become part of the knowledge in the respective application domain. Symbolic ML methods 
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induce explicitly represented symbolic models from data (Džeroski, 2001) and numerous 

applications are being used in the field of ecological modelling, namely to model population 

dynamics - examples that include algal growth in Lagoon of Venice (Kompare and Džeroski, 

1995; Kompare et al., 1997b) and in the Slovenian Lake of Bled (Kompare et al., 1997a) and 

phytoplankton growth in the Danish Lake Glumsoe (Todorovski et al., 1998). 

Following this reasoning, Shan et al. (2006) report the use of ML techniques in a research to 

model a difficult problem – the spatial distribution of an endangered Australian marsupial, the 

southern brown bandicoot. Spatial phenomena and interaction in the real world are highly 

intricate, resulting in suspect and poor available theories, which make mathematical models 

very hard to build because of the absence of a good and strong theoretical knowledge. Four 

ML techniques – decision trees/rules, neural networks, support vector machines and genetic 

algorithms – were applied to the problem, and the exploration of the datasets gave interesting 

results. When the data available were highly regular and the effects strong, valuable insights 

were yielded. The challenges to the ML techniques were more evident when the datasets were 

small, with noisy data and weak domain theories. The experience reported surveyed over 300 

sites in South Australia and registered data for the bandicoot population and surrounding 

factors, like vegetation, soil, fire history and geomorphology. The ML techniques were used to 

generate models, aiming to predict the abundance of the bandicoot related with geographical 

factors. The results obtained showed that decision trees/rules and genetic programming 

techniques directly yielded models with potentially human-comprehensible meaning, while 

neural networks and support vector machines did not. 

3.5  Decision Support and Management Systems 

Human activities have a prominent influence on the evolution of the natural environment, and 

this is accompanied, in recent years, by the awareness of environmental issues and 

responsibilities involved. This influence must be considered and integrated in the decision 

processes by environmental managers. 

Managers should check that the decisions are feasible from a political and technical point-of-

view, while simultaneously predict the reactions and effects between the biological elements 

and the environment. They must take into account the different temporal and spatial scale as 

well as biophysical, social and economic considerations, and resolve potential conflicts of 

interest. Policy makers must have some knowledge about ecosystem functioning, must 

manage the accumulated qualitative and quantitative information to adapt their conceptual 
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models to local management, and must select the appropriate management options to 

maximize the decision criteria. 

Arguments like the previous are the basis for the increasingly developed Decision Support 

Systems (DSS) applied to environmental management to assist business decisions. The 

appearance of minicomputers, distributed computing and operating systems opened the way 

to computerized decision support systems. DSS applications evolve as the computer 

technology evolves, and the huge number of DSS frameworks, developed for dedicated 

problems, is almost faced as an image of each research team.  

3.5.1  DSS Origins 

The origins of the modern assisted decision making and planning are intrinsically related with 

the evolution of computers. The pioneering documented works that had been performed in 

the 1960’s by several researchers can be referred as the birth of the interactive management 

decision systems. Particularly important is the experimental work done by Douglas Engelbart 

and colleagues that developed the first hypermedia/groupware system called NLS (oNLine 

System) (Engelbart, 1962) where the computer mouse and groupware were first presented. 

This system used the notion of hypertext, provided facilities for on-screen video 

teleconferencing and is considered a forerunner to group decision support system, derived 

from its interactive facilities. 

It is generally regarded that the idea of decision support system was started with the work of 

Gorry and Scott-Morton’s published in a Sloan Management Review article (Gorry and Scott-

Morton, 1971). In the early years, the systems intended to replace the human decision maker 

but nowadays it is accepted that the systems focus on decisions and on supporting rather than 

replacing the decision-maker (Power, 2007). 

Although first DSS’s began to optimize a single criterion, it soon became clear that the 

interesting problems had conflicting interests and multidimensional characteristics, where 

multiple criteria antagonism exists. The modern DSS’s embody the capacity of handling 

multicriteria evaluation methods and powerful tools to solve conflict management. 

The difference between an optimization problem, like those related in section 3.3 , and a 

decision problem as focused in this section, is that while the former is aimed to find the best 

solution, the latter aims to determine if a solution with certain characteristics is acceptable or 

not – if it is a good decision. But what is a “good decision” or an “acceptable decision”?  
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“A decision is a position or opinion or judgement reached after consideration. The act 

of making up your mind about something.” *www.wordreference.com+ 

From the definition, the decision needs a human actor and implies a rational decision process. 

The decision making process can be seen as a cognitive process (an outcome of mental 

processes) that leads to the selection of a course of action among several alternatives. A 

process of decision making is a process that guides the decision maker through a series of 

stages, from the identification and analysis of the problem to the formulation and construction 

of a number of alternative choices, in order to identify and define which of them is the most 

appropriate. It must explain the theoretical basis that supports each alternative. 

In the technical literature there is no single accepted definition for what constitutes a Decision 

Support System. Some definitions of Decision Support Systems selected from several sources: 

“A decision support system (DSS) is both a process and a tool for solving problems 

that are too complex for humans alone, but usually too qualitative for only 

computers. Multiple objectives can complicate the task of decision-making, especially 

when the objectives conflict. As a process, a DSS is a systematic method of leading 

decision-makers and other stakeholders through the task of considering all objectives 

and then evaluating options to identify a solution that best solves an explicit problem 

while satisfying as many objectives as possible.” (Westphal, 2000) 

 “Abbreviated DSS, the term refers to an interactive computerized system that gathers 

and presents data from a wide range of sources, typically for business purposes. DSS 

applications are systems and subsystems that help people make decisions based on 

data that is culled from a wide range of sources.(…) DSS applications are not single 

information resources, such as a database or a program that graphically represents 

sales figures, but the combination of integrated resources working together.” 

[www.webopedia.com] 

“A properly designed DSS is an interface software-based system intended to help 

decision makers compile useful information from a combination of raw data, 

documents, personal knowledge, or business models to identify and solve problems 

and make decisions” *http://en.wikipedia.org/wiki/Decision_support_system] 

“Decision support system is defined as an approach or methodology for supporting 

decision-making. It uses an interactive, flexible, and adaptable computer-based 

information system especially developed for supporting the solution for a specific 
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non-structured management system. It uses data, provides an easy user interface, 

and can incorporate the decision maker’s own insights. In addition, a DSS usually uses 

models and is built (often by end users) by an interactive and iterative process 

(evolutionary prototyping process). It supports all phases of decision-making and may 

include a knowledge component.” (Turban, 1995) 

From the definitions, two important features that a DSS must supply are an interactive 

interface to the user and a graphical presentation of the results, to simplify the system’s access 

by the human managers, usually people with less expertise in information systems but very 

experienced in analyzing results in the problem domain context. 

Some literature establish five broad categories of DSS: model-driven, data-driven, 

communication-driven, document-driven and knowledge-driven (Power, 2007): 

- Model-driven DSS use data and parameters provided by the user to stimulate a 

simulation model that generates results to assist decision makers in analyzing a 

situation. In general, this kind of systems doesn’t need very large data bases. 

- Data-driven DSS manipulate large data sets and generally provide tools tailored to 

specific tasks. 

- Communication-driven DSS are designed to support team collaboration work on a 

shared task. These systems depend on communication technologies and can use 

video-conferencing, groupware software and so on. 

- Document-driven DSS manipulate several unstructured information present in a 

huge number of document formats, and provide document retrieval and analysis. 

The diversity of document formats may include images, sound, hypertext 

documents, spreadsheets, text and scanned documents, video, etc. 

- Knowledge-driven DSS are specialized problem-solving “expert” systems. Typically 

they have a great knowledge about a particular domain (stored as facts, rules and 

procedures), they understand the problems and supply a special skill to solve 

those problems. Many of these systems use AI techniques and algorithms. 

Nowadays, the concept of web-based DSS is gaining position. The idea is to supply decision 

support information and tools to a manager using a “thin-client” web browser (Turban et al., 

2001; Power, 2007). The decision maker doesn’t need to have special software to analyze the 

data, since the use of web browsers evolved rapidly and the specification of HTML 2.0 

facilitates the presentation of the results, generated by a DSS application hosted in a remote 
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computer server. The server DSS application can belong to any one of the former categories 

listed, changing only the presentation layer of the results that becomes accessible worldwide. 

3.5.2  Architecture 

The architectural components of a DSS can be defined as the database (or knowledge base), 

the model (decision context and user criteria) and the user interface. One different division can 

be made and identify components like inputs (data and characteristics to analyze), user 

expertise (inputs that require manual analysis by the user before the application runs), 

outputs (results generated by the application itself) and decisions (results selected by the DSS 

based on user criteria). 

The definition of architecture for a decision support system to manage an ecosystem, entails 

to take into account the different needs and possible formulations of the decision problem. 

The diversity of views and opinions hinders any general classification of existing architectures 

and difficult the choice by the designer. Existing approaches can be distinguished by (Serment, 

2007): 

 Characteristics of the ecosystem in study and problem of interest for the decision 

makers: natural resources, aquaculture, fire prevention, ... 

 Nature of the decision: purely environmental, political, economical, social, ... 

 Objectives for the usage of the tool: anticipation, prediction, exploration, 

understanding, teaching... 

 Objective of the decision: prediction, medium/long-term planning, supervision and 

monitoring, crisis management... 

 The time scale of the studied phenomenon and the constraints of the decision-making: 

short, medium or long-term. 

 The spatial scale of the studied phenomenon and the impact of the decisions: local, 

regional, global... 

 The modelling paradigm used: individual-centred models, centralized models 

(distribution models), objects and agent-based models... 

The complexity of temporal and spatial environmental dynamics, the amount of data collected 

and available and the knowledge about the ecosystem, multiply the management options and 

affects the development of the DSS. Environmental decision making is generally based on 

priority biological indicators, to check that the ecosystem is environmentally sustainable. The 

decision criteria also vary according to the decision makers, stakeholders and their interests. 
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The economic dimension and, more recently, the social aspects, also play a predominant role 

(Serment, 2007).  

Ecosystem management is complicated by the close interlink between humans and the natural 

world. People are part of ecosystems and, as such, influence and are influenced by their 

structure and functioning. Ironically, environmental awareness frequently leads people to 

develop efforts to keep ecosystems “natural” using different sorts of “artificial” techniques. In 

any case, ecosystem management is a very complex issue that may benefit from decision 

support tools. 

Environmental DSS (EDSS) must be intelligent systems improving the consistency, quality and 

reducing the time needed for environmental decision making. These systems help direct 

decision-makers (or decision making group) by facilitating the study of specific criteria for 

evaluating alternatives or justifying environmental decisions. The interaction between the 

various partners must be cooperative, friendly, fast and efficient. Some authors (Cortés et al., 

2000) classify EDSS as a tool that combines different research areas, including Artificial 

Intelligence, Geographic Information Systems, Modelling and Simulation and Human Machine 

Interface. 

3.5.3  Environmental Management 

Over the last 20 years, the socio-political climate with regard to environmental plans and 

policy making processes have changed dramatically. Environmental legislation has changed 

worldwide, from a purely reactive system that attribute responsibility for damages to a pro-

active concept of preventing damages through appropriate planning and mitigation (Fedra, 

2005).  

Participatory decision making processes influence EDSS design, which must include the basic 

principles of regulatory and legal framework for environmental management (Fedra, 2005): 

- Precise preparation: governmental authorities should identify and consider all 

relevant factors and circumstances when preparing decisions. 

- Trust: citizens must trust governmental authorities in such a way that the 

expectations of citizens are not shamed. 

- Fair play: partiality may be out of question and citizens may not be denied any 

possibility for protection of their own interests. 

- Motivation: every decision of governmental authorities should be accomplished by 

a correct motivation and explanation. 
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During the problem definition phase and the generation of alternatives, EDSS’s must identify 

the major actors and stakeholders, including the profile of stakeholder institutions, in order to 

embed the key problem issues in the generated scenarios of development. Also the relevant 

criteria that will influence decision making should be identified. In a second phase the 

preference structures that lead the ranking and the selection of alternatives should be defined. 

The multi-criteria analysis required in the final step enforces a political exercise of negotiation 

and trade-off with subjective values and believes, involving the end users to reach practical 

results. 

3.5.4  Multi-Criteria Analysis 

The Analytic Hierarchy Process (AHP), introduced by Thomas Saaty (Saaty, 1980), provides a 

powerful and flexible tool that may be used to make decisions in situations where multiple and 

conflicting objectives/criteria are present, and both qualitative and quantitative aspects of a 

decision need to be considered. The AHP is effective in dealing with complex decision making, 

and may help the decision maker to set priorities and make the best decision, even if it is not a 

specialist in the scientific domain. By reducing complex decisions to a series of pair-wise 

comparisons, and then synthesizing the results, the AHP helps to capture both subjective and 

objective aspects of a decision. In addition, the AHP incorporates a useful technique for 

checking the consistency of the decision maker’s evaluations, thus reducing the bias in the 

decision making process. 

The AHP generates a weight for each evaluation criterion according to the information 

provided by the user (decision maker). Higher weights mean more important objectives. Next, 

the AHP evaluates all the scenarios on each criterion using the information provided by the 

user. Finally, the AHP combines the objective weights and the scenarios evaluations, thus 

determining a global score for each scenario and a subsequent ranking. The global score for a 

given scenario is a weighted sum of the scores it obtained on the single criteria. 

The AHP considers a set of evaluation criteria (objectives), and a set of alternative options 

(scenarios) among which the best decision is to be made. The several alternative options 

should be characterized by indicators. Indicators come from different sources and are 

measured or, in the case of scenarios simulated by models, calculated from the simulation 

results. It is important to note that, since some of the objectives could be contrasting (e.g. 

socio-economic interests and environment preservation), it is not true in general that the best 

option is the one which maximizes each single criterion, rather the one which achieves the 

most suitable trade-off among the different criteria (Siena, 2005). 



3 Concepts and State-of-the-Art: Artificial Intelligence and Optimization 

- 92 - 

When the AHP tool is embedded in the DSS software, the user only concentrates its attention 

in how to compare the criteria. The relative importance between two criteria translates the 

evaluation (qualitative or quantitative) made by the user to relate the criteria pair and is 

measured according to a numerical scale (the larger value the more important is the first 

criterion compared to the second). The relation between the second and the first criterion is 

the inverse quantity. Each criterion is compared against all the others criteria resulting the 

pair-wise comparison in a square matrix – the pair-wise comparison matrix (PCM). With this 

process, the users, the stakeholders and the site actors, are involved in the decision process 

and committed to the alternative proposed as the best scenario for a sustainable solution. The 

AHP methodology offers the data for plausible explanation of the best decision. 

To work properly the AHP needs two data sets: 

 The inputs or indicators to the multicriteria analysis – a n x m matrix of indicators, with 

m decision criteria considered and n simulated scenarios. Each entry Vjk in the matrix is 

the value obtained in the simulation for the k criterion in the j scenario. 

 The PCM – a m x m square matrix A, where each entry ajk is the relative importance of 

criterion j over criterion k; the entry akj is the inverse value. If ajk>1, then the criterion j 

is more important than the criterion k, while if ajk<1, then the criterion j is less 

important than the criterion k. If the two criteria have the same importance than ajk=1.  

The multicriteria analysis is necessary when the optimum value on each column of the first 

matrix is not achieved in the same scenario for all criteria, which happens almost always. 

The AHP is implemented in three consecutive steps, assuming m evaluation criteria considered 

and n scenarios evaluated: 

(i) Computing the vector of objective weights 

(ii) Computing the matrix of scenario scores 

(iii) Ranking the scenarios. 

Computing the vector of objective weights 

In order to compute the weights for the different objectives, the AHP starts by inspecting the 

PCM matrix. The relative importance between two criteria is measured according to a 

numerical scale (e.g. 1 to 9), as shown in Table 3-1, where it is assumed that the criterion j is 

equally or more important than the criterion k. 
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Table 3-1: Table of relative scores for PCM matrix 

Value of Ajk Interpretation 

1 j and k are equally important 

3 j is slightly more important than k 

5 j is strongly more important than k 

7 j is very strongly more important than k 

9 j is absolutely more important than k 

 

The interpretations of the values are suggestive (Siena, 2005), and may translate the user’s 

qualitative evaluations of the relative importance between two criteria into a numerical scale. 

The values in the matrix A are pair-wise consistent, that is, the PCM elements verify the 

constraint: 

                                    (9) 

The following step is to build the matrix Anorm, the normalization of the matrix A, making equal 

to 1 the sum of the entries in each column. Each entry in the matrix Anorm is:  

     ̅̅ ̅̅   
   

∑    
 
   

 (10) 

The vector of objective weights w (a m-dimensional column vector) is the average of the 

entries on each row of the normalized matrix: 

      
∑    ̅̅ ̅̅
 
   

 
 (11) 

Computing the matrix of the scenario scores 

The matrix of scenario scores is a n x m real matrix S, where each entry sik represents the score 

of the scenario i with respect to the criterion k. From the matrix with the values of the 

indicators for the scenarios evaluated, a pair-wise comparison matrix B(k) is built for each 

criterion k. Each matrix B(k) is a n x n real matrix, where n is the number of scenarios evaluated. 

Each entry b(k)
ih represents the evaluation of the scenario i compared to the scenario h with 

respect to the criterion k: if b(k)
ih>1 then the scenario i is better than scenario h, if b(k)

ih<1 then 

the scenario h is better than scenario i. If the two scenarios are identical b(k)
ih=1, and the B(k) 

entries verify the PCM constraint: 
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( )
           

( )
               (12) 

The AHP applies to each matrix B(k) the same two-step procedure described for the pair-wise 

comparison matrix A: divides each entry by the sum of the entries in the same column, and 

then averages the entries on each row, obtaining the score vectors s(k), each one containing 

the scores of the evaluated scenarios with respect to criterion k. 

The matrix of the scenario scores S is obtained as: 

    [  ( )         ( ) ] (13) 

Where the k-th column of S corresponds to s(k). 

Ranking the scenarios 

Once the weight vector w and the score matrix S have been computed, the vector v of global 

scores is obtained by multiplying S and w: 

         (14) 

The i-th entry vi of v represents the global score assigned by the AHP to the scenario i. As the 

final step, the scenario ranking is accomplished by ordering the global scores in decreasing 

order. 

In practice, this approach implies a limitation in terms of the number of criteria and scenarios 

that can be analyzed efficiently, as the effort to elicit a preference structure grows 

exponentially with the dimensionality of the problem. When the alternative criteria does not 

exceed the number of nine the AHP methodology fits perfectly the help to decision making. 

3.6  Summary 

In this chapter, Artificial Intelligence concepts used in the context of ecological modelling and 

related applications were described, including the use of intelligent agents, optimization 

algorithms and Machine Learning techniques. The use of advanced concepts of Distributed 

Artificial Intelligence and the use of multi-agent systems were also explained. 

This chapter ended with the presentation of some concepts in environmental decision support 

systems and their integration in the management of ecosystems. A strategy to solve the 

multiple criteria and conflicting objectives that involves the management of ecological systems 

was also presented – the AHP methodology. 
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A simulation system for coastal ecosystems only makes sense if it provides results and 

indicators relevant to the management of the ecosystem in question. Many of the tools 

described in this chapter can be adapted and integrated with the modelling tools, presented in 

the previous chapter, to simulate and manage natural ecosystems, but there is a lack of 

solutions with the integration done. 
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4  Methodology and Implementation 

“Our sense of being a conscious agent who does things 
comes at a cost of being technically wrong all the time.” 

Daniel Wegner (Wegner, 2003: 342) 

 

4.1  Introduction 

Ecosystem management is a difficult task for the local or national authorities. The objectives of 

environment preservation and socio-economic interests are typically contrasting and a trade-

off between them must be achieved. The solution to this problem requires the development of 

interdisciplinary and multi-criteria approaches. 

This work implements an Intelligent Simulation System that includes a mathematical model for 

simulating the processes of coastal ecosystems, an user-friendly graphical representation of 

the ecosystem (exportable to GIS), one farmer agent representing the aquaculture 

stakeholders and an environmental decision support system (EDSS) able to integrate more 

intelligent agents representing stakeholders, managers and different human interests over the 

ecosystem. 

The complete simulation system was designed and developed to be applicable to any coastal 

ecosystem, starting with Sungo Bay (People’s Republic of China) and Ria Formosa (south of 

Portugal) models as prototypes or proof of concept. Every developed application (simulator, 

visualizer and agents) has communication skills, enabling the interchange of valuable 
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information between them, and providing a tool to help and support ecosystem management 

decisions in real scenarios simulations (Pereira et al., 2004b). Each application is able to 

“decide” what is the public information that may be exchanged with the others. 

The core of the system is the EcoDynamo simulator (Pereira and Duarte, 2005), designed with 

portable Dynamic Link Libraries that simulate the ecological processes. It is a user-friendly 

software application focused in aquatic systems but adaptable to any kind of ecological 

simulations. 

A specific language – ECOLANG (Pereira et al., 2005; Pereira, 2008) – was developed for the 

communications between all the applications that compose the system. The network 

established by the applications belonging to the Intelligent Simulation System, based in the 

simulator EcoDynamo and communicating using ECOLANG messages, was named EcoSimNet. 

The agents constructed to be integrated in the simulation system, representing the interests of 

the stakeholders, local communities and authorities, share and implement Machine Learning 

methodologies and optimization techniques. 

A small decision support procedure, with a simple and proved methodology - Analytic 

Hierarchy Process (Saaty, 1980) - was included in the system, integrating the contrasting and 

opposite interests of the several agents (Pereira et al., 2007). 

4.2  Generic Network Infrastructure 

The fundamental modules that a system must contain to help decision makers are: modelling 

and simulation (allowing the simulation of different management scenarios), data 

management and analysis (allowing the classification of simulated scenarios), visualization and 

integration with users. One advantageous approach is to design independent modules that 

interact with each other in a proper way. The maintenance of independence between the 

modules makes the system more scalable, flexible and robust, allowing the reutilization of 

previous developed modules in new solutions.  

The modelling module starts with the definition of the problem and formulates the processes 

to study and the interactions between them. The simulation module enables the simulation of 

different scenarios using the modelling module and generates the results that can be saved for 

posterior analysis by the user or intelligent agent. The visualization module shows graphically 

the behaviour of the models, improving the interpretation of the results by the decision 

makers or users. The analysis module enables the comparison of the results generated by the 
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different simulated scenarios. The module responsible for the integration with users ensures 

the users access to the functionalities of the applications in the network, in an uniform user-

friendly way. The data management module should ensure consistency and persistence of 

configuration data and generated results in different sources and formats. Although these 

modules are identified, their functionalities can be distributed by several applications and can 

be transversal to some or all of them. 

Simulation with hydrodynamic and biogeochemical models is being used, with increasing 

frequency, to explain and/or confirm theories about ecosystems’ behaviour, and to predict 

future developments, trends and scenarios of exploitation of the ecosystem under study. 

However, human activities and actions over the ecosystems are difficult to incorporate. 

The use of autonomous agents (Weiss, 1999; Wooldridge, 2002), representing the institutional 

authorities and the local stakeholders, seems to be a promising way to implement the 

influence of humans over the simulated systems, and their learning about it. Agents interact 

with the simulator, generating scenarios for the model, capturing the results of the created 

scenarios, integrating environmental and socio-economic information and then evaluating the 

results (Pereira et al., 2004b, 2007). 

This work developed a generic and complete multi-agent simulation system that includes an 

ecological simulator, a visualization tool and a farmer agent, and is opened to the inclusion of 

more autonomous agents representing intelligent entities (stakeholders and decision makers). 

Several machine learning techniques have been integrated in the agents providing them with 

artificial intelligence capabilities. 

The interaction between all the components is made via ECOLANG (Pereira et al., 2005), a high 

level communication language, completely readable and understandable by the humans and 

by the applications, making it simple to trace the interactions between the different 

applications. 

Figure 4-1 displays the proposal for the generic network infrastructure, or framework, which 

facilitates the integration of new modules, their manipulation and interaction. The Network 

Integration Infrastructure is composed by a physical layer (network connections between 

computers holding the different applications) and by a logical layer (ECOLANG messages 

exchanged and associated protocol). 
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This infrastructure offers to the final users the chance to choose the modules that better 

interpret their views for specific functionalities, integrating those views, and building a system 

that functions as a whole. 

 

Figure 4-1: Generic network integration infrastructure 

The framework was developed and applied in ecological models of coastal ecosystems, with 

emphasis to Sungo Bay (People’s Republic of China) and Ria Formosa lagoon in Algarve, and 

can be used for aquaculture optimization, system carrying capacity calculation and other 

ecological management intents. 

4.3  Simulation System 

The simulation application used and enhanced in this work is an essential part of the system 

and is particularly focused in modelling of coastal ecosystems. These ecosystems are subject to 

strong anthropogenic pressures due to tourism and shellfish farming or fish aquaculture, 

factors that are responsible for important ecosystem changes characterized by eutrophic 

conditions, algal blooms, oxygen depletion and hydrogen sulphide production. 

This section will describe the models used in the simulation system, and the simulator 

architecture specially developed for this application – the main/core application and the 

dynamic libraries that contain the simulation classes. 
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4.3.1  Model description 

Models of aquatic ecosystems must include biogeochemical processes, such as photosynthesis, 

nutrient cycling and grazing, and transport processes. The biogeochemical processes are 

responsible for local changes of state variables, such as the concentration of chemical 

constituents and biomass of different species or groups of species. As the name indicates, the 

transport processes, or hydrodynamics, are responsible for the transport of pelagic variables 

across model domain and across model boundaries.  

Increasingly sophisticated numerical models have been developed to promote reliable, real-

time management of coastal ecosystems. Each model pretends to account realistically for the 

processes that drive the dynamic behaviour in coastal lagoons so that their status may be 

predicted and the effects of mitigation actions be properly evaluated, resulting in a series of 

good management practices that increase the sustainability of these fragile ecosystems 

(Chapelle et al., 2005b). 

Different approaches are followed to simulate each set of processes. The mathematical 

equations used to model the biogeochemical processes are based on simplifications, implicit or 

ambiguous assumptions and, in consequence, there is a lack of universally accepted theories. 

In contrast, the hydrodynamic processes are very well established, based on simplified forms 

of the Navier Stokes’ equations, known as the Boussinesq equations (cf. 2.4.2 ). 

The model implemented in this work follows the object-oriented modelling approach - 

different objects are used to simulate hydrodynamic, thermodynamic and biogeochemical 

processes and variables. Each object is implemented within independent classes that contain 

its own way to simulate the object processes. If the mathematical equations have parameters 

that can be adjusted to each site, they are fixed during the calibration, verification and 

validation phases of the model. 

The object-oriented approach allow the researchers to separate all the independent functional 

groups, modelling them individually, and establishing communication among them to 

exchange results and important data for their behaviours. Processes that extend the behaviour 

of already developed ones do not need to be newly created, inheriting all the equations 

already developed and just adding what distinguishes it from the parent. 
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Hydrodynamic Modelling 

Hydrodynamic models solve advection and diffusion phenomena of momentum, buoyancy and 

turbulent kinetic energy (Chapelle et al., 2005b), and must setup the time and space scales 

that will be used, considering the dimensions in the physical space. 

Physical dynamics in coastal ecosystems is forced by tidal height at the sea boundaries derived 

from the flood-ebb tides - very relevant in the case of Ria Formosa due to its large shallow 

intertidal areas - river discharges, wind drag forces, land drainage and waste water treatment 

plants at land boundaries. 

The hydrodynamic process simulates from 1D to 3D solutions. For the case studies analysed in 

the present work, it is simulated as a two-dimensional simplified solution of the Navier-Stocks 

equation, adapted from Neves (1985). It is assumed that vertical mixing is strong enough to 

prevent vertical gradients in water properties – a frequent assumption in shallow water 

ecosystems. This 2D formulation is based on a finite difference staggered grid (Vreugdenhil, 

1989). Flows are solved at the sides of the grid cells, whereas surface elevations and 

concentrations are calculated at the centre of the cells. Advection terms (cf. 2.3.2 ) are 

calculated using an upwind scheme, whereas diffusion terms are based on a central 

differences scheme. The resolution is semi-implicit. At the first semi-time step the u (west-

east) component is solved implicitly and the v (north-south) component solved explicitly. At 

the second semi-time step it is the other way around. After the calculation of both velocity 

components, surface elevation is calculated by continuity, as well as the concentration of 

conservative and non-conservative substances, after solving the transport equation (Knauss, 

1997) for all pelagic state variables: 
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Where: 

u and v are the current speeds in x (west-east) and y (north-south) (m s-1); 

A is the coefficient of eddy diffusivity (m2 s-1); 

S is a conservative or a non conservative variable in the respective concentration units; 

Sources and Sinks are values calculated by the biogeochemical processes at each grid 

cell of the model. 

The model includes a wet-drying scheme that prevents any grid cell from running completely 

dry, avoiding numerical errors. The general approach is to stop using the advection term when 
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water level drops below a threshold value (configured in the model database) to avoid 

numerical instabilities. When this limit is reached, computations do not take place in a given 

cell until a neighbour cell has a higher water level, allowing the water to be driven into the 

“dry” cell by the pressure gradient force (Chapelle et al., 2005b). 

Detailed information about the system equations can be found in Duarte et al. (2003) for the 

Sungo Bay model and in Duarte et al. (2005a) for the Ria Formosa site. 

Biogeochemical Modelling 

The term “biogeochemical modelling” refers to the mathematical modelling of ecosystems 

that include biochemistry (nutrient cycles, respiration and feeding, mortality and recruitment, 

predation and competition). Biogeochemical models consist of compartments represented by 

state variables and described by differential equations, governing the transfer of material 

between them (Taylor, 1993). The choice of the state variables is guided by the addressed 

problem that the model was created for. Different modellers can view distinct variables and 

processes for the same problem, derived by the self subjectivity of the modeller and the 

priority each one assign to the modelled processes. 

Biogeochemical cycles are driven by radiant energy and the Energy Circuit Language 

(“Energese” or Energy Systems Language) designed by Odum (1973, 1983) is frequently used 

to represent the energy flows within ecological and biological systems. 

The biogeochemical model integrated in this work follows the guidelines pointed out in section 

2.4.3 . The biogeochemical model implemented for both sites in study is a “coupled physical-

biogeochemical” and specific classes were developed for each location derived from the 

benthic species that are characteristic from each site. 

Water column biogeochemistry is simulated for nitrogen, phosphorous and oxygen. Processes 

such as mineralization of organic matter, nitrification and denitrification were considered for 

nitrogen. Particulate organic matter (POM) is mineralized to ammonium nitrogen, and oxygen 

is consumed in mineralization and nitrification and exchanged across the air–water interface. 

Total and organic particulate matter concentrations (TPM and POM) are simulated following 

equations described in Duarte et al. (2003). More details on the ecological model and a 

complete listing of equations and parameters can be found in Duarte et al. (2005a) and 

Chapelle et al. (2005a; 2005b). For macroalgae, the work of Serpa (2004) was used and for the 

sea grass Zostera noltii, the work of Plus (2003) was followed – vide Duarte et al. (2008). 
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Details about the differential equations used by the physical and biogeochemical processes 

modelled, the list of the parameters and their values, can be found in Duarte et al. (2003; 

2008) and Chapelle et al. (2005b). 

4.3.2  EcoDynamo 

The simulator EcoDynamo - Ecological Dynamics Model (Pereira and Duarte, 2005) - is the 

central element of the general architecture proposed for the intelligent simulation system. It is 

a software application to simulate physical, biological, geochemical and anthropogenic 

processes in aquatic ecosystems, partially developed under the European project DITTY 

[http://www.dittyproject.org] (EC, 2003) and, in this work, was further enhanced to include 

communications, commands and multi-thread modules: 

 The multi-thread module provides multi-threaded execution of the simulation, 

distributing by several threads the load of the different classes simulated and, when in 

the presence of a computer with multiprocessing capabilities, scheduling the charge of 

the system by the existing CPUs; 

 The communications module provides the simulator with components that support 

network communications through TCP/IP sockets to interact with agents and other 

applications; 

 The commands module processes the agents’ actions and responds to them with the 

corresponding perceptions translated in ECOLANG messages (implementation of 

EcoDynamo protocol). 

EcoDynamo was initially inspired in EcoWin (Ferreira, 1995) and they are still similar in several 

aspects – the object-oriented approach, the way how objects communicate with each other 

and the simulation step sequence. However they have many distinct features. The most 

important difference is that EcoDynamo was designed for coupled hydrodynamic-

biogeochemical models, while EcoWin was designed for box models. The relatively small 

number of boxes of any type and shape, in typical EcoWin applications, enables each box to 

have many connections to a number of other boxes and these connections must be defined by 

the user one by one. In EcoDynamo, the type of grids used encapsulates the possible 

connections between cells, defined by the matrix grid structure, without the need for the user 

to define cell connections and allowing the use of very large grids (Pereira et al., 2006). 

http://www.dittyproject.org/
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EcoDynamo application is a C++ object-oriented software and its internal structure is divided in 

seven modules (depicted in Figure 4-2). Each module exchanges data and information with 

others and is responsible for a delimited functionality. 

 

Figure 4-2: EcoDynamo internal structure 

User Interface Module 

As its name indicates, this module is responsible for the interface with the user – select the 

model to simulate, display all the information about the model configuration, select the 

classes/objects to simulate, the simulation time step, the variables to output, the output 

format, the type of support and the output frequency, the trace over the communications, as 

well as start and stop the simulations. Simulation activity can also be monitored in runtime, 

with options to see the messages exchanged by the objects and threads’ activities. This 

analysis can be done offline with the help of log files, activated by the user for specified steps, 

before the simulation run. 
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The main window is divided in two panels – the simulation panel that controls the simulations 

with very intuitive buttons, and the output panel that controls where the variables selected for 

output will be recorded (Figure 4-3). 

 

Figure 4-3: EcoDynamo main window 

A detailed description of the user’s manual can be found in Annex 1, where all the possible 

actions made by the user are presented. 

Input / Output Module 

The input/output module is responsible for reading the configuration files of the model 

chosen, for persistently record the results generated by the simulations, and for logging any 

trace activated before the simulation starts. 

The model database is distributed by several text files formatted with tab-separated or 

comma-separated values, that can be accessed and modified by any text editor or commercial 

application (Notepad, Wordpad, Excel, Calc, etc.). The mandatory files are: 

 Morphology file - describes the morphology of the ecosystem, including the model 

type, the number of cells (lines, columns and layers), geometric representation and 

boundary types; 

 Classes file – lists all the classes that can be used in the simulation. For each class there 

are two files: 

o Variables file – lists the available variables and initial values; 

o Parameters file – lists the inner parameters and values. 

Besides these files, there are other important but not mandatory: 

 Benthic species file – describes the benthic species existent in the ecosystem and the 

places where they are located; 

 Loads file – describes the locations and the amounts of any kind of loads into the 

ecosystem, such as Waste Water Treatment Plants discharges; 
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 River loads file – indicates the river locations and daily river flows to the ecosystem; 

 Losses file – describes the losses locations (important for river models); 

 Sediments file – defines sediment types and locations within the model grid; 

 Points file – define sub-domains within the ecosystem. 

The results can be saved in files or plotted in graphics. The General Output Files have, by 

default, three formats: xls, txt or hdf. The “xls” and “txt” formats are text files saved with tab-

separated values (the “xls” extension is used for Excel or Calc applications quick view). The first 

seven columns are fixed for all registers: time in UTC (number of seconds from January 1, 1970 

00:00), time (in day hours), model time step, column (west-east grid coordinate), line (north-

south grid coordinate), layer (bottom-up grid coordinate) and cell numbers. The “hdf” format 

stands for High Density Format and handles large volumes of data, following the HDF 

specifications - see [http://hdf.ncsa.uiuc.edu/] in University of Illinois at Urbana-Champaign. 

The output part of the module has two interface layers to the MatLab® application – one 

accommodates the HDF format for files, and the other provides a graphical output easily 

customizable by the user. 

There is one option to save Mean Values Files. This option enables the user to run the model 

with a minor time step (normally only the hydrodynamic part of the model) and save the mean 

flow and velocity values in files, integrated over a time period under the choice of the user. 

The mean values files are formatted as “xls” files and their names start with 

“HydroTimeSeriesValues” and follow a sequential order. The first four columns are: date and 

time (DD-MM-YYYY hh:mm:ss format), time (UTC), register step and cell number. These first 

columns are followed by columns with the time-averaged results of the variables “Mean U 

Flow”, “Mean U Velocity”, “Mean V Flow” and “Mean V Velocity”. 

The log files can be saved in text, excel or XML formats. These files contain the messages 

exchanged by the objects during specified steps of the simulation. 

Extended detailed information about the format of each file is described in the EcoDynamo 

User’s Manual (Annex 1).  

Configuration Module 

This module guarantees that the configuration read from the model database is coherent and 

valid before the start of any simulation. It is the input interface to the simulator engine module 

and implements, among others, an important feature of the EcoDynamo – the sub-domain 

http://hdf.ncsa.uiuc.edu/
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concept. The sub-domain concept permits to run the simulation only in a subset of the model 

domain without loss of fidelity in the simulated processes. It is an important improvement and 

it can reduce the simulation runtime, discarding the irrelevant cells of the model domain and 

concentrating the computational resources only in the area of study. These sub-domains may 

be defined in various ways, e.g. with a Geographical Information System (GIS) application and 

transferred to one points file. 

The configuration module also controls an option that enables the interruption of a simulation 

and the storage of a snapshot of the system’s state when the simulation is interrupted (time 

step, database configuration and the variables’ values). The simulation can be resumed later 

from the time step where it was interrupted, e.g. when the load on the computer’s CPU is 

lower. 

Commands Module 

The commands module is responsible for controlling the simulator engine (run, pause, step 

and stop simulations) and it acts as a filter to commands received from users or from external 

applications that belong to the simulation network. If simultaneous commands are received 

from different sources, the responsibility of this module is to put them in a coherent way, 

sequencing them or simply discard some. 

Another important role in this module is the processing of the agents’ actions, into commands 

to the simulator, and the conversion of the simulator results to the corresponding perceptions 

translated into ECOLANG messages and sent to the agents (implementation of EcoDynamo 

protocol explained in section 4.4.1 ). 

Simulator Engine Module 

This module is responsible for controlling the simulation and send the results generated to the 

input/output module. It can be considered the core of EcoDynamo due its responsibilities in 

maintaining updated information about the simulation processes in all other modules. The 

simulation is performed as a cyclic loop that embraces three phases, involving all the active 

objects (selected by the configuration module): 

 Phase 1 – hydrodynamic object calculates velocity fields and water elevations; other 

objects calculate local changes of their variables at each grid cell. 

 Phase 2 – integrate the local partial changes – the hydrodynamic object transports all 

“transportable” variables across the grid cells. 
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 Phase 3 – update velocities, flows and cells geometry to the next time step. 

It is divided in two sub-modules that execute the simulation: the single-threaded and the 

multi-threaded modules. In the single-threaded version all the objects are simulated by the 

order of selection. In the multi-threaded version, different objects are controlled by different 

threads, taking advantage from the independence of the objects and the existence of multiple 

processors in the computer – distributing the charge of the system by the existing CPUs. 

Despite the independence of the objects, the inter-relationships between some of them (like 

the need for a variable value from other object) force the synchronization within each time 

step, in order to guarantee system stability. 

The communication between the different simulated objects, representing different variables 

and processes, is facilitated by the core shell of the simulator but is made directly by individual 

players. This allows the construction of a logbook, activated before each simulation run, with 

the interactions between different objects, which can be an important database in the 

machine-learning process used by the agents. 

Library Selector Module 

The library selector module is responsible for the selection and activation of the classes 

involved in the simulation. As different processes are simulated by different classes, the 

simulator engine reads the model configuration and selects the desired classes. This module 

imports the code of each class from the library and activates only the appropriate objects. 

When the simulation ends the imported code is freed. 

It is the interface module between the objects contained in the library with dynamic code and 

the simulator engine, promoting the independence between the simulator and the 

classes/objects simulated, as well as code reusability. 

Communications Module 

The communications module is responsible for the interface with the environment 

(send/receive messages and control the network interface) enabling EcoDynamo to interact 

with other applications through TCP/IP sockets. 

It implements the EcoDynamo protocol, exchanging information with other applications via 

messages formatted according to the ECOLANG specification (cf. 4.4.1 ). The actions received 

from external sources are converted into internal directives passed to the commands module. 
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Any external configuration command received is forwarded to the configuration module, 

depending on the current state of the simulation. The information generated internally by 

EcoDynamo (spontaneously or as responses to messages received) is forwarded through this 

module and sent to the outside, converted into ECOLANG messages as perceptions to the 

agents.  

While the other modules are more or less interdependent, this module is completely 

independent and may be inactive during the simulation process, for example, when the 

simulation is done in standalone mode, without connections with other applications. 

4.3.3  Library of Dynamic Linkable Objects 

Considering the objectives presented at section 1.2, and aiming at developing a flexible and 

realistic simulator, the development of EcoDynamo followed several general requirements 

initially listed: 

 The core engine of the simulator should be as independent as possible of external 

conditions (hardware or software) and should allow easy integration of new 

input/output modules or new objects to simulate; 

 Different processes must be simulated by different classes with different variables, 

proper parameters and process equations; 

 Classes must be self-contained and independent; 

 All public behaviours must be defined by a base class or interface, from which all 

process classes inherit. This enables a uniform interface invocation from the simulator 

engine and external applications, taking advantage from the polymorphism property of 

the programming language; 

 Base class must provide transparent mechanisms for data exchange between different 

objects; 

 Objects must be, easy and dynamically, included or excluded from each simulation; 

 Objects must be developed in order to be used outside EcoDynamo environment, as 

external libraries, enabling researchers from other teams, with different tools, to 

embed EcoDynamo objects in their systems. 

One of the reasons to choose the C++ language was the possibility of taking advantage from 

the dynamic link libraries (DLLs) – pieces of code (classes) that are not part of the application 

core code, are compiled individually and linked in packages, and that can be integrated in the 

application during runtime when they are needed. Hence the name dynamic link libraries. 
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This concept allows the aggregation of code according its functionality and the creation of 

software packages that are independent, self-contained, and could be used like “plug and 

play” hardware. All of this code is the library of dynamic linkable objects and each package is 

referred as one DLL. 

Generic DLLs 

All packages that contain generic code (not designed as simulation objects) are included in the 

self-called generic dynamic link libraries, and are listed in Table 4-1. 

Table 4-1: Generic DLLs included in EcoDynamo 

Component/DLL name Classes and functionalities 

Io.dll 

ReadWrite – manipulates txt and xls files 

Log – manipulates log files in xls and XML formats 

Properties – manipulates Properties files 

MatLabChart.dll 

MLChart – manages chart configuration 

MLChartFigure – saves chart variable 

MLCharBox – saves chart data point 

MatLabHDF.dll MLHDF – manipulates HDF files 

Utilities.dll 

Queue – implements soft queue 

BUF – Queue element 

Parser – parsing facilities 

ECDP.dll EcoDynProtocol –manages EcoDynamo protocol 

 

The Input/Output Module handles several types of input/output and, at present, there are 

DLLs to deal with text files, log files, MatLab® charts and HDF files. 

Each protocol supported by the Communications Module must have one DLL with the syntax 

and rules of that protocol. At present, only the EcoDynamo protocol is available, allowing the 

connection to the EcoSimNet platform with ECOLANG messages. 

Simulation Objects DLLs 

The Library Selector Module is not only responsible for selecting the generic DLLs (for input, 

output and communications) but, also, for selecting the DLLs that contain the classes to 

simulate the desired ecological objects. 

EcoDynClass is the base class that implements the basic simulation object in the library of 

dynamic linkable objects, and all the remaining simulation objects inherit from it. EcoDynClass 
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controls the model time step evolution and maintains a list of all the active objects in the 

simulation and their relationships (Pereira et al., 2006). It reads the model morphology, 

initialises relevant fields and defines the default behaviour of the public methods, common to 

all objects: 

 Go – responsible for object processes’ calculations; 

 Integrate – responsible for time integrations within each grid cell; 

 Reinitialize – responsible to update velocities, flows and system geometry to the next 

time step; 

 Update – update one internal variable value, requested by an external object; 

 Inquiry – send to an external object the value of one internal variable. 

The simulation runs as a cyclic loop, and the simulator engine follows partially the EcoWin 

methodology (Ferreira, 1995) invoking, for all the objects, one method in each phase of the 

cycle: 

 “Go” is invoked in phase 1, 

 “Integrate” is invoked in phase 2, and 

 “Reinitialize” is invoked in phase 3, although only hydrodynamic objects do something 

with it. 

In Figure 4-4 all direct descendents from EcoDynClass are represented - the prefix T is used in 

the implementation of all template classes and is appended to the name of the class. 

 

Figure 4-4: Inheritance diagram for EcoDynClass 

The names of the descendant classes indicate the different processes that each one is 

responsible. Most of them serve as base classes for objects more suited to specific processes 
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of each ecosystem or species. The objects that compose the first line of Figure 4-4 represent 

the forcing functions present in all aquatic ecosystems, and Table 4-2 indicates the simulated 

forcing objects existent in the library of DLLs and the more relevant variables that each one 

calculates. 

Table 4-2: Summary of EcoDynamo forcing classes and simulated variables 

DLL name Class name Class variables 

Tair.dll AirTemperature Air temperature 

Light.dll Light Total and photo synthetically active radiation (PAR) 

Twaterobjt.dll WaterTemperature Radiative fluxes and balance between water and atmosphere and water 
temperature 

Tides.dll TideObject Tidal height 

Wind.dll Wind Wind speed 

 

The modelled physical and biogeochemical processes include: 

 Hydrodynamics of aquatic systems: current speeds and directions; 

 Thermodynamics: water and atmosphere temperature and energy balances between 

water and atmosphere; 

 Biogeochemistry: nutrient biogeochemical cycles and biological species growth 

dynamics; 

 Anthropogenic pressures, such as biomass harvesting. 

Avoiding being too exhaustive, Table 4-3 summarizes the most important classes of 

biogeochemical processes and the simulated variables. 

Table 4-3: Summary of EcoDynamo physical and biogeochemical classes and simulated variables 

DLL name Class name Class variables 

Hydrobjt.dll Hydrodynamics Sea level, current speed and direction 

Sediments.dll Sediment biogeochemistry Inorganic nitrogen, phosphorus and oxygen, dissolved in 
the interstitial water contained in the sediments, 
sediment adsorbed inorganic phosphorus, organic 
phosphorus, nitrogen and carbon 

DissolvedSubstances.dll Dissolved substances Water column ammonia, nitrate and nitrite, dissolved 
inorganic nitrogen, inorganic phosphorus and oxygen 

SuspendedMatter.dll Suspended matter Total particulate matter, particulate organic matter, 
carbon, nitrogen, phosphorous and water light extinction 
coefficient 

Phytoplankton.dll Phytoplankton Phytoplankton biomass and production, chlorophyll 
concentrations and cell nutrient quotas 

Zooplankton.dll Zooplankton Zooplankton biomass and production 
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Macrophytes.dll Kelp (Laminaria japonica), 
Macroalgae 
(Enteromorpha sp. and 
Ulva sp.) and Macrophyte 
(Zostera noltii) 

Biomass and production, nutrient quotas and 
demographic fluxes 

SuspensionFeeders.dll Oyster (Crassostrea gigas), 
Scallops (Chlamys farreri) 
and Clams (Ruditapes 
decussatus) 

Bivalves size, biomass, density, filtration, feeding, 
assimilation and scope for growth 

 

Detailed information about object’s internal processes and state variables can be found in 

Duarte et al. (2003; 2008) and Chapelle et al. (2005b). 

MAN OBJECT 

This object simulates external actions for seeding and harvesting macroalgae and bivalves. The 

model may be initialised with or without any benthic species. The library has one Man object 

that reads, from the configuration files, fixed dates for seeding and harvesting, and has 

another object (Farmer) that translates external orders into those actions. Any of them, or 

both, can be selected in each simulation. 

Annex 2 presents the hierarchy diagram for the most important classes implemented in the 

library of dynamic linkable objects. 

Using DLLs objects outside EcoDynamo 

One important feature included in the classes of the dynamic link library (DLLs) is that their 

code is ready to be linked with software written in other programming languages (e.g., Fortran 

or C). 

Over the last decades, the community of researchers in the field of ecological modelling have 

built a huge number of modelling tools for the simulation of hydrodynamic and 

biogeochemical processes in aquatic systems, but different modelling research teams tend to 

adopt different modelling tools developed in different languages. This is an obstacle when 

teams want to exchange knowledge or reuse software modules. The approach followed in 

EcoDynamo enables other teams to share the code written for the simulated classes and 

objects, based on the object oriented programming potentiality (Stroustrup, 2000; Pereira et 

al., 2006). Each object represents different processes and variables and, as it is self-contained, 

can be used by programs written in different source code languages, following simple rules in 

the linkage phase. 
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During the project (EC, 2003), experiments were done with Coherens application (Luyten et al., 

1999) (software built in Fortran code) in order to enable bidirectional code reutilization and 

results were reported in Pereira et al. (2006) indicating that the approach followed points in 

the right direction. In those experiments, the classes Light (Light.dll), Phytoplankton 

(Phytoplankton.dll) and WaterTemperature (twaterobjt.dll), from EcoDynamo, were 

successfully integrated with Coherens models. 

The C++ DLL define and supply interface functions to be invoked by external applications to 

manipulate C++ objects (create, use and destroy objects, read their properties from 

permanent storage and call their methods). 

When it is necessary to have an external application, e.g. written in Fortran, using and 

manipulating a C++ object, the main program, subroutines and functions in the Fortran code 

invoke the functions supplied by the interface. This is very challengeable because there is no 

pointer system in Fortran. The solution is to use the Fortran concept of “logical units”: the C++ 

interface will generate an integer reference number for all objects manipulated by Fortran. 

The Fortran code will have to keep a map associating those reference numbers to real objects. 

The solution proposed associates the address of the object in memory with the reference 

number in Fortran (the 32-bit integer in Fortran has the same size as a pointer in C or C++ 

when a 32-bit compiler is used). The compilation phase is straightforward – each source file is 

compiled with its native compiler. The linking process is a little bit more complex because to 

have objects instantiated when needed, and C++ special mechanisms activated, it is advisable 

to use the C++ linker, adding Fortran libraries as link options.  

This is very system dependent and caution must be taken before rebuild the executable 

program in a new platform, but the time needed to make this adaptation is negligible 

compared to the time needed to implement the code of one new object. And here is one valid 

recipe for GNU compilers gcc, g++ and g77, used with Coherens: 

FORTRAN APPLICATION USING DLLS OBJECTS 

Each DLL class must define a C-style singleton interface. The C-style interface provides a static 

method that returns the reference address of the object instantiated by the constructor when 

the first call to that object is performed by the Fortran code. Every time Fortran code wants to 

use methods from that object (or read/write data), the reference must be indicated by Fortran 

code or, in another way, must be supplied by the singleton interface method. 

The singleton interface class must adhere to the following rules: 
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1. Definition of one public static method that returns the reference address of the class. 

2. Definition of one block ‘extern “C"’ (C-style interface directive) with all the functions 

that can be called from Fortran: 

a. The names of the functions must be lowercase with underscores appended; 

b. All the parameters must be passed by reference. 

3. Changes in the original source code (DLLs C++ sources) must be enclosed by the 

symbol _PORT_FORTRAN_ to enable conditional compilation in both projects 

(EcoDynamo DLLs and EcoDynamo/Coherens program). 

The makefile that builds EcoDynamo/Coherens program (compile and link) must include the 

following rules: 

1. The source directories of DLLs classes must be added to the compilation flags as 

include directories. 

2. The symbol _PORT_FORTRAN_ must be defined in the compilation flags. 

3. The Fortran libraries must be added to link command. 

The Fortran code must follow the rules: 

1. Definition of one global integer variable to save the reference address for each class. 

2. During the initialization of the program, one first call to each DLL interface function 

must be made in order to create the class object. 

3. Calls to interface functions always done with the reference variable. 

For each class existent in the DLLs platform one singleton interface class must be defined. 

More information can be found in (Pereira et al., 2006) and in the MinGW project website 

(Minimalist GNU for Windows [http://www.mingw.org]). 

4.4  Multi-Agent Simulation System 

In the previous section, the modules for modelling and simulation were described. The 

simulation application has a simple interface with the users to facilitate the choice of the 

model to simulate, the configuration of the simulations, and the selection of the output 

variables and formats. The processes from the modelling module are used by the simulation 

module, in a completely transparent mode to the user. 

http://www.mingw.org/
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This section will address the core of the network infrastructure – the communication language 

used by all the applications in the network and the rules to integrate each new application - 

the visualization system and agents already developed and included in the framework. 

The complexity exhibited by coastal lagoons, hard to model and to simulate, is enlarged if the 

simulation model intends to include the intelligent entities that intervene in the system. In real 

ecological systems, man is heavily involved and his decisions are not based on fixed 

mathematical equations or simple rules but, contrarily, they are based on an in-depth analysis 

of the environment using his knowledge and experience. 

Intelligent entities are modelled as agents that have perception of their environment, reason 

using their knowledge and are able to change the simulated scenarios by using a given set of 

configurable actions. Intelligent entities also communicate with each other – this functionality 

is also included in the agent model providing it with capacity to communicate with other 

agents or applications. 

The general model of each agent developed in this work is very common (Iglesias et al., 1996) 

and its internal components are depicted in Figure 4-5. The Communication module is 

responsible for the interface with the environment (coding/decoding messages and network 

interface). The Knowledge Database module is where the agent stores the information about 

itself (self interests and services) and about what it knows from the environment 

(environmental restrictions, other agents and applications, their addresses, services provided 

by them and their interests). The Control module is responsible for the policies of the 

communications (order and selection of the messages to process and queue messages to send) 

and actions (implementation of the different criteria regarding the attention to the external 

requests). 

For instance, the Farmer Agent seed actions are regulated by the environmental rules that 

forbid to seed bivalves in some areas. The “Actions Policy” element (in the Control module) 

must access the Knowledge Database module to know the allowed area to seed (“Environment 

Data” element) and the best quantity and type of bivalves to seed (“Self Data” element). 
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Figure 4-5: Generic agent model used in this work (Pereira et al., 2004b) 

When multiple agents work together, their behaviours must be coordinated in order to reach a 

global result. Coordination is seen as the act of working together in a harmonious way to attain 

a common goal or agreement (Malone and Crowston, 1994; Reis, 2003). Sometimes, agents 

can cooperate to reach a common goal. However, often agents don’t share one common 

objective and may have opposite interests. In these cases, there are conflicts to solve and a 

negotiation process must start to coordinate efficiently agents’ actions. In the types of 

simulations used in this work, the existence of agents with different interests in the ecosystem 

use (industry, fishery, tourism…) will be an adequate way to treat the interactions between 

different activities, making necessary its coordination to provide an efficient shared use of the 

ecosystem, fulfilling the restrictions imposed legally. 

4.4.1  ECOLANG 

ECOLANG is a high level language especially developed to enable the interaction and the 

exchange of data between the components of the multi-agent simulation system – modules of 

the network integration infrastructure. 

The first version of the language was presented in Pereira et al. (2005) and it follows a syntax 

based on the COACH UNILANG work (Reis and Lau, 2002). ECOLANG was designed for 

communications in TCP/IP networks and enables the applications belonging to the multi-agent 

simulation system to exchange data and other type of information related to the ecological 

domain. It fills the pre-requisites enounced before its development: 

 High level language understood by software applications and humans; 
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 Simple syntax validation; 

 Ontology oriented to aquatic systems; 

 Easily adaptable to new actors added to the system; 

 Independent from the objects’ model and transport layer; 

 Independent from any hardware or software platform, operating system or 

programming language. 

The language describes ecological systems in terms of morphological and regional 

characteristics, and embodies the actions and perceptions of agents in messages. As ECOLANG 

messages are completely readable by humans and computers, it is very simple to debug and 

follow the flux of data exchanged in the network. The first formal set of instructions to use the 

ECOLANG messages was defined to transfer data between the EcoDynamo simulator and one 

agent, leading to call this agreement as the EcoDynamo protocol. 

The specification of the ECOLANG messages uses the Backus-Naur Format (BNF) grammar 

definition (Backus et al., 1960; Ram et al., 1996), one of the best known meta-languages in the 

field of computer science. The notation was first referenced by John Backus and Peter Naur to 

describe the syntax of the programming language Algol 60 in an unambiguous manner. 

ECOLANG notation is an extension of the original BNF formalism, requiring only three primitive 

types (string, integer and real) and adding some new meta-symbols: 

{ } – curly braces indicate usage of repetitive items (one or more times);  

[ ] – square braces enclose types of values;  

Terminal values use bold face letters. 

The base syntax of each message is the following: 

<MESSAGE> ::= message (<ID> <SENDER> <RECEIVER> <MSG_CONTENT>) 

<ID> ::= [integer] 

<SENDER> ::= [string] 

<RECEIVER> ::= [string] 

 

<ID> is the message identifier sent by the initiator – it is a sequential 

integer number controlled by each sender; 

<SENDER> is the name of the message initiator application (source); 

<RECEIVER> is the name of the message destination application; 

<MSG_CONTENT> is the content of the message. 

 

The ECOLANG messages can be divided in three parts:  

 an envelope element – that delimits and enfolds the ECOLANG message; 
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 a header element – that identifies the message origin, sequence and destination; 

 a body element – that defines the message contents. 

The envelope (Figure 4-6) is composed by the word message and by the open and close curve 

brackets. The header is composed by the fields ID, SENDER and RECEIVER. The body of the 

message if the field MSG_CONTENT. The first word of MSG_CONTENT defines the message 

type and identifies the message semantic undoubtedly, in order to achieve independence from 

the implementation, allowing the construction of a generic protocol driver that is linked with 

each application – component ECDP.dll (cf. 4.3.3  – Generic DLLs). 

 

Figure 4-6: ECOLANG message structure 

With ECOLANG messages it is possible to select the model to simulate, read the configuration 

of the model and change the scenario simulation, execute and pause the simulation runs, 

collect results from any region of the simulated area, define regions and sub-regions by name, 

aggregate regions into sub-domains, define events in the simulator to generate messages 

when some trigger conditions are achieved, and save the configuration of the database and 

the values of each variable in one specific simulation time step. 

Messages exchanged by the applications cover several types: actions, perceptions, definitions, 

session and miscellaneous. 

The messages that indicate actions and perceptions to/from agents are dedicated to each 

kind of agent present in the system. There are no restrictions to the messages that applications 

can use. Some care must be taken in the attempt to identify, as closely as possible, the type of 

action/perception with its name, avoiding duplication and ambiguous identification. 

The session messages establish the sessions between agents or applications and identify the 

agent name, the computer where the agent is, and the port number in which agent “listens” 

the messages. 

The definition messages include the definition of regions and information about the name and 

type of model loaded in the simulator, its dimensions, morphology and species of shellfish 

prevailing in it. 
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The miscellaneous group of messages comprise all the other messages that are necessary to 

exchange information between agents and applications, and that are not embodied in the 

former groups. Messages for synchronization and data exchange used during the execution of 

distributed optimization algorithms fall in this group. 

In Figure 4-7 examples of session and definition ECOLANG messages are shown during the 

connection process between an application and one simulator (traced in the EcoDynamo side). 

The envelope, header and body parts that constitute the ECOLANG messages are perfectly 

identifiable. 

 

Figure 4-7: Example of ECOLANG messages (EcoDynamo side) 

The first message received by the simulator is a connection request, made by “Develop_Agent” 

application to “EcoDynamo” application. Develop_Agent is in “amcp11” computer, IP address 

172.22.128.30 and accepting connections in port 49000. After the acceptance of the 

connection by EcoDynamo (second message in the trace window, first message transmitted), 

Develop_Agent asks for model configured in simulator (messages “model_name”, 

“model_dimensions” and “model_morphology”) receiving the correspondent answers from 

EcoDynamo (messages “model”, “dimensions” and “morphology”). 

The current version of the language is included in Annex 3 and contains messages to configure 

and run the Parallel Simulated Annealing algorithm among other machine learning techniques 

(cf. 4.4.4 ). 

4.4.2  EcoSimNet Framework 

The network infrastructure established by the applications belonging to the Multi-Agent 

Simulation System, communicating using ECOLANG messages besides the EcoDynamo 
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protocol, was named EcoSimNet (Ecological Simulator Network). Each application belonging to 

the EcoSimNet system must fulfil the following rules: 

1. It must have a unique name within all the applications integrated in the network 

infrastructure – the name must be a string with no spaces; 

2. It must reserve a free TCP/IP port to accept TCP/IP client socket connections and 

establish the communications channel for ECOLANG messages; 

3. The first message sent to any member of the network must be “connect” – after 

receiving the “accept” message it is considered as one EcoSimNet member; 

4. Before leaving the EcoSimNet system, it must send the “disconnect” message to all 

connected applications – after receiving the “accept” message it is considered out of 

the EcoSimNet system. 

These simple rules constitute the EcoSimNet framework integration specification. The 

integration of each new agent or application into the EcoSimNet multi-agent simulation system 

must fulfil the EcoDynamo protocol specification. Basically, it has to translate all its actions 

over the environment to ECOLANG messages, and it has to interpret the received ECOLANG 

messages as perceptions from the environment or external commands – messages are 

translated to internal perceptions and processed as convenient. 

ECDPForm Component 

One special component (ECDPForm) was developed in C++ to provide the integration of the 

EcoSimNet internal service. It is responsible for the connection of any new agent or application 

to the network, facilitating its interoperability with other modules. This component is 

composed of four fundamental sub-components: 

 One complete multi-threaded TCP server: uses a thread to listen/wait for client 

connections, and allocates a separate thread to handle each client connection to the 

server; 

 One complete TCP client including sockets support: it is used as an ancestor class for 

ECOLANG specific protocol implementation; 

 One cyclic timer, with 20 ms interval, controlling the communications flux between the 

above TCP components; 

 One multiline edit control to display received and transmitted messages (Figure 4-7). 
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ECDPForm component is linked with the EcoDynamo protocol DLL (ECDProtocol.dll) and 

supplies an API to the developer that facilitates its attention to the processing of the ECOLANG 

messages – all the stuff for the connection to the system (required by the EcoSimNet 

framework and EcoDynamo protocol) is hidden by the component. All the applications 

belonging to EcoSimNet, and developed in C++, must include one component that inherits 

from ECDPForm. 

The session established by two applications, with the ECDPForm component, maintains two 

connections between the peers in order to reduce the latency time in the process of 

send/receive messages, and to eliminate the connect/establish/disconnect time needed to 

manage a connectionless session. 

Integration and Interoperability 

The communication between all components integrating the EcoSimNet structure is peer-to-

peer which avoids the necessity of a Domain Name Service for the agents and applications. Of 

course this implies that each agent, when arrives to the network, must know at least one 

element that is already in the framework. ECOLANG provides messages to query for known 

agents in the network and, as good neighbours, agents will enlarge its knowledge about the 

neighbourhood population in a collaborative fashion. 

EcoSimNet platform is used for controlled experiments and, therefore, sophisticated 

mechanisms for integration of elements are dispensable. Comparing with FIPA specifications, 

used to promote the interoperation of heterogeneous agents and services: 

 an “agent resource broker” (ARB) and a “wrapper service” (FIPA, 2001a) are not 

necessary since agents know exactly where are the information and services they 

need; 

 an “ontology” is embedded in the ECOLANG definitions, so it is not necessary to have 

“ontology agents” to provide “ontology services” (FIPA, 2001b) to the network; 

 the information contained in ECOLANG messages is simpler than those documented in 

FIPA ACL specification (FIPA, 2002) for communication between agents - although the 

format is not similar, first word of the field MSG_CONTENT acts as a kind of 

performative of the ACL message, identifying the type of message. 

New applications are integrated in the network very easily, simply by sending the connect 

message to start collaboration, and sending disconnect message to leave the collaboration. 
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The rules to integrate the EcoSimNet framework do not restrict the number of application 

types in the network – it can support several simulators, multiple agents with the same 

objectives, and does not require that all applications deal with the same model. The 

infrastructure presented in this document acts as an integration platform for simulation and 

decision support, where the applications interoperate graciously with simple messages. Figure 

4-8 represents one possible configuration of the system, with several agents representing the 

human interests, and multiple simulators to enable the parallel simulation of different 

scenarios. 

 

Figure 4-8: EcoSimNet architecture 

In this configuration, it is distinctly visible that the only application that has access to the 

model database is the simulator. From the point of view of any other application in the 

network, the database of the system is in the simulator and there is no way to access directly 

the model configuration unless communicating that intention to the simulator through 

ECOLANG messages. This option makes sense, due to the nature of experiments this 

framework is used for, ensuring true independence between the simulated ecosystems and 

the agents. The knowledge about the ecosystem and how the model objects interact 

internally, working as a whole, is not passed to the agents that, as high level applications, are 

guided by specific goals to achieve their maximum performance or satisfaction, using the 

information contained in the simulators. 
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Another advantage of this approach is the guarantee of independence between the agents and 

their possible collaboration, allowing the exploitation of machine learning techniques 

(Michalski et al., 1984; Džeroski, 2001; Russel and Norvig, 2002). 

Within the simulation domain, particularly when dealing with distributed simulations, there 

are no standard solutions for questions like integration and interoperability of heterogeneous 

simulators. EcoSimNet is a framework that enables the construction of a network with 

different simulators and sub-networks, integrated through the exchange of data, maintaining 

each sub-network with self-control but having ECOLANG as the common communication 

language. 

Some multi-agent architectures comprise multi-domain networks and inter-domain coupling to 

assure interoperability between heterogeneous systems. Each single domain has its proper 

language of communication to exchange data between its members and, if other domains 

have different communication languages, inter-domain communication must be assured by a 

supra language of communication. KQML (Finin et al., 1993) is an excellent example of inter-

domain language easily implemented in one special interpreter agent that translates outside 

messages (in KQML) to inside semantic, and vice-versa. None of these abstractions are used in 

the context of this work because the domain is well delimited, but it is perfectly feasible to 

extend this framework to fit in one multi-domain architecture, and exchange information with 

external applications or networks. 

If we want to go further in the formalisation of the EcoSimNet, it fits perfectly in the abstract 

notion of the high-level architecture (HLA), a standard for interoperation between distributed 

heterogeneous simulators which are developed with different languages and platforms (Hong 

et al., 2007). The HLA specification was initially developed under the aegis of DMSO (Defense 

Modeling and Simulation Office) – renamed in 2007 M&S CO (Modeling and Simulation 

Coordination Office), and part of the Department of Defense of USA – afterward adopted by 

the OMG as the standard IEEE 1516 (IEEE, 2000c, 2000b, 2000a). 

The HLA specification defines a runtime infrastructure (RTI) with interface rules to integrate 

simulators or applications (federates) that interoperate exchanging information. The notion of 

federation is also defined as an abstract organizational entity, that enfolds groups of federates 

acting as a whole organization or simulation island, that supplies information to other 

federations. The HLA does not provide a specific implementation or mandate to the use of any 

particular programming language, neither for RTI or federate applications. Figure 4-9 shows 

one configuration of EcoSimNet network that fits the HLA architecture paradigm. 
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4.4.3  Development Agent 

In order to test the multi-agent simulation system, and the functionalities of the represented 

agents, a simple application was developed and integrated in the experimental system. This 

application (called Development Agent) implements all the possible ECOLANG messages and 

provides the system with a simple and easy-manipulated visual interface. 

 

Figure 4-9: EcoSimNet as a logic HLA architecture 

Visualization System 

The visualization system is integrated in the Development Agent and explores one simple 

graphical interface to facilitate simulation testing and debugging processes. It was enhanced in 

some graphical aspects, from its initial implementation, supplying the user with exact notion of 

the two-dimensional space of the domain with distinction between land and water areas. The 

two-dimensional representations are like aerial maps of the regions with flat land and variable 

water depth. Figure 4-10 shows the morphology of western Ria Formosa, with benthic species 

areas, where the different colours (or the gray gradient in black and white documents) show 

the occupied areas and water depths. 

The original colours were defined for visualization in a RGB monitor but, when exporting the 

image of the ecosystem to a document, the original colours can be hardly distinguishable, 

especially when the document is black and white and the gray scale did not reveal the relevant 
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features of the image. The visualization system provides the user with the possibility of 

changing colours, adjusting them to the sensibility of the user and the desired highlight. 

 

Figure 4-10: Ria Formosa lagoon with customized colours adapted to B/W documents 

With the simple 2D visualization of the model domains depicted in Figure 4-10 it is easy to 

have some understanding of the site morphology, even without ever having seen the sites – 

next figures show two more models managed by the visualization system of the Development 

Agent and perfectly readable in B/W documents.  
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Figure 4-11: 2D representation of the Alqueva dam (Alentejo-Portugal) 3D model 

The land area is originally coloured in maroon and is seen as the darkest gray in B/W pages. 

 

Figure 4-12: Sungo Bay 2D model with benthic species exploration areas 

When the domain is extensive, like the cases of Ria Formosa (Figure 4-10 - 300 columns, 182 

lines, 1 layer) or Alqueva dam (Figure 4-11 - 276 columns, 376 lines, 6 layers), it is very hard to 

distinguish perfectly the individual cells, especially if the monitor resolution is not very large. A 

zoom option is provided to clarify the visualization areas. This option can be executed 

repeatedly (Figure 4-13) until one clear image is shown to the user (Figure 4-14), namely the 

areas with benthic species clearly visible and distinguishable as well as navigation channels. 
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Figure 4-13: Zoomed area of the simulated model 

This application enables the user to aggregate several cells into regions and, inside them, 

manipulate some characteristics of the model (for instance, bivalves’ density, seeding and 

harvesting properties, depth of the cells). The regions can also be read from and saved in text 

files. 

A 3D visualization autonomous tool is in development and it will allow adding distinct 

functionalities to the 3D simulation models. 
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Figure 4-14: A deeper zoom of the simulated model area 

ECOLANG Message System 

The development agent (DA) is used to test the ECOLANG messages and EcoDynamo protocol 

dynamics, supplies to the user options to manipulate all the actions that could be performed 

over the simulator, and presents the answers received from the simulator, the perceptions 

that agents will sense. 

The navigation in this application is very intuitive. When the application starts, the user selects 

the simulator he wants to connect. Automatically, the simulator send the model in simulation: 

the system morphology is received (name of the model, geometric representation, 

dimensions, number of columns, lines and layers, and box depth of each cell) - Figure 4-15 

shows the messages exchanged between Development Agent and EcoDynamo (view from the 

EcoDynamo side), after the connection and during the initialisation of the Ria Formosa model 

represented in Figure 4-10. After the last morphology message received, the model area is 

represented with a 2D perspective in the visualization panel of the application. 
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Figure 4-15: ECOLANG messages exchanged after connection to the simulator 

The bivalve culture areas and benthic species population are received from the simulator and 

represented in different colours. The mouse movement over the visualization panel enables 

the user to identify cells and to select specific areas to define regions, modify the variables’ 

values and obtain cell information’s. The DA provides actions that automatically convert 

benthic species areas into regions with an association name, facilitating the selection of cells 

with the same benthic species. 

One interesting action the user can do is altering the depth of the water column – dredge 

action – in one cell or area. If the depth value is negative, that area is assumed as land. Every 

time a dredge message is sent to the simulator, the new morphology is returned to the agent 

and a repaint is made to reflect the changes.  

The simulation can be completely controlled by the DA with commands to initialise the model, 

start, stop, pause and step. 

The DA can also configure the simulation model – select the model and the classes to simulate, 

define simulation time step, change initial values of variables or parameters – only for test 

purposes. 

The actions of inspect, seed and harvest bivalves or benthic species can also be tested by the 

DA during the simulation run. These actions can be executed immediately or be programmed 

to execute in a predefined time step of the simulation. Actions related with benthic species are 

used by the Farmer Agent (cf. 4.4.5 ) during optimization of possible exploitation scenarios. 

The commands related with output variables – selection and register interval – as well as the 

register of the final integrated values for each simulation are available in the DA. These actions 
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are essential to the DSS module (cf. 4.5 ) to generate and store the values of relevant variables, 

used as data for analysis of the different scenarios simulated for ecosystem management. 

4.4.4  Optimization and Machine Learning 

The inclusion of advanced capacities of optimization and machine learning in the built agents 

is, perhaps, the most sophisticated and challengeable feature in the entire project. Some of 

the machine learning techniques are implemented and tested in the Farmer Agent. 

Negotiation will be integrated later when several different agents appear in the system. 

The vast majority of problems related with management of coastal ecosystems deals with 

optimization techniques. As focused in section 3.3 , local search methods, exploring the 

neighbourhood, form a general class of heuristics to obtain a good (near-optimal) solution with 

a reasonable computational time. For a maximization/minimization problem, the local search 

ascent/descent method is the simplest neighbourhood search algorithm, also known as hill 

climbing. It starts from an initial solution (random or predefined), as its current solution, and 

then explores its vicinity using simple mechanisms to generate neighbouring solutions. 

Neighbours are then accepted to replace the current solution if they improve it. The search 

continues until no further improvement can be made and the algorithm terminates with a 

local optimum, which can be very far from optimality (Russel and Norvig, 2002). In order to 

avoid such disadvantages, while maintaining the simplicity and generality of the approach, 

most metaheuristics are based in the concepts (Osman and Laporte, 1996: 515): 

 Start from good initial solutions, generated intelligently using GRASP (Feo and 

Resende, 1995) or space-search methods. 

 Use learning strategies, like neural networks or tabu search (Glover, 1989, 1990), 

gathering information during the algorithm’s execution in order to guide the search to 

find possibly better solutions. 

 Employ non-monotonic search strategies that accept neighbours based on hybrid 

modifications of simulated annealing and tabu search, among others (Kirkpatrick et al., 

1983; Eglese, 1990; Mishra et al., 2005). 

 Introduce a more complex neighbourhood mechanism, such as ejection chains and 

compound moves with proper data structures. 

 Employ a solution-generation mechanism that works on a set of solutions rather than a 

single solution, like genetic algorithms, evolutionary programming or scatter search 

(Holland, 1975; Cardon et al., 2000; Glover et al., 2003). 
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The methodology followed in this work, for Farmer Agent, uses some of the concepts listed 

above and mix them with the intention of achieving a near-optimal solution in a faster way, in 

order to simulate a lower number of scenarios. 

4.4.5  Farmer Agent 

The main goal of the Farmer Agent (FA) is to maximize profit from bivalve culture. The 

ecosystem has specific regions available to seed bivalves, a maximum available area to explore 

and the FA tries to optimize the bivalve growth in order to harvest them with the largest 

possible size. 

The first prototype of the Farmer Agent tries to find the better combination of bivalve culture 

locations, minimizing the impact in the ecosystem water quality and getting as close as 

possible to the ecosystem carrying capacity. As bivalve’s growth rate is influenced by the 

environment (water quality) and the entire neighbourhood, the agent’s decision is not simple. 

In the context of aquaculture, carrying capacity can be defined as the ability of the system to 

support shellfish production (Raillard and Ménesguen, 1994), the maximum standing stock of a 

particular species that can supported by the ecosystem at which the annual production is 

maximized (Bacher et al., 1998) without negatively affecting growth rates (Ferreira et al., 1997; 

Duarte et al., 2003). 

Almost all of the techniques used to search optimum or quasi-optimum solutions are based on 

iterative processes, where the choice of the next combination to test is based on the value of 

an evaluation function that determines the quality of the solution (Jones, 2005). The 

determination of this evaluation function will turn the search algorithm more or less 

intelligent. However, there is a close dependence between the algorithm to use and the 

problem to solve. 

The FA tries to apply a distinct solution, enabling the free combination of the different 

techniques through the search time. It includes some known search algorithms based on 

Simulated Annealing and integrating Tabu Search (Siarry et al., 1997; Youssef et al., 2001; 

Mishra et al., 2005), Genetic Algorithms (Holland, 1975; Cardon et al., 2000; Amirjanov, 2006) 

and Reinforcement Learning (Sutton and Barto, 1998), and one intelligent program to select 

the solutions to test (different scenarios to the EcoDynamo simulator). The initial configuration 

is made by the user, indicating the sequencing of each algorithm and its action time. The FA 

chains the algorithms in order to enhance their advantages and to compensate their 
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weaknesses. The first version of this agent was presented in a scientific workshop (Cruz et al., 

2007) with the simplified architecture shown in Figure 4-16. 

 

Figure 4-16: System architecture for experimental Farmer Agent 

The sequence diagram for the optimization process lead by FA is pictured in the following 

figure: 

 

Figure 4-17: Farmer Agent optimization process - sequence diagram 

One of the constraints pointed out in the conclusions of that study was the time consumed by 

each simulation run, and the large number of simulations needed to find the best solution. As 
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the time consumed by each simulation leaves the FA in idle state most of the time waiting for 

the simulation results, it was relatively simple to generalize the optimization process to 

support more than one simulator controlled by the same FA. The use of a distributed 

simulation network to speed up the decision process was the natural follow up. The 

architecture takes advantage of the capacity to perform parallel simulations of different 

exploration scenarios and their analysis in real time. Figure 4-18 shows the solution adopted. 

 

Figure 4-18: FA optimization process – general sequence diagram 

The sequence diagram of the internal loop, with the ECOLANG messages exchanged between 

FA and a simulator, is depicted in Figure 4-19. The optimization cycle starts with the regions 

definition. The region names remain during the optimization cycle. For each iteration, the 

model is initialised and one simulation step is performed to populate the state variables of all 
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objects dependant from the forcing functions. The FA seeds the shellfish species in selected 

regions and the simulation runs N steps. When the simulation ends (reception of the 

“end_step” message), FA harvests the shellfish species from the regions where they were 

seeded and stop the simulation. Before the next iteration, FA saves the results, selects a new 

set of regions and repeats the procedure, until the number of iterations reach the number 

preconfigured. 

 

Figure 4-19: ECOLANG messages exchanged between FA and EcoDynamo during one iteration of the 
optimization cycle 

Starting from the basic architecture of EcoSimNet, the concept of computing clusters and 

parallel computation is exploited, creating islands where an agent monitors a set of simulators 
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and simultaneously simulate different scenarios (Figure 4-20). One of the similar agents must 

take the lead role, encouraging other agents to collaborate in the achievement of the desired 

results as quickly as possible. The coordinator defines synchronization points during the course 

of the experiments, collecting the results obtained by the agents, and adopting the best result 

as the starting point for a new round of independent simulations. The stop order is given by 

the coordinator when a criterion of optimization is achieved, a maximum number of simulation 

rounds is reached or a time limit is exceeded 

 

Figure 4-20: EcoSimNet with "simulation islands" 

In this architecture it is assumed that each simulator has access to the model database, 

accessible by the network. Before the system starts, each agent is provided with a script file 

that defines its identification and its role. 

Every agent in the system has the same code, with a system of customizable tactics that 

intends to simulate the reasoning of human shellfish farmer. The base algorithm developed is 

a simple hill-climbing optimization algorithm, based on simulated annealing with Monte Carlo 

probability (Kirkpatrick et al., 1983) and tabu search (Mishra et al., 2005) – the agent seeks 

iteratively a new solution and saves the one with higher quality as the best. There are a set of 

configurable optimization parameters that can be activated to influence the selection of the 

best algorithm to be applied. The generation of new solutions was facilitated and improved by 

the inclusion of known optimization algorithms like genetic algorithms (Holland, 1975) and 
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reinforcement learning (Kaelbling et al., 1996; Sutton and Barto, 1998) that can be triggered in 

any stage of the process. The system of customizable tactics can activate (automatically or 

configured by the user) any one of the implemented algorithms during the experiments, with 

the possibility of combining more than one algorithm involved in the selection of the best 

solution. 

The software implemented in the FA is able to communicate with multiple simulators and has 

a decision-making process based on a parallel simulated annealing algorithm, that integrates, 

in real-time, the results generated by the different simulators.  

Before the start of the optimizations, the user configures the number of simulation steps to be 

used in the simulations, the initial shell weight, meat weight and density of bivalves’ species to 

study, and the solution domain within the model database. The user can choose between 

optimize farming areas or farming densities, with mono or polyculture. 

Customizable Tactics: Implemented Algorithms 

In the field of ecological systems it is very unusual to reach only one solution, even when 

starting with the same initial solution. It is enough that the system gives an idea about what 

could be a good solution, regardless of the initial starting solution. A system of customizable 

tactics was developed to implement the sense of intelligence, allowing different multi-

objective optimum solution finder techniques to be applied simultaneously or at different 

times during the optimization process. The following algorithms were implemented in this 

agent: 

FARMERSA - SIMULATED ANNEALING 

The implemented Simulated Annealing (FarmerSA) follows the usual guidelines as documented 

in the literature (Kirkpatrick et al., 1983) and in section 3.3.2 , allowing the configuration of the 

typical parameters – the initial temperature, the final temperature and its descent rate, as well 

as the maximum number of iterations desired (Figure 4-21). The Monte Carlo probability of 

accepting worse solutions as starting points for new iterations can be disabled, transforming 

FarmerSA in simple hill climbing where only solutions with higher quality are approved. When 

the problem is optimization of bivalve’s farming areas, the notion of neighbourhood breadth is 

also parameterized. 
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Figure 4-21: Initial configuration of FarmerSA 

FARMERTABU - TABU SEARCH 

The adaptation of Tabu Search implementation (FarmerTabu) is coupled with simulated 

annealing (Mishra et al., 2005), and is based on the maintenance of a hash list with all the 

previously tested solutions, so that when it is enabled, it simply prevents the simulation from 

choosing a previously tested solution as the next solution to test. It also keeps a counter of 

how many times the algorithm has taken to choose a previously tested solution from its choice 

of neighbours. It is possible to define a threshold value for the counter of refused solutions to 

activate a special mutation factor that serves to stir the process into other solution search 

paths, moving from paths apparently over explored without much success (Figure 4-22). 

The FarmerTabu algorithm can be toggled on or off at any point in time of the process, and 

remains active or inactive from that point. 

FARMERGA – GENETIC ALGORITHMS 

The FarmerGA implementation maintains a list of best solutions found so far and crossbreeds 

them to form new combinations of regions. The number of solutions to take into account as 

parents and the number of new breeds are defined as parameters. Unlike common Genetic 

Algorithms (Holland, 1975), this implementation does not account for any mutation factor 

(Figure 4-23). 

FarmerGA is used during optimizations related with bivalves’ distribution within areas of 

occupation, and the way it crossbreeds the parents list is based on the quality hierarchy and 

one configurable parameter. In rough terms, it attempts to breed the best solution with all 
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others in the list of best solutions, the second best with half of all the others, the third best 

with a third of all the others and so on, selecting the best individual locations amongst both 

parents. 

 

Figure 4-22: Configuration of FarmerTabu 

When FarmerGA is toggled on, the process will trigger the running of genetic cross breeding 

among a list of good results. This operation must be done only after the agent had time to 

collect a list with sufficient good results in order to build a large and wide spread list of 

children solutions. Genetic crossing is applied during only a few steps (typically three or four). 
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Figure 4-23: Configuration of FarmerGA 

FARMERRL – REINFORCEMENT LEARNING 

While RL intends to represent Reinforcement Learning, this implementation is somewhat far 

from the definition (Kaelbling et al., 1996; Sutton and Barto, 1998): a way of programming 

agents by reward and punishment without needing to specify how the task is to be achieved. 

When the problem is the optimization of bivalves’ farming areas, this implementation 

maintains a neighbours list for each possible region, containing information on its 

neighbourhood locations quality for farming. As the test iterations occur, calculated weights 

are added or subtracted to the quality of the areas selected in the tested solution, increasing 

or decreasing its value. The value of the weight depends on the geometric distance between 

the farming result of an individual area and the average amongst all the zones of the tested 

solution. The farming quality value of each region is taken into account when the next 

selection of other neighbouring solutions for testing is performed. As more iterations occur, 

the quality values of good seashell farming regions gets higher and the quality values of bad 

seashell farming regions gets lower, thus restraining the scope of search to better regions. The 

strength of the weight is a configurable parameter and can vary in real-time, as well as the way 

to choose the next solution. The definition of neighbour solutions also influences greatly on 

how this optimization will perform. FarmerRL has eight different ways to choose the next 

neighbour solution (Figure 4-24): 
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Figure 4-24: Configuration of FarmerRL algorithm with next solution options visible 

(i) Choose the best neighbour for each position, using Monte Carlo probability factor. 

(ii) Choose the best neighbour for each position, using Monte Carlo probability factor for 

the positions with quality below average. 

(iii) Choose the best neighbour for each position, without Monte Carlo probability factor. 

(iv) Randomly change only one position by the best neighbour, without Monte Carlo 

probability factor. 

(v) Change all positions by random neighbours. 

(vi) Randomly change only one position by one of its neighbours. 

(vii) Randomly change only positions with quality below average. 

(viii) Randomly change all positions. 

Like FarmerTabu, the FarmerRL algorithm can be toggled on or off at any point in time of the 

optimization process. 

Customizable Tactics: Tactics System 

The implemented algorithms for optimization can be enabled throughout the iterative search 

process to influence the choice of the next solution to test - it is possible to start the process 

with a random search algorithm and switch to a hill climber algorithm a quarter or half way 

through the process, and so on. This choice of architecture was based on the fact that different 

algorithms produce different results depending on the properties of the problem itself that 

unavoidably affect the performance of the final result. A system of customizable tactics was 

developed to permit real-time reconfiguration to alternate between the different algorithms, 

customizing the algorithms’ interventions and the values of their parameters to allow proper 
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fine tunes and grant even better possible results. This customization can be predefined by the 

user. 

The base algorithm FarmerSA is always applied and its configuration is saved in a text file. For 

the example shown in Figure 4-21 the file firstSA.sa will contain the line: 

sa  1.0  0.0001  0.980  2  341  10  1  0 

 

where the values that follow sa represent the parameter values in the window fields. 

The remaining algorithms can be defined more than once per optimization process, typically 

representing reconfigurations of the parameters at different moments of the process, and 

saved in a specific tactics file. This file contains text lines, referred as toggle lines, each 

representing one algorithm configuration at different steps of the process. The file starts with 

the keyword init, ends with the keyword eof, and each inner line begins with the keyword tog 

followed by the algorithm number (0 for FarmerTabu, 1 for FarmerGA and 2 for FarmrRL) and 

by three or four parameters, depending on the algorithm used. One example of the tactics file 

firstTGL.tgl, could be: 

init 

tog  0  0.0  1  0.8  1 

tog  1  0.4  1  15  5 

tog  2  0.5  3  0.05 

eof 

 

The complete configuration of the optimization process is grouped in a text file (config.cfg) 

that gathers the duration of the simulations (number of steps) and the type of optimization 

desired to the algorithms previously mentioned. Example of config.cfg file: 

initSA 1.0 0.0001 0.980 2 341 10 1 0  

simulation 86400 0 

togglesfile firstTGL.tgl 

species oyster 0.0005 0.00002 55.10 30 1.0 inner-outer.sol areas 

species scallop 1.192300 0.152070 56.50 30 2.0 inner-outer.sol areas 

 

Each line is headed by a keyword indicating the meaning of its fields. A complete description of 

the files’ formats can be found in Annex 4. 

Parallel Simulated Annealing 

Simulated annealing is considered a good tool for complex nonlinear optimization problems 

(Kirkpatrick et al., 1983) but one of its major drawbacks is the slow convergence, more 
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apparent if it is desired an extensive exploitation of the search space. One way to improve its 

efficiency is the development of a parallel version of the algorithm. 

Several parallel implementations of this algorithm exist and they are, inherently, problem 

dependent. In the work of Ram et al. (1996) the clustering algorithm and the genetic clustering 

algorithm were presented as distributed algorithms for simulated annealing, and the authors 

emphasize the evidence that a good initial solution results in a faster convergence. 

The clustering algorithm technique starts n nodes of the network to run the simulated 

annealing algorithm: one of the nodes is the coordinator and distributes different initial 

solutions among the other nodes (worker nodes). After a fixed number of iterations, the nodes 

exchange their partial results with the coordinator to get the best one. The coordinator 

validates and saves the best solution, and all the nodes restart a new simulated annealing 

round with a solution based on the best. This process is repeated until a “near-optimal 

solution” is achieved or a predefined number of cycles is attained. The coordinator node is the 

responsible to distribute the initial solutions by the worker nodes, to filter the best among the 

best solutions so far and to stop the process. 

The genetic clustering algorithm technique combines the simulated annealing with the genetic 

algorithms paradigm, adopting as motto that one good initial solution can result in a faster 

convergence – after the first iteration of the clustering algorithm technique, the coordinator 

chooses the best p solutions received, considers them as the initial population for the genetic 

algorithm, applies iteratively one operator on two parents chosen to generate two offspring 

that will replace the parents, and chooses n initial solutions to send to the worker nodes. Each 

worker node runs the simulated annealing algorithm. As in the prior technique, the cycle is 

repeated until the coordinator stops the process. The general idea of this algorithm is that 

genetic algorithm improves the whole population while simulated annealing aims to produce 

one best solution – if the genetic algorithm generates good initial solutions, then the process 

will converge faster. 

In this work, as the coordinator and the worker agents have their own independent strategies 

and tactics to generate new solutions and achieve the optimal solution, the process is some 

kind of an improved clustering algorithm, taking advantages from the autonomy of each agent. 

The flexibility of the EcoSimNet framework allows each agent to control a different set of 

simulators, which can be seen as a collection of simulation islands or clusters (Figure 4-20). 

Simulators running in different computers have different simulation times, but there is no 
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need to synchronize them because the agent compares the results received against all results 

accumulated so far. 

The basic algorithm for the coordination node is presented in Figure 4-25. The number of 

synchronization points determines the number of times worker nodes exchange partial results 

with the coordinator, and this number can improve the optimization process. The number of 

iterations between synchronization points is distributed uniformly by the worker agents; the 

coordinator node waits for agents synchronization, and each worker node controls the number 

of simulations with all simulators controlled by it, which means that if there is one very fast 

simulator and another very slow, it is expectable than the faster simulator perform more 

simulations than the slowest. 

 

Figure 4-25: Parallel SA algorithm (coordinator mode) 

Figure 4-26 presents the algorithm followed by the worker nodes.  



4 Methodology 

- 146 - 

 

Figure 4-26: Paraller SA algorithm - worker node 

Taking into account the time needed for each simulation and the time required to choose the 

best solution, often there are benefits if one agent accumulates the coordinator and worker 

roles. 

4.5  Decision Support System 

Ecological models are frequently developed for management purposes. The definition of a 

general structure to facilitate the construction of a decision support system (DSS) starts by the 

identification of the basic functionalities that it must answer. Every decision support system 

must be developed having in attention its final users. If the DSS application answers/explains 

questions like how, why, for whom, it will be surely a successful tool. Any DSS project must 

identify, since the beginning, the local actors and stakeholders and involve them in a formal 

basis in the project (Fedra, 2005). 

As mentioned in the introduction of this chapter, the fundamental modules that a DSS must 

contain are: modelling and simulation, visualization and interaction with users, analysis and 

data management. The design of independent interacting modules is the proper way to follow, 

because it makes the system more scalable, flexible and robust, and facilitates the integration 
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of new modules or the replacement of some of them by others with more dedicated 

processing. 

One important aspect of this approach is that it allows the construction of applications 

dedicated to the interface with the final users, leaving the hard work to the “inner” specialized 

applications not directly manipulated by the users, but communicating in a proper way with 

simulation and analysis tools. This grants management specialists to interact with an ecological 

system, configuring only high level objectives (management objectives) and waiting for the 

answer from the system, that translates the high level objectives to deeper scenarios 

configuration in model databases and model simulations, and returns the results, converted in 

a user-friendly format to the user by the interface application. 

The previous sections of this document have described the modules of modelling and 

simulation, visualization and interaction with users, optimization with agents and extended 

interaction between applications. It is now time to focus on the analysis and data management 

modules. 

Serment (2007) points out three essential contexts involving one environmental decision 

support systems (EDSS): 

 Regulation: regular activity that leads to decisions whose consequences are 

immediate, short or very short term. Their scope is limited and includes a very specific 

area of an ecosystem. 

 Piloting: general activity leading to medium-term planning and to manage the 

ecosystem in order to maintain its stability; several parts of the ecosystem may be 

covered by the decisions. The range is intermediate between those of strategic 

planning and regulation. 

 Strategic planning: activity leading to major collective decisions whose scope is very 

broad and the consequences are long term. These decisions may, for example, involve 

the future of an entire ecosystem. 

The EDSS may intervene in any of these levels of decision. Let’s take an example related with 

the Natural Park of Peneda-Gerês (northeast of Braga district – north of Portugal): 

 Decision related to the regulation: there is a peak of pollution in the area of Mata de 

Albergaria, and a quick decision must be taken. The decision could be to close access 

to motorized vehicles. The scope of these decisions is limited since they relate directly 

to the park entrances. The time allotted for decision making is very short. 
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 Decision related to the piloting: in the summer, peaks of pollution have been regularly 

observed in the mentioned subarea of the natural park. A decision that could be taken 

to anticipate this problem is to develop a network of shuttle buses and block access of 

private motorized vehicles to the park during critical periods, without preventing 

sightseeing or interfere with other activities. These decisions do not affect the whole 

ecosystem, and the consequences are not immediate. The balance of the 

consequences of this decision can be made only at the end of the season. 

 Decision related to strategic planning: analysis of the air quality in recent years shows 

that quality is declining steadily. The decision is to reduce emissions of CO2 within the 

park, by developing eco-tourism. This decision will lead to changes throughout the 

park with the development of walking trails, cycling, riding and the acquisition of a 

fleet of electric shuttles to facilitate the transport inside the park. Benefits or 

impairment of that decision can only be assessed over the long term. 

The modules existent in an EDSS must be capable of interchange information and use data and 

functions from other modules. The decision maker must be able to configure one exploitation 

scenario and order the system to start the analysis – the simulator uses the model to produce 

results that can be visualized in the visualization application and saved in one persistent 

structure – comparing the data with other results from previous simulations or more complex 

analysis. 

Although the system developed in this work intends to integrate all the facilities pointed to the 

fundamental modules of an EDSS, the persistent storage of the results enables the decision 

maker to use other applications to make the analysis of the generated data. 

4.5.1  Construction and Evaluation 

The methodology implemented for the EDSS is the Analytic Hierarchy Process (AHP) (Saaty, 

1980). The AHP methodology was conceived to be used when multiple and conflicting 

objectives/criteria are present, and both qualitative and quantitative aspects of a decision 

need to be considered. In ecological systems, some of the usual objectives are contrasting (e.g. 

socio-economic interests versus environmental preservation). This leads to a field where, in 

general, the best management option is not the one that maximizes each single criterion, 

rather than one which achieves the most suitable trade off among the different criteria. 
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The software package used is built in MatLab® and integrated in a C++ DLL (Pereira et al., 

2007). The MatLab® routine installed in the application was adapted from one developed at 

Siena University, Italy (Siena, 2006). 

4.5.2  EDSS Manipulation – AHP Methodology 

Setting up of a model scenario (the preparation of the configuration files, the definition of the 

ecosystem characteristics and the initial values of the variables) may be a complicated task. 

Therefore the usage of the models by non-modellers, involved directly on management issues, 

may be discouraged by the complexity mentioned. Even with the results obtained by the 

simulator for the different scenarios, it may be difficult to order them according to some 

quality criteria. That’s why an EDSS can be a valuable tool to the decision makers. 

The functionalities required by the EDSS were first included in the Development Agent (Figure 

4-27), before their implementation as an autonomous application. The module was conceived 

to receive, as inputs, the results captured by the development agent in each scenario (that 

define the criteria used by the decision maker), to define the relative importance between 

each criterion and to rank the several scenarios using the relative importance criteria 

comparison definition. 

 

Figure 4-27: DSS options available in Development Agent 

The manipulation of the EDSS is intuitive. The user can generate several scenarios to analyze 

ecosystem behaviour, adjust the initial values of the desired variables and save the 

configuration as an exploration scenario with the Development Agent. These operations can 

be made by any stakeholder or authority agent, generating the number of scenarios that 

correspond to hypothetical management realities or options. Before the simulation of the first 
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scenario, the user selects the variables that are directly related with the relevant criteria that 

indicates the contrasting objectives of the study. For each variable selected, the user defines 

what value will be considered in the analysis – total value, mean value, inverse of the total 

value or inverse of the mean value (see Figure 4-28). Each variable represents one criterion in 

analysis and corresponds to one column of the matrix of indicators (cf. 3.5.4 ). Each line of that 

matrix corresponds to one scenario, and will be filled with the values obtained during the 

simulation for each variable, also called indicator value. 

During the simulations, and before the EDSS analysis, the decision maker must define the 

importance relationships between the variables (criteria). This phase will originate a file with 

the pair-wise comparison matrix values (PCM) for the selected criteria. The criteria comparison 

is introduced clicking small numerical toggle buttons that indicate the relative importance 

between each criteria pair (greater the value, greater the importance from the left column 

criterion to the right column criterion – Figure 4-29). 

 

 

Figure 4-28: Window to choose the type of value considered for each variable analysis 
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Figure 4-29: Pair-wise Comparison Matrix definition 

For a good decision, the user must generate the largest possible number of scenarios (one 

scenario corresponds to a specific configuration of the simulated system) and save all the 

results in the same file, identifying each scenario with a consistent name (Figure 4-30). 

 

Figure 4-30: Saving the results with one scenario name 

With the results of all the relevant scenarios simulated, saved in a file, and with the pair-wise 

comparison matrix saved in another file, the user can run the decision support application 

(Figure 4-31) and save the results in another file. The DSS application integrates the AHP 

software developed in MatLab®, in accordance with the steps set out in section 3.5.4 , and 

shows the result in a MatLab® graphical window. All the files used by the DSS have 

alphanumeric characters with values separated by tabulations (TSV) to facilitate their 

integration with other management applications. 
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Figure 4-31: Select files for DSS analysis 

The default filename extensions (“pcm” for Pair-wise Comparison Matrices files; “scn” for 

scenarios files; “ahp” for DSS results files) are used to quickly distinguish the type of data each 

file contains, but are not mandatory. 

4.6  Simulations 

After having gained confidence in the model outputs/predictions and in the final results 

generated by the complete framework, it was necessary to plan a scenario analysis to generate 

data to be used as support for decision making. The scenario analysis should be done in terms 

that the final outcome of the system could be a guide for coastal lagoon modellers and help 

the implementation of similar systems in other coastal ecosystems. 

4.6.1  Sites Description 

Ria Formosa 

Ria Formosa is a shallow mesotidal lagoon, located along the eastern part of the south coast of 

Portugal, with an extension of 55km, a maximum width of 6 km and with a wet area of 105km2 

(Figure 4-32). The lagoon is protected from the ocean by a sandy barrier island interrupted by 

six inlets (S.Luís, Faro-Olhão, Armona, Fuzeta, Tavira and Cacela). Tidal movement and water 

exchanges between the lagoon and the ocean (through the inlets) determine the system 

evolution (Falcão et al., 2003).  
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Figure 4-32: Geographic location of Ria Formosa and its inlets (Falcão et al., 2003) 

The limit of Ria Formosa’s watershed is the hydrographic basin of river Guadiana. Its rivers are 

originated mostly in the Caldeirão Mountain range and watercourses drain perpendicular to 

the South in the direction of the Atlantic Ocean. Most of the rivers are ephemeral with no or 

very little runoff between June and October. The most important watercourses in the Ria 

Formosa basin are river Gilão and streams Alportel, S. Lourenço, Zambujosa, Seco and Cacela 

(Figure 4-33). The Ria Formosa basin has an area of 864.26km2, with a maximum altitude of 

522m, and an average altitude of 112m (MAOT, 2000), draining flows into the coastal lagoon 

mostly through agricultural neighbouring land, where there has been some intensive use of 

fertilizers. 

Ria Formosa is one of the largest Portuguese lagoons, and in 1987 some of its hinterland has 

been included in the Ria Formosa Natural Park (184km2) and accepted as a Natura 2000 

network site. It is also one of the 28 Portuguese Ramsar sites (designated as Wetlands of 

International Importance: http://www.ramsar.org/), due to the recognition of its 

environmental relevance. Ria Formosa has large intertidal areas (corresponding roughly to 50% 

of the total area) where many conflicting uses coexist (fisheries, aquaculture, harbour 

activities, tourism and nature conservation). There are about 100 different land use classes, 

divided among six major groups: urban, agricultural, forest, rangeland and pastures, wetlands 

and water bodies. It is an ecosystem of great importance for it serves as a breeding site and 

development of a large number of marine species. Its shallow zones of sprawling tidal serve 

areas of cultivation of shellfish and fish, with very large touristic activities. 
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Figure 4-33: Ria Formosa watershed (Falcão et al., 2003) 

The intertidal area, mostly covered by sand, muddy sand-flats and salt marshes, is exposed to 

the atmosphere for several hours, over each semi-diurnal tidal period. Tidal amplitude varies 

from 1 to 3.5m and the mean water depth is 3.5m (Falcão et al., 2003). The natural 

biogeochemical cycles are essentially regulated by tidal exchanges with the sea water and by 

the exchanges with the sediment interface. Management of this coastal ecosystem involves 

several institutions such as the Natural Park Authority, several municipalities and the 

Portuguese Navy. Within the scope of the already mentioned DITTY project (EC, 2003), several 

possible management scenarios were defined by the Natural Park Authority, and were 

evaluated from the environmental and economic point of view, by using an hydrologic model 

for the watershed and a coupled hydrodynamic-ecological model for the lagoon (Duarte et al., 

2008). 

The Soil and Water Assessment Tool (SWAT model) (Neitsch et al., 2002a; Arnold and Fohrer, 

2005) has been applied to the watershed in order to simulate water discharges to Ria Formosa, 

providing forcing to a two-dimensional vertically integrated coupled physical-biogeochemical 

model. The model includes water column and sediment processes as well as their interactions 

and several biological sub-models (e.g. phytoplankton dynamics and bivalve growth) 

implemented with the object oriented modelling software EcoDynamo. 

Aquaculture represents an important contribution to the Algarve’s economy (approximately 

10000 individuals are directly or indirectly involved in the shellfish production activity). 
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Shellfish culture exploit species with high economical value, like the clam (Ruditapes 

decussatus) and the oyster (Crassostrea angulata), that are cultivated in the intertidal areas of 

the lagoon. According to the operational plan for coastal planning, dated 1997, the annual 

production of clams reaches 5000 tons/year and the oysters production reaches 2000 

tons/year (Falcão et al., 2003). 

The model developed for Ria Formosa is 2D vertically integrated, coupled hydrodynamic–

biogeochemical model. The wet-drying scheme referred in 4.3.1  requires a relatively high 

spatial and temporal resolution. In the present case, the cell resolution is 100m x 100m and 

the time step is 3s. A lower temporal resolution leads to numerical errors, in spite of the semi-

implicit numerical scheme of the hydrodynamic model. 

The original model grid had 470 columns by 282 lines (132540 cells). The analysis of general 

ebb and flood currents in Ria Formosa reported in Duarte et al. (2005a) and represented in 

Figure 4-34, showed that there was hardly any direct flow between its western and eastern 

sides, separated by a vertical line in the figure. Therefore, it was decided to split the model 

domain in two – a western and an eastern domain – using a higher resolution (50 m) in the 

latter. 

This splitting procedure implied important gains in computing speed, by reducing grid size 

from the original 470 columns by 282 lines to 300 columns by 182 lines (54600 cells) for the 

western sub-domain, and 300 columns by 69 lines (20700 cells) for the eastern sub-domain. 

This also allowed the extension of the spatial resolution in the eastern side, where more detail 

is needed to simulate the narrow channels and the interface with River Gilão. It was on the 

western domain that the simulations have mainly focused. 
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Figure 4-34: General circulation patterns during the flood and the ebb cycles. The vertical line 
separates the Western Ria from the Eastern Ria and the rectangles in red represent the two sub-

domains considered (Duarte et al., 2005a) 

Sungo Bay 

Sungo Bay is located in Shandong Province of People’s Republic of China. With an area of 

180km2 and depths varying gradually until approximately 20m at the sea boundary (Figure 

4-35), it has been used for aquaculture for more than 20 years. The main cultivated species 

include kelp (Laminaria japonica), oyster (Crassostrea gigas) and scallop (Chlamys farreri). 
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Scallops and oysters are mostly contained in lantern nets and kelps are tied to ropes. A model 

was previously implemented, calibrated and validated with independent data sets, based on 

data collected in site over a period of 17 years (1983–2000), for use in estimating the 

environmental carrying capacity for the benthic species (Duarte et al., 2003). The whole bay 

has been used for mariculture and one of the most limiting factors for bivalve culture in Sungo 

Bay is scallop mortality. High summer mortalities at the beginning of XXI’s century have led to 

changed aquaculture practices, including shifting the rearing periods, reorder of exploitation 

areas and mariculture scenarios, including areas of polyculture or monoculture. 

 

Figure 4-35: Sungo Bay location, with model domain, bathimetry and part of the model grid - adapted 
from (Duarte et al., 2003) 

The model developed for Sungo Bay is a 2D vertically integrated, coupled hydrodynamic–

biogeochemical model with 1120 cells (32 columns × 35 lines) and a spatial resolution of 500m. 

The model time step is 36s. However, due to the semi-implicit method used for time 

integrations, each time step is divided in two semi-time steps of 18s. At every semi-time step, 

one of the speed components is calculated semi-implicitly and the other explicitly, on an 

alternating sequence. The model has a land and an ocean boundary. It is forced by tidal height 

at the sea boundary, light intensity, air temperature, wind speed, cloud cover and boundary 

conditions for some of the simulated state variables. In (Duarte et al., 2003) are described all 

the equations used for the hydrodynamic and biogeochemical processes. 

4.6.2  Scenarios Generation 

Due to the relative speed of the Sungo Bay model, the experiments taken and the scenarios 

generation were focused on analysing management scenarios related to the distribution of a 

fixed number of cells with oyster or scallop species around the bay for aquaculture production 
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optimization. Oysters were seeded with a density of 55 individuals m-2, 0.5g of shell weight and 

0.02g of meat weight (corresponds to 4mm shell length, approximately). Scallops were seeded 

with a density of 56 individuals m-2, 1.19g of shell weight and 0.15g of meat weight 

(corresponds, roughly, to 2.7cm shell length). These values try to approximate the values used 

in the real exploration of the bay as reported by Duarte et al. (2003). 

In the Ria Formosa lagoon the scenarios generated intended to launch a decision process 

integrating three different/opposing criteria: aquaculture revenue, water quality and 

ecological sustainability. 

4.7  Summary 

The definition of a generic framework, to facilitate the construction of an environmental 

decision support system (EDSS) to manage ecosystems with anthropogenic exploitation, was 

focused in this chapter. 

The fundamental modules that must exist in an EDSS (modelling and simulation, visualization 

and interaction with users, analysis and data management) were presented such as an 

implementation of each one of them. One concern maintained throughout the project, and 

referred to herein, was the independence of the modules, to make the system more scalable, 

flexible and robust. Of course, the interaction with users and the data management are 

transversal functionalities that are present, in a greater or lesser degree, in all the modules. 

The developed system that originates this work was completely described, with emphasis on 

the EcoSimNet framework, infrastructure that incorporates the simulator application 

(EcoDynamo), the simulated classes, the agents developed and the environmental decision 

support system (with the AHP methodology), and the ECOLANG language that is used by all the 

components to exchange information between each other. 

It was explained how the intelligent optimization algorithms were incorporated in the farmer 

agent and how the performance of the system can be increased by doing parallel simulations 

of different scenarios. 

The results and indicators obtained with this integrated system can greatly help in decision 

making and support the management of aquatic ecosystems, since the decision-maker can 

introduce multiple criteria and conflicting objectives for analysis, can change the relative 

importance between criteria and can see, in a very short time, the graphical results of its 

options. 
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It is important to notice that the simulation system is being continuously improved in order to 

add more simulated classes and to include new ECOLANG messages, necessary to satisfy new 

requirements for the integration of new agents, until it reflects/integrates the interests of 

humans, with decision capacities, intervening over the ecological simulated system. 
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5  Results and Discussion 

“It´s so much easier to suggest solutions when you 
don’t know too much about the problem.” 

Malcolm Forbes 

 

5.1  Introduction 

In the precedent chapter, the architecture of the EcoSimNet system and the inter-relationships 

between the components were exposed, focusing on the most relevant aspects of the 

simulation system, a set of simulators surrounded by one multi-agent system and one 

environmental decision support system that was built on the top of the system. The 

implementation lines and options followed for each one of the different components were 

indicated. 

In this chapter some results are presented to prove how the objectives of this work (cf. 1.2 ) 

were achieved for scenarios pointed out before (cf. 4.6.2 ), in order to validate the approach 

and the methodology followed. 

5.2  Realistic Simulation of Ecosystems 

The model of Ria Formosa lagoon (cf. 4.6.1 ) was implemented using EcoDynamo (cf. 4.3.2 ) 

and a set of objects from the library of the dynamic linkable objects (cf. 4.3.3 ), simulating the 

hydrodynamic, thermodynamic and biogeochemical processes. A detailed analysis of the 
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calibration and validation stages was reported in previous publications from Duarte et al. 

(2005a; 2007; 2008), and a subset of the results is presented here. Figure 5-1 shows the 

locations of four tide-gauge stations surveyed by the Portuguese Hydrographic Institute 

(Hidrográfico, 2001), with current velocity data collected over periods of several days, between 

January and March 2001 and used for model calibration of physical processes.  

 

Figure 5-1: Ria Formosa lagoon with locations of tide-gauge stations (triangles) used for hydrodynamic 
calibration 

Figures 5-2 and 5-3 show the measured and predicted current velocities in Faro-Harbour and 

Fuzeta-Canal (monitoring locations depicted in Figure 5-1). From the observation of the results, 

the visual fit between measurements and predictions is generally good. 

Measured velocities range varied from nearly zero till values around 100 cm s-1, with peak 

velocities occurring at the middle of the ebb and the middle of the flood. 
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Figure 5-2: Predicted and measured velocities at Faro - Harbour 

 

Figure 5-3: Predicted and measured velocities at Fuzeta - Canal 

To validate the biogeochemical processes, and due to the slowness of simulations in Ria 

Formosa, the hydrodynamic part of the model was run first, the results saved in data series 

sequences with time-averaged results for flow and velocity variables and, later, the model was 

run with a larger time step, using the saved results to provide the hydrodynamic forcing for the 

biogeochemical simulations. 

Figure 5-4 shows the locations of the water quality stations inside the lagoon, where nutrient 

data was measured (WQA, WQB and WQC). The data available, and used to test the model, 

was collected in 1992 (Falcão, 1996). Due to the fact that lagoon bathymetry used in the model 

is more recent (Hidrográfico, 2001), the comparison between observed and predicted data 

should be carried out with caution. 
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Figure 5-4: Ria Formosa lagoon with locations of water quality stations (circles) - WQA, WQB, WQC - 
used for biogeochemical calibration 

Figures 5-5 and 5-8 show simulated values for ammonia, nitrate, phosphate and water 

temperature at Ramalhete and Olhão channels and the correspondent observed values at 

station WQB during ebb and flood. Also the assumed calibrated values are superimposed. 

 

Figure 5-5: Simulated and observed ammonia at station WQB 

Observations were made during the ebb and during the flood for each sampling instant. The 

small number of observations prevents any powerful statistical test to quantify the model 

performance however, in most situations, the ranges predicted by the model are within those 
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observed, with a poorer estimation for ammonia and nitrate, slightly overestimated by the 

model.  

 

Figure 5-6: Simulated and observed nitrate at station WQB 

 

 

Figure 5-7: Simulated and observed phosphate at station WQB 
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Figure 5-8: Simulated and observed water temperature at station WQB 

The model is also able to predict clams individual weight within the range of values observed in 

Ria Formosa (Figure 5-9). Cultivated clams grow from an initial weight of c.a. 0.12 g to a weight 

ranging between 0.2 and 0.4 g of meat dry weight, over a period of c.a. half a year. The 

observed data was taken from Falcão et al. (2000). 

 

Figure 5-9: Predicted (line) and mean observed (squares) clams weight at two different points 

The model of Sungo Bay (cf. 4.6.1 ) was implemented based on a previous model built with the 

EcoWin (cf. 2.4.2 ) tool by Duarte et al. (2003). The migration to EcoDynamo was confirmed 
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and validated comparing the results presented in the former study with the detailed results 

published by Duarte et al. (2005b). 

5.3  Flexible Simulation 

5.3.1  Integrating Objects in Simulations 

One of the requirements pointed out on the development of the DLLs code (cf. 4.3.3 ) was the 

possibility to dynamically include or exclude objects from simulations in order to enable 

flexible ecological simulations. Next figure shows the overlapped results of oysters growth in 

Sungo Bay from two simulations with phytoplankton object included and excluded. Graph 

represents the oyster growth during 112 days. It is evident that oysters grow only in the 

presence of the main food source. 

 

Figure 5-10: Oysters growth in one location of Sungo Bay with (red line) and without (blue line) 
phytoplankton object included 

Several advantages exist from the possibility of select / unselect objects for simulation. One is 

related with the evaluation of the relative importance of each object in the model predictions. 

By selecting / unselecting objects, it can be seen whether the model responds as expected and 

whether it makes sense, compared to what is known, a priori, from the relationships between 

different variables and processes. This feature is crucial during the model calibration, to adjust 



5 Results and Discussion 

- 168 - 

the parameters of each class, by selecting only the relevant objects that influence the class 

under calibration. 

5.3.2  Integrating DLLs with legated platforms 

Another requirement pointed out on the development of the DLLs code (cf. 4.3.3 ) was the 

possibility of the code be linked with applications made in different programming languages, in 

order to reutilize developed processes and embed EcoDynamo objects in legated systems. One 

of the tests made linked the Coherens code (Luyten et al., 1999) with the object that calculates 

the luminous intensity in any geographic location, day and hour, having as parameters the 

latitude and the cloudiness (class Light from Light.dll). The idea is Coherens use the values of 

light intensity generated by Light object, for its internal calculations of photosynthesis. 

The following figures show the values sent by Coherens to the Light object, in Ria Formosa 

lagoon, at different times (10, 12 and 18 hours) of the cloudless Julian day 182 – July 1, and the 

answers returned. 

 

Figure 5-11: Ria Formosa - value of light variables at 10 a.m. of July 1 

Light object calculates daylight hours and noon surface photosynthetically active radiation 

(PAR) for each day, and total surface irradiance, PAR surface irradiance, depth integrated 

irradiance, depth integrated PAR irradiance, sub-surface irradiance and sub-surface PAR 

irradiance for each time of the day and water depth. 

In addition to the explained in section 4.3.3 , detailed information about the integration of 

objects developed in the Library of Dynamic Linkable Objects into applications written in other 



Intelligent Simulation of Coastal Ecosystems 

- 169 - 

programming languages can be found in Pereira et al. (2006), where special emphasis is given 

to integration with Coherens (Luyten et al., 1999). 

 

Figure 5-12: Ria Formosa - value of light variables at noon of July 1 

 

Figure 5-13: Ria Formosa - value of light variables at 6 p.m. of July 1 

5.4  Culture Optimization 

The experiments related with the optimization processes were controlled by the Farmer Agent 

(FA) described in section 4.4.5 , working with the different configurations admissible by the  

EcoSimNet framework. FA processing follows the sequence diagrams presented in Figure 4-18 

and Figure 4-19.  
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5.4.1  Spatial Optimization 

In the spatial optimization of aquaculture leases the FA has to discover the best combination 

of locations to seed and harvest bivalve species. Given a lagoon model loaded in the simulator, 

FA interacts with EcoDynamo in order to run a series of simulations with different scenarios 

seeking to find the one with the maximum bivalve production (weight harvested) constrained 

by the fixed number of areas to seed in a larger admissible area. Due to the inability to test the 

entire solution space, the optimization process will test a considered number of solutions in 

order to give more reliable results. The time needed to simulate the complete cycle of the 

bivalve’s grow (about a year and a half) is another constraint that FA must surpass. 

The experiments were carried out using the Sungo Bay model (described in section 4.6.1 ) 

derived from its simplicity, the velocity of the model simulations and the existence of real data 

that can be used to compare the results. 

First experimental set 

The first study intended to find the five cells (square areas of 500m by 500m) that together 

had the best production of oysters, within a wider rectangular area of 88 admissible cells with 

the same individual area – corresponding to more than 39 millions of possible combinations in 

an area of 4000 m by 5500 m. The rectangular area over study and one possible solution 

(combination of five areas within the mentioned region) are represented in Figure 5-14. 

 

Figure 5-14: Experimental area and one admissible solution 

Simulated oysters feed on suspended particles (detritus and phytoplankton cells) and cause 

significant local depletion of those food items. Due to the realistic characteristics of the 

ecological simulation, the existence of oysters in one location will affect the growth of oysters 
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in the neighbourhood, and placing many regions together could negatively affect the potential 

yield for them. Factors like tidal flux, quantity and quality of suspended food particles and 

water quality, influence oysters’ feeding and substantially increase the complexity of the 

problem. 

Simulating a year and a half with the Sungo Bay model, to perform a complete bivalve 

cultivation cycle realistic simulation, corresponds to run more than 1 576 800 simulation steps 

of 30 seconds (about 547 days). In a computer with a relative powerful performance (Intel® 

Core™2 Quad CPU Q9300 @2.50GHz and 8.00GB RAM, with a 64-bit Operating System) the 

complete simulation cycle takes about 8 hours to run, which turns virtually impossible to 

support a management decision based on the results of all possible combinations - 

exploitation scenarios. Considering the value of temperature for simulated annealing 

algorithm varying from 1.0 to 0.001, with a descent rate of 2% between iterations, each 

experimental round contains, at least, 341 different scenarios, which takes about 2728 hours 

of simulations, running more than 113 days. 

The time taken and the heavy processor power required, implied trying to find out if shorter 

simulations could suggest clues to what are the best scenarios to test. The first experiments 

used only simulations of 1000 steps, which corresponds approximately to 8 hours and 20 

minutes of real-time – each simulation took about 20 seconds to complete and one 

experimental round was completed in less than 2 hours. Reported results of these experiments 

showed that the approach had many strengths, namely identifying different tactics that could 

lead more quickly to good solutions (Cruz et al., 2007) and verifying that although the initial 

solution is always random all the tactics converge to similar solutions, creating an idea of a 

family of good locations as the most profitable zone for oysters farming, even with a 

simulation time very far from reality. The results obtained (Table 5-1 and Figure 5-16) served 

to test the hybridization of the algorithms explained in section 4.4.5 with the concern of 

avoiding the simulation of repeated solutions. Maintaining the FarmerTabu algorithm active 

during all the process can accelerate the convergence to a good solution - the repeated 

insistence on a solution can be a sign that it is a good solution and a slight mutation on it can 

lead to a new better combination. 

Using the FarmerGA algorithm, during the course of the optimization process, improves the 

construction of good solutions because it crosses over the best solutions obtained so far to 

derive new combinations. Figure 5-15 shows the graphical evolution of the production 

indicators through iterations in one experiment, being clearly visible the improvements in the 
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solutions when FarmerGA actuates. The red line (MaxValue) shows the best value found so far 

and the blue line (IterValue) indicates the value obtained by the current solution. 

 

Figure 5-15: Optimization results evolution during an experimental round, with visible gains when 
FarmerGa actuates – experiment DM::IO.60_sca (cf. 5.4.1 – Fourth experimental set)) 

The appliance of the FarmerRL algorithm can introduce some good turbulence in the 

generation of the solutions, essentially in the early stages of the process, and spread the 

combinations all over the solutions domain. The great number of variants that could be 

applied in FarmerRL makes this algorithm very appellative to be used in different 

configurations throughout the optimization process. 

The values obtained in each simulation are directly related with the harvested yields for 

oysters, but must be viewed as an indication and not as the real weights harvested for 

commercialization, because the FA sees the production as the whole quantity existent in the 

seeded areas while, in real harvest, only individuals with a shell length greater than a minimum 

size have commercial value and are captured, making the actual amount less than that 

provided by FA.  

For the first experimental set, several rounds generated 1876 different solutions taking 

advantage of the speed for simulating only 1000 steps. As expected, the values obtained do 

not diverge greatly, as can be viewed in Table 5-1, but the best solutions reveal a trend to 

occupy the east side of the delimited area to explore, near the open sea (Figure 5-16). The 
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diversity required for this type of algorithms is ensured by the randomness of the initial 

solutions. 

Table 5-1: Relevant results (oysters: 5 cells – 1000 steps) 

Rank Production Indicator Cells 

1 181.864 63, 71, 79, 86, 87 

2 181.863 55, 71, 79, 86, 87 

3 181.861 71, 78, 79, 86, 87 

4 181.860 70, 71, 79, 86, 87 

... ... ... 

1876 181.761 4, 16, 17, 34, 74 

 

The cells are numbered from 0 to 87 – starting from the bottom left of the available area and 

increasing from left to right and from bottom to upper bounds. 

 

Figure 5-16: Graphical representation of the 2 best (top) and the worst (bottom) solutions (oysters: 5 
cells, 1000 steps – 8h20m) 
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Second experimental set 

The existence of a trend for the best results increased the expectation of achieving good 

results with larger simulations and the second experimental set took advantage from the 

existence of four simulators in parallel - the simulation steps were increased to cover one 

month of real time oysters growth (from 1000 to 86 400 steps). The number of areas to seed 

and the exploitation area were maintained to verify if the extrapolation assumed in the first 

experiments as the good “farming areas” still remains. 

Each simulation for the second experimental set took a little more than 20 minutes, which 

gives about one day and six hours for each round with 341 iterations and four simulators. 1039 

different combinations were tested in several rounds within this configuration and several 

interesting observations were triggered by the results obtained (extreme results are presented 

in Table 5-2, Figure 5-18 and Figure 5-18): 

 The production indicator grew more than 86.4 times (growth of the simulation time) 

indicating the non-linear growth of the oysters within the simulation period; 

 The difference between the maximum and the minimum production indicators is 

15.2% of the minimum; 

 It is not evident a trend for the best solutions, that are spread over the domain. 

Table 5-2: Relevant results (oysters: 5 cells – 86 400 steps) 

Rank Production Indicator Initial P.I. Growth Rate (%) Cells 

1 19 923 

48.2 

413.3 31, 45, 47, 70, 78 

2 19 909 413.0 37, 38, 45, 69, 78 

3 19 880 412.4 38, 53, 54, 61, 87 

4 19 877 412.4 30, 46, 53, 63, 87 

... ...  ... 

1038 17 386 360.7 83, 84, 85, 86, 87 

1039 17 299 358.9 2, 7, 16, 41, 74 

 

A possible explanation for the inexistence of a trend for the best solutions can derive from the 

fact that oysters growth and production are determined by the abundance of organic 

substances and phytoplankton. The ecosystem in question is subjected to tides that influence 

how the main food sources are transported along the bay and eight hours (time of the first 

experiment) is not enough to simulate properly the mixing processes for the food variability 

that affects oysters growth - when oyster biomass increases, also increases the demand for 
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food and local depletion of food – and, another compelling reason, eight hours of simulation is 

insignificant when compared to the water residence time in the bay: between one and 19 days 

(Duarte et al., 2003). 

 

Figure 5-17: Graphical representation of the best solutions (oysters: 5 cells, 86 400 steps – 1 month)  

 

Figure 5-18: Graphical representation of the worst solutions (oysters: 5 cells, 86 400 steps – 1 month)  

 

Third experimental set 

The results of the second experimental set reinforced the idea that only more realistic 

scenarios and longer simulations could point directions to good locations with feasible results. 

The third experimental set was designed to seed 30 areas within the same admissible area for 

exploitation of oyster culture, to verify if a trend is more obvious when the ratio between 

occupied area versus exploitation area increases, maintaining a one month simulations of real 

time. 
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The increase of the occupied area, from 5.7% to 34.1% of the exploitation area, didn’t affect 

the duration of the simulations for the third experimental set, since they are dependant from 

the number of steps and the number of classes being simulated, and those values remain the 

same. The results obtained show that the growth rate of the production indicator for the best 

solution is less than one half of the obtained for the best solution of the second experimental 

set, which reveals that the neighbouring of the seeded areas influence the local food depletion 

leading to slower oysters growth as the oysters concentration increases. Experiments done, 

generated 1031 different combinations with the relevant results presented in Table 5-3, in 

Figure 5-19 and in Figure 4-8. 

Table 5-3: Relevant results (oysters: 30 cells – 86 400 steps) 

Rank Production Indicator Initial P.I. Growth Rate (%) Cells 

1 57 757 

289 

199.9 

Different sets of 30 cells 

2 57 721 199.7 

3 57 707 199.7 

4 57 660 199.5 

... ...  

1030 55 027 190.4 

1031 54 974 190.2 

 

The best combinations show a tendency to concentrate the oysters in the northeast side of the 

exploitation area, which disagrees with the previous experiments, perhaps because those 

areas are near the open sea, where the water exchanges are more intense and food tends to 

be more abundant. 

As a curiosity, the difference between the maximum and the minimum values for the 

production indicator is about 5.0% of the minimum. The two best combinations share 18 cells 

and the five best solutions share 12 cells, all located in the north-eastern border of the 

exploration area, while the best and the worst result share 7 cells. The initial production 

indicator, at the moment of seeding the bivalves, was 289, which indicates a gain of about 200 

times the initial value. 

To generate results with more management possibilities new experimental sets were 

designed: expand areas of exploitation and diversify crops of bivalves with, at least, one more 

species. 
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Figure 5-19: Graphical representation of the best solutions (oysters: 30 cells, 86 400 steps – 1 month) 

 

Figure 5-20: Graphical representation of the worst solutions (oysters: 30 cells, 86 400 steps – 1 month) 

 

Fourth experimental set 

For the new experimental sets, the allowed regions for exploitation were expanded and are 

represented in Figure 5-21. Also scallops were included to diversify bivalve culture, and the 

seeded areas were expanded and fixed in 60 cells, trying to simulate more realistic scenarios 

where the bivalve individuals are spread over the allowed area of exploration.  

Three criteria were analysed in this experimental set: 

 Which is more profitable - monoculture of oysters or scallops, or polyculture? 

 What gives best results - concentrated or spread seed areas? 

 Are there preferred exploitation areas for oysters or scallops? 
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The new experiences forced to change the way how results were saved and registered in the 

computers. Each farmer agent registers its own activity in different folders and files, named 

according to the configurations to test (see detailed information in Annex 4).  

Sungo Bay was divided in five regions, with the same area of 88 cells (8 columns by 11 lines) 

used in the first experiments. The idea was to occupy 60 cells with bivalves (oyster or scallops). 

When monoculture is studied, all the 60 cells contain the same bivalve species. When 

polyculture is studied, each bivalve species occupies 30 cells. For the concentrated 

experiments all the 60 seed cells belong to the initial area A. For the distributed experiments 

the initial area A was expanded, in the latitude axis, creating regions B and C – Figure 5-21(a) – 

and in the longitude axis, area A was duplicated to the new “outer” area– Figure 5-21(b). 

Region A was renamed as “inner” region. 

 

Figure 5-21: Exploitation areas for the new experiments. 

The monoculture experiments with oysters and scallops are summarized in Table 5-4. 

Table 5-4: Summary of bivalves monoculture experiments 

Oysters reference Scallops reference Description 

CM::A.60_oys CM::A.60_sca Concentrate 60 cells in area A 

DM::BC.60_oys DM::BC.60_sca Spread 60 cells between areas B and C 

DM::IO.60_oys DM::IO.60_sca Spread 60 cells between inner and outer areas 

DM::B.30_oys+C.30_oys DM::B.30_sca+C.30_sca Distribute 30 cells in area B and 30 cells in area C 

DM::I.30_oys+O.30_oys DM::I.30_sca+O.30_sca 
Distribute 30 cells in inner area and 30 cells in 
outer area 

 

The first letter of each experiment reference stands for concentrated (C) or distributed (D) and 

the second (M) stands for monoculture. The remainder of the reference is easily understood. 
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Also experiments with polyculture were designed and are resumed in Table 5-5. In these 

experiments, 30 cells are seeded with oysters and another 30 cells with scallops. In some cases 

cells overlap. The first letter of each experiment reference maintains its significance and the 

second letter (P) stands for polyculture. 

Table 5-5: Summary of polyculture experiments 

Experiment Description 

CP::A.30_oys+A.30_sca Oysters and scallops spread over area A 

DP::BC.30_oys+BC.30_sca Oysters and scallops spread over areas B and C 

DP::IO.30_oys+IO.30_sca Oysters and scallops spread over inner and outer areas 

DP::B.30_sca+C.30_oys Scallops in area B and oysters in area C 

DP::B.30_oys+C.30_sca Oysters in area B and scallops in area C 

DP::I.30_sca+O.30_oys Scallops in inner area and oysters in outer area 

DP::O.30_oys+I.30_sca Oysters in inner area and scallops in outer area 

 

The experiments simulate one month of bivalves growth and the results are shown and 

discussed in the following sections. The objective of the mentioned experiments was to 

determine if there are privileged locations for oysters or scallops, if the coexistence of both 

species is beneficial or adverse. As the duration of the simulations was maintained (86 400 

steps), the experiments took approximately the same time as the previous (about 20 minutes 

for one simulation and one day and six hours for each experimental round). Before starting the 

experimental sets, the initial values for the production indicators were registered in Table 5-6. 

Table 5-6: Initial values for production indicators (P.I.) of oysters and scallops 

Species P.I. (30 cells) P.I. (60 cells) 

Oysters 289 578 

Scallops 531 039 1 062 078 

 

MONOCULTURE EXPERIMENTS - OYSTERS 

Table 5-7 makes a summary of the best results obtained (related to the initial values of the 

production indicators - Table 5-6). A first analysis to the numbers, after one month of 

simulation, suggests that the inner area seems to be better for oyster culture than the 

remaining tested areas (experiments CM::A.60_oys and DM::IO.60_oys). 
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Table 5-7: Results from monoculture experiments – oysters (60 cells, 86 400 steps – 1 month) 

Task 
Best value 

(P.I.) 

Partial total 

B/I (#cells) 

Partial total 

C/O (#cells) 

Absolute 

Gain (P.I.) 

Gain 
Ratio 

Worst Value 

 (P.I.) 

CM::A.60_oys 80 876 - - 80 288 138.92 78 648 

DM::BC.60_oys 79 843 33 369 (25) 46 474 (35) 79 265 137.14 74 543 

DM::IO.60_oys 80 668 65 646 (47) 15 022 (13) 80 090 138.56 71 146 

DM::B.30_oys+C.30_oys 77 596 41 941 (30) 35 655 (30) 77 018 133.25 77 443 

DM::I.30_oys+O.30_oys 77 012 49 864 (30) 27 148 (30) 76 434 132.24 72 317 

 

The difference between maximum and minimum values for the production indicator (related 

with the minimum) differs according the experiment:  

 CM::A.60_oys – 2.8% 

 DM::BC.60_oys – 7.1% 

 DM::IO.60_oys – 13.4% 

 DM::B.30_oys+C.30_oys – 7.1% 

 DM::I.30_oys+O.30_oys – 6.6% 

and reveals that the more homogeneous results are obtained in the inner area. Figure 5-22 

and Figure 5-23 show the distribution of cells with oysters from experiments CM::A.60_oys, 

DM::IO.60_oys and DM::BC.60_oys. It is more or less obvious that the central area of the bay is 

the best candidate to seed oysters. 

 

Figure 5-22: Graphical representation of the best solution for experiment CM::A.60_oys (1 month) 
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Figure 5-23: Graphical representation of the best solutions for experiments DM::IO.60_oys and 
DM::BC.60_oys (1 month) 

MONOCULTURE EXPERIMENTS - SCALLOPS 

Table 5-8 makes a summary of the results obtained (related to the initial values of the 

production indicators - Table 5-6). A first analysis to the numbers, after one month of 

simulation reveals, with no doubt, that the outer area seems to be much better for scallop 

culture than the remaining areas (experiment DM::IO.60_sca seeds 57 cells in the outer area). 

The difference between maximum and minimum values for the production indicator (related 

with the minimum) differs according the experiment: 

 CM::A.60_sca – 0.5% 

 DM::BC.60_sca – 1.7% 

 DM::IO.60_sca – 3.8% 

 DM::B.30_sca+C.30_sca – 0.9% 

 DM::I.30_sca+O.30_sca – 2.1% 

and reveals that when outer area can be explored, the results show a significant improve. 

Table 5-8: Results from monoculture experiments – scallops (60 cells, 86400 steps – 1 month) 

Task 
Best value 

(P.I.) 

Partial total 

B/I (#cells) 

Partial total 

C/O (#cells) 

Absolute 

Gain (P.I.) 

Gain 
Ratio 

Worst value 

(P.I.) 

CM::A.60_sca 1 100 894 - - 38 816 0.04 1 095 618 

DM::BC.60_sca 1 102 847 555 738 (30) 547 109 (30) 40 769 0.04 1 084 033 

DM::IO.60_sca 1 189 978 57 558 (3) 1 132 420 (57) 127 900 0.12 1 146 944 

DM::B.30_sca+C.30_sca 1 095 374 547 364 (30) 548 010 (30) 33 296 0.03 1 085 848 

DM::I.30_sca+O.30_sca 1 172 087 547 863 (30) 624 224 (30) 110 009 0.10 1 147 607 
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Figure 5-24 and Figure 5-25 show the distribution of cells with scallops from experiments 

DM::IO.60_sca, CM::A.60_sca and DM::BC.60_sca. Scallops seem to grow better in the outside 

area of the bay. 

 

Figure 5-24:  Graphical representation of the best solution for experiment DM::IO.60_sca (1 month) 

 

 

Figure 5-25: Graphical representation of the best solutions for experiments CM::A.60_sca and 
DM::BC.60_sca (1 month) 

 

POLYCULTURE EXPERIMENTS – SCALLOPS AND OYSTERS 

The polyculture experiments referred in Table 5-5 are divided in two main groups: 

 One group with specific areas for oysters and scallops. 

 Another group where the bivalve species can be mixed: 

o In one concentrated area 

o In two areas. 
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All the results obtained were cross-compared and related to the initial values of the 

production indicators. Table 5-9 is a summary of the best results. A first analysis after one 

month of simulation confirms the idea that scallops seems to grow better if seeded in the 

outer region and oysters in the inner region. 

In DP::BC..30_oys+BC.30_sca experiment, 14 cells share oysters and scallops culture, in 

DP::IO.30_oys+IO.30_sca, the mixed culture is shared in 12 cells, while in 

CP::A.30_oys+A.30_sca experiment, 16 cells are common. Oysters seems to grow better in the 

inner area and scallops in the outer area (DP::I.30_oys+O.30_sca), although when cultures are 

mixed the outer region reveals good results for both species (DP::IO.30_oys+IO.30_sca). 

Table 5-9: Results from polyculture experiments – oysters (30 cells) and scallops (30 cells) [86400 
steps, 1 month] 

Task 
Best value 

(P. I.) 

Partial total 

B/I (#cells) 

Partial total 

C/O (#cells) 

Absolute Gain 

Oyster/Scallop 
(P.I.) 

Gain Ratio 

Osyter/Scallop  

Worst 
value 

(P.I.) 

CP::A.30_oys+A.30_sca 595 002 - - 
30 027 /  

33 647 
103.9 / 0.06 583 328 

DP::BC.30_oys+BC.30_sca 588 272 

oys: 18 452 

 (22) 

sca :444 752 

 (24) 

oys: 9770 

 (8) 

sca :115 297 

(6) 

27 934 / 

29 010 
96.66 / 0.05 578 125 

DP::IO.30_oys+IO.30_sca 647 110 

oys: 18 516 

 (13) 

sca: 76 859  

(4) 

Oys :12 123 

(17) 

sca: 539 612 

(26) 

30 349 / 

85 432 
105.0 / 0.16 609 326 

DP::B.30_sca+C.30_oys 587 645 - - 
33 330 / 

22 987 
115.3 / 0.04 582 907 

DP::B.30_oys+C.30_sca 582 098 - - 
28 833 / 

21 938 
99.8 / 0.04 573 040 

DP::I.30_sca+O.30_oys 586 314 - - 
21 101 / 

33 884 
73.0 / 0.06 578 427 

DP::I.30_oys+O.30_sca 670 479 - - 
39 158 / 

99 993 
135.4 / 0.19 648 567 

 

The difference between maximum and minimum values for the production indicator (related 

with the minimum) differs according the experiment:  

 CP::A.60_oys+A.30_sca – 2.0% 
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 DP::BC.30_oys+BC.30_sca – 1.8% 

 DP::IO.30_oys+IO.30_sca – 6.2% 

 DP::B.30_sca+C.30_oys – 0.8% 

 DP::B.30_oys+C.30_sca – 1.6% 

 DP::I.30_sca+O.30_oys – 1.4% 

 DP::I.30_oys+O.30_sca – 3.4% 

Figure 5-26 to Figure 5-29 show the distribution of cells with scallops and oysters from 

experiments DP::I.30_oys+O.30_sca, DP::IO.30_oys+IO.30_sca, CP::A.30_oys+A.30_sca and 

DP::BC.30_oys+BC.30_sca. 

 

Figure 5-26: Graphical representation of the best solution for experiment DP::I.30_oys+O.30_sca (1 
month) 
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Figure 5-27: Graphical representation of the best solution for experiment DP::IO.30_oys+IO.30_sca (1 
month) – 12 cells with mix culture are represented by small grid 

 

Figure 5-28:  Graphical representation of the best solution for experiment CP::A.30_oys+A.30_sca (1 
month) - 16 cells with mix culture are represented by small grid 
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Figure 5-29: Graphical representation of the best solution for experiment DP::BC.30_oys+BC.30_sca (1 month) - 
14 cells with mix culture are represented by small grid 

CRITICAL ANALYSIS OF THE RESULTS 

Some of the questions posed when this experimental set was launched can be answered 

looking to the results, but a critical analysis must be done. 

To verify which is more profitable – monoculture of oysters or scallops, or polyculture – it is 

necessary to have market values, since the results obtained are measured in total biomass 

harvested for each species. In a simulation representing one month of real time it seems that 

oysters grow more quickly than scallops – oysters are seeded with a smaller size than scallops, 

and the rate of growth is, generally, faster in smaller individuals.  

Monoculture of oysters gives better results when seeding area is concentrated in the inner 

region, while monoculture of scallops gives better results when they are spread over the outer 

region. When polyculture is adopted, best results point to oysters separated from scallops – 

oysters in the inner region and scallops in the outer region, reinforcing the monoculture 

trends. 

Fifth experimental set 

To verify if the trends revealed in previous experiments were reliable, based on one month 

real time simulations, a series of one year and a half simulations were realized. Inner and outer 
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areas were the focus in the longer experiments and Table 5-10 lists the experiments that were 

replicated, now with a realistic complete simulation, but with a minor number of iterations. 

Table 5-10: Experiments extended to one year and a half 

Experiment Description 

DM::IO.60_oys Oysters spread over inner and outer areas 

DM::I.30_oys+O.30_oys Oysters spread equally between inner and outer areas 

DM::IO.60_sca Scallops spread over inner and outer areas 

DM::I.30_sca+O.30_sca Scallops spread equally between inner and outer areas 

DP::IO.30_oys+IO.30_sca Oysters and scallops spread over inner and outer areas 

DP::I.30_sca+O.30_oys Scallops in inner area and oysters in outer area 

DP::I.30_oys+O.30_sca Oysters in inner area and scallops in outer area 

 

The results obtained are presented in the following sections. 

MONOCULTURE EXPERIMENTS - OYSTERS 

Table 5-11 makes a summary of the best results obtained (related to the initial values of the 

production indicators - Table 5-6). A first analysis to the numbers, after one complete 

simulation, suggests that the outer area seems to be better for oyster culture than inner area. 

Table 5-11: Results from monoculture experiments – oysters (60 cells, 1 555 200 steps – 1.5 year) 

Task 
Best value 

(P.I.) 

Partial total 

I (#cells) 

Partial total 

O (#cells) 

Absolute 

Gain (P.I.) 

Gain 
Ratio 

Worst Value 

 (P.I.) 

DM::IO.60_oys 2 947 106 706 797 (22) 2 240 309 (38) 2 946 527 5094.6 2 494 308 

DM::I.30_oys+O.30_oys 2 867 246 941 772 (30) 1 925 474 (30) 2 866 668 4956.5 2 670 683 

 

The difference between maximum and minimum values for the production indicator (related 

with the minimum) differs according the experiment:  

 DM::IO.60_oys – 18.2% 

 DM::I.30_oys+O.30_oys – 7.4% 

The best solution, obtained in experiment DM::IO.60_oys, tends to occupy more cells in the 

outer area, which contradicts the results from one month simulation (cf. Table 5-7). Figure 

5-30 shows the distribution of cells with oysters from experiments DM::IO.60_oys and 

DM::I.30_oys+O.30_oys. There is no evident trend for the oysters locations, although in each 
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area they tend to occupy the locations where the water dynamics is more intense (Duarte et 

al., 2005b). 

 

Figure 5-30: Graphical representation of the best solutions for experiments DM::IO.60_oys and 
DM::I.30_oys+O.30_oys (1.5 year) 

 

MONOCULTURE EXPERIMENTS - SCALLOPS 

Table 5-12 makes a summary of the best results obtained (related to the initial values of the 

production indicators - Table 5-6). A first analysis to the numbers, after one complete 

simulation, suggests that the outer area is better for scallops culture than inner area. 

Table 5-12: Results from monoculture experiments – scallops (60 cells, 1 555 200 steps – 1.5 year) 

Task 
Best value 

(P.I.) 

Partial total 

I (#cells) 

Partial total 

O (#cells) 

Absolute 

Gain (P.I.) 

Gain 
Ratio 

Worst Value 

 (P.I.) 

DM::IO.60_sca 10 311 170 1 082 796 (7) 9 228 375 (53) 9 249 093 8.7 7 090 869 

DM::I.30_sca+O.30_sca 8 194 084 
2 356 906 

(30) 
5 837 178 (30) 7 132 006 6.7 7 079 137 

 

The difference between maximum and minimum values for the production indicator (related 

with the minimum) differs according the experiment:  

 DM::IO.60_sca – 45% 

 DM::I.30_sca+O.30_sca – 15.7% 

and the best solution, obtained in experiment DM::IO.60_sca, tends to distribute almost all 

cells in the outer area, which confirms the results from one month simulation (cf. Table 5-8). 
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Figure 5-31 shows the distribution of cells with scallops from experiments DM::IO.60_sca and 

DM::I.30_sca+O.30_sca. 

 

Figure 5-31: Graphical representation of the best solutions for experiments DM::IO.60_sca and 
DM::I.30_sca+O.30_sca (1.5 year) 

 

POLYCULTURE EXPERIMENTS – SCALLOPS AND OYSTERS 

Table 5-13 makes a summary of the best results obtained (related to the initial values of the 

production indicators - Table 5-6).  

Table 5-13: Results from polyculture experiments - oysters (30 cells) and scallops (30 cells) [1555200 
steps, 1 year and half] 

Task 
Best value 

(P. I.) 

Partial total 

I (#cells) 

Partial total 

O (#cells) 

Absolute Gain 

Oyster/Scallop 
(P.I.) 

Gain Ratio 

Osyter/Scallop  

Worst 
value 

(P.I.) 

DP::IO.30_oys 

+IO.30_sca 
5 932 032 

oys: 597 361 

(16) 

sca: 733 506 

(9) 

oys :698 149 

(14) 

sca: 3 903 015 

(21) 

1 295 221 / 

4 105 482 
4479 / 7.73 4 878 624 

DP::I.30_sca 

+O.30_oys 
3 972 678 

sca: 

2 036 264 

oys: 

1 936 414 

1 936 125 / 

1 505 225 
6695 / 2.83 3 172 454 

DP::I.30_oys 

+O.30_sca 
6 422 176 

oys: 

1 073 752 

sca: 

5 348 423 

1 073 463 / 

4 817 384 
3714 / 9.07 5 646 960 

 

The difference between maximum and minimum values for the production indicator (related 

with the minimum) differs according the experiment:  
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 DP::IO.30_oys+IO.30_sca – 21.6% 

 DP::I.30_sca+O.30_oys – 25.2% 

 DP::I.30_oys+O.30_sca – 13.7% 

Although the best solution was obtained when oysters were in inner area and scallops in outer 

area, obtained in experiment DP::I.30_oys+O.30_sca, outer area reveals better performance 

for oysters and scallops grow, which aligns with the trends revealed by monoculture 

experiments. 

Figure 5-32 and Figure 5-33 show the distribution of cells with oysters and scallops from 

experiments DP::I.30_oys+O.30_sca, DP::I.30_sca+O.30_oys and DP::IO.30_oys+IO.30_sca. 

 

Figure 5-32:  Graphical representation of the best solutions for experiments DP::I.30_oys+O.30_sca 
and DP::I.30_sca+O.30_oys (1.5 year) 
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Figure 5-33: Graphical representation of best solution for experiment DP::IO.30_oys+IO.30_sca (1.5 
year) 

CRITICAL ANALYSIS OF THE RESULTS 

In the case of oysters culture, the results obtained with a partial real time simulation (one 

month) reveals a trend that is not confirmed with a total real time simulation. In the first case, 

inner area had better results and in the second, outer area is more profitable. 

In the case of scallops culture, the results obtained by both real time experiments coincide. 

5.4.2  Carrying Capacity 

The experiences on carrying capacity were based on the results from the work of Duarte et al. 

(2003) in Sungo Bay.  

Some simple experiments were done with oysters, taking advantage from its rapid growth in 

the early stages of the simulation. The study focused in the inner area of the lagoon (Figure 

5-14) with 88 areas available, where multiples of five areas were seeded, from five to 60, with 

two different densities of oysters – the value used in the previous experiences (55 

individuals/m2) and the double (110 individuals/m2). For each density value, seven simulations 

with different time spans were performed, as resumed in the Table 5-14. 
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Table 5-14: Carrying capacity experiments 

Number of steps Simulation time Number of cells to seed 

5 Initial value 

5, 10, 15, 20, 25, 30, 35, 
40, 45, 50, 55, 60 

1000 8 hrs 20 min 

5000 41 hrs 40 min 

25000 8 days 16 hrs 20 min 

50000 17 days 8 hrs 40 min 

86400 30 days 

172800 60 days 

 

The results are shown graphically in the following figures. 

 

Figure 5-34: Carrying capacity studies for oysters (density = 55 individuals/m
2
) 

It is easily seen that while in Figure 5-34 (normal density) the rate of growth is more or less 

linear for each simulation, when the density is doubled the growth rate loses its linearity when 

more than eight days are simulated (Figure 5-35). After 60 days, the result obtained with 60 

seeded cells is practically the same than the obtained with 10 seeded cells, perfectly 

demonstrating the negative feedback to oysters’ growth resulting from food limitation. 
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Figure 5-35: Carrying capacity studies for oysters (density = 110 individuals/m
2
) 

5.5  Environmental DSS with AHP 

The experiments made to test the AHP integration in the platform involved scenarios applied 

to the management of clam farming in Ria Formosa lagoon (Figure 5-36), integrating three 

opposing criteria: one simple economic criterion, one environmental criterion and one merely 

ecologic criterion.  

The decision process integrated aquaculture revenue (euro / kg) as indicator for the economic 

criterion, water quality as indicator for the environmental criterion and chlorophyll 

concentration as indicator for the ecologic criterion. 

The goal here is to maximize the economic criterion, measured by clams biomass (“Ruditapes 

decussatus biomass”) per m2 multiplied by the price per kg (considered as 5.00 €/kg, typical 

value in Portugal), the ecologic criterion, measured by “Phytoplankton biomass”, while 

minimizing the water quality criterion, measured by the “Ammonia” variable. The AHP analysis 

assumes that all criteria must be maximized or minimized – therefore, the indicator for water 

quality criterion was changed to maximize the inverse of ammonia concentration (1 / 

Ammonia). 

To distinguish the proposals sent to AHP, different criteria weights were defined: 

 Consider that all criteria have the same importance – matrix A1; 
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 Consider the environmental criterion (concentration of ammonia) more important 

than the others – matrix A2; 

 Consider the economic criterion (value of harvested clams) more important than the 

others – matrix A3. 

 

Figure 5-36: Ria Formosa clam farming areas (white cells) 

The three different pairwise comparison matrices (PCM) obtained (A1, A2 and A3) are presented 

in Figure 5-37: 

 

Figure 5-37: PCM matrices defined to AHP analysis 

Three scenarios were generated for the experiments: 

 The first scenario simulated is referred as Business As Usual (BAU) scenario, 

considering the usual exploration of the system (normal density of clams in licensed 

cultivation areas); 
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 The second scenario considers the hypothetic double density exploration of clams 

farming in licensed areas; 

 The third scenario considers triple density of clams farming, maintaining the number of 

licensed areas where clams are cultivated – the intertidal areas of the lagoon.  

The simulation results for the different density concentrations of clams are shown in Table 

5-15, considering the mean values of the variables for the lagoon area: 

Table 5-15: Simulation results for different clams' density 

Scenario / Criterion 
Ammonia 

(µmol l
-1

) 

Phytoplankton 

(µg Chl l
-1

) 

R. decussatus 

(kg (DW) m
-2

) 

Normal density 11.4 0.33 1.4 

Double density 17.7 0.29 2.2 

Triple density 24.7 0.27 3.0 

 

For a more realistic analysis, one controllable variable was defined: the clams price per kg was 

considered fixed in 5.00€/kg or elastic, decreasing 10% per kg if clams biomass exceeds 2kg m-2 

and decreasing more 10% if clams biomass exceeds 3kg m-2, reflecting the market price 

variation when the offer increases. 

The normal, double and triple densities combined with the controllable variable generated six 

scenarios: scenarios 1 to 3 with fixed price, scenarios 4 to 6 with elastic price, although 

scenarios 1 and 4 are coincident because the price remains unchanged with normal density. 

The values inserted for the indicators in each scenario generated the following results: 

Table 5-16: Scenarios with indicators values 

Scenario / Indicator 1/Ammonia Phytoplankton Clam production x price 

Sc1: Normal density – fixed price 0.0877 0.33 7.00 

Sc2: Double density – fixed price 0.0565 0.29 11.00 

Sc3: Triple density – fixed price 0.0405 0.27 15.00 

Sc4: Normal density – elastic price 0.0877 0.33 7.00 

Sc5: Double density – elastic price 0.0565 0.29 9.90 

Sc6: Triple density -  elastic price 0.0405 0.27 12.15 

 

Running the AHP application (cf. 4.5.2 ) combining scenarios results and pairwise comparison 

matrices, produced the following results: 
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Table 5-17: AHP scores under fixed and elastic prices with PCM A1, A2 and A3  

Scenario / PCM A1 A2 A3 

Sc1: Normal density – fixed price 0.5265 0.6447 0.3831 

Sc2: Double density – fixed price 0.1888 0.1821 0.1970 

Sc3: Triple density – fixed price 0.2846 0.1731 0.4199 

Sc4: Normal density – elastic price 0.5261 0.6445 0.3824 

Sc5: Double density – elastic price 0.1945 0.1849 0.2062 

Sc6: Triple density -  elastic price 0.2794 0.1706 0.4114 

 

The graphical outputs generated by the AHP application gives a quick visual information of the 

results, as showed in Figure 5-38, where scores for scenarios with fixed prices appear in 

column (a) and scores for scenarios with elastic prices appear in column (b). 

Several conclusions may be drawn from these results. Fixed or elastic prices have similar 

behaviours, considering the rules enounced for elastic prices. The BAU scenario (Sc1/Sc4) is 

the preferred exploration scenario, except when the economic criterion is considered the 

major factor for decision (A3) – in this case, there is a small advantage from scenarios with 

triple density of clam culture. Whatever the criteria importance considered, the scenario with 

double density should be avoided because it seems the more disadvantageous. 

This study is not a complete assessment of the consequences of the scenarios referred, but 

solely an attempt to approach their effects at the lagoon scale. One possible evolution of this 

approach could be the integration of metaheuristics methods with AHP methodology in order 

to maximize the sustainability of the scenarios. In experiments realized, criteria used in AHP 

were based in single indicators derived from single variables. In a more realistic study, 

indicators should be calculated integrating values from more than one state variable. For 

instance, the water quality criterion depends not only from ammonia level but also from 

nutrients, oxygen saturation, chlorophyll, etc., and there are indicators that combine different 

variables by weighting each (Austoni et al., 2004; Duarte et al., 2007). 
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Figure 5-38: Graphical representation of AHP scenarios analysis: (a) fixed prices; (b) elastic prices 

5.6  Conclusions 

The experiments described in this chapter and the results obtained show that simulation of 

complex ecosystems don’t have to be incomprehensible to the end users. 

Simple aquaculture optimization experiments were presented, with several alternatives, to 

demonstrate the flexibility and the power of the developed applications that constitute the 

EcoSimNet framework for ecological simulations. The existence of an agent with optimization 

algorithms to determine the carrying capacity or the optimal scenario for bivalves exploitation, 
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was a demonstration of the concept, together with the applicability of the AHP methodology 

to integrate distinct and antagonistic criteria in ecological management decisions. 

Considering the complex network of processes and feedbacks that maintain coastal 

ecosystems, tools designed with high-level of communication and online supervision are 

necessary for managers and stakeholders, to help design management practices towards 

sustainability, without hampering economic activities, leisure and environmental preservation. 
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6  Conclusions and Future Work 

“We are what we do, but we are mainly what we do to 
change what we are.” 

Eduardo Galeano (Uruguayan writer) 

6.1  Summary and Conclusions 

The integrated management of water resources and coastal ecosystems in order to achieve a 

sustainable development is an attractive but, almost, academic idea: there are hardly any real 

world successful cases. This type of management must be able to integrate constantly new 

factors that could influence decisions – factors related with new knowledge about the 

ecological processes, or related with new human actions over the environment. Computational 

systems, that help managers and decision makers to foreseen consequences of the decisions 

over the ecosystems, are welcome to improve the quality, the coherence and to reduce the 

time needed to take a decision. 

The research presented in this work reveals some highlights to facilitate the development of 

an environmental decision support system (EDSS) integrating simulation tools, agents to 

generate and optimize exploration scenarios and a methodology to weight different and 

antagonistic criteria in ecological management decisions. Thinking about the need for the 

integration of different simulators, developed by different research teams, and different 

applications that support ecosystems management, the framework EcoSimNet was centred in 

one common communication language (ECOLANG) that facilitates the interface between all 
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the participants in the network, and the interoperability between heterogeneous applications 

and users. 

An important feature exhibited by this work is the facility with which people without expertise 

in the ecological domain interact with the framework by modifying existing configurations, 

generating hypothetical exploration scenarios, defining their own interests and analyzing the 

results, getting an idea about the consequences of actions devised. 

The simulator is the fundamental element in any computational platform that intends to study 

an ecosystem. It integrates all the knowledge about the physical and biogeochemical 

processes, as well as their interrelationships and feedbacks. In this work, the simulator 

EcoDynamo was designed using a modular structure, to enable the integration of new 

communications, commands and multi-thread modules – the multi-thread module is 

responsible for the parallelization of the simulation processes, accelerating the simulation 

execution, the communications module is responsible for the interfaces with other 

applications, and the commands module acts as the semantic module, responsible for the 

interface with other applications, giving meaning to the commands received and reflecting to 

the exterior the internal dynamics of the simulation. 

All the simulation processes belong to a library of dynamic linkable objects, easily expandable 

to include new processes or knowledge about the ecosystem. The design also included the 

creation of new interfaces in those classes, enabling their usage by other simulators, written in 

different programming languages and developed by different research teams. 

To include the entities that lead and have interest in an aquatic ecosystem, a multi-agent 

simulation system was developed to integrate the simulator and applications representing 

partners involved with the system – stakeholders and users. The framework received the name 

of EcoSimNet and the applications of the computational system are connected by TCP/IP 

sockets, over which ECOLANG messages are exchanged. The applications that represent local 

partners could be developed as agents, containing built-in optimization algorithms, that have 

goals to achieve in behalf of its represented. The flexibility of EcoSimNet enables the existence 

of several simulators in parallel and provides support for the coexistence of clusters (for 

simulation or optimization), used for multi-objective simulations and management issues. 

The agent is the main interface to configure the simulations. Hydrologic models for the 

watershed flow and forcing functions generate the water dynamics to run the model. The 

results of the ecological model for the different scenarios can be compared with 
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environmental and economical indicators, through a decision support system included in the 

agent or in external applications, and help the stakeholders in the decision making process. 

To test the framework and its functionalities, different scenarios on two different models were 

simulated and the results obtained worked as proofs of concept. Scenarios for aquaculture 

optimization and for determination of the system carrying capacity were simulated with the 

Sungo Bay model, as well as a brief experiment in ecosystem management done with the 

model of Ria Formosa. 

From a rationalist point of view, the idea of environmental decision support systems (EDSS) is 

attractive, and DSS are vastly successful in fields that operate predominantly in rational 

principles, like scheduling, air traffic, and management of order flow or manufacturing plans. 

When the domain is politically dominated, like the natural environment, the rational argument 

suffers a setback because it has to deal with multiple and conflicting criteria, expectations, 

perceptions and hidden agenda. The politician decision maker has to take decisions that are 

not only based on rationality, and he doesn’t want a system that helps him to take decisions: 

he needs a system that could justify the decisions. The EDSS could be relevant for policy 

making since it involves politicians, population and stakeholders, empowered by shared 

reliable information. 

Another purpose of any EDSS is to make the participants in the decision process to think in a 

structured way about the problem. A common language must emerge to describe the basic 

elements of the decision process, clarifying the definition of criteria, objectives and 

constraints. The formulation of good questions highlights the discovery of good answers and 

contributes to a shared responsibility for any decision taken. Data compilation, model building 

and scenario analysis should be focused to the requirements of the EDSS to ensure that 

information finally available is complete and meaningful. The design of an EDSS should 

primarily answer the questions of “what for” and “why”, to reach the answer to the question 

“how”. 

An EDSS should be used routinely in the decision processes, and its usage is the measure of its 

success. The institutional integration of an EDSS, the change and learning processes can take 

many years. The expectation is that the framework described in this document can be used by 

the institutional authorities and private environmental enterprises in order to help the 

national and international management of coastal and aquatic ecosystems. 
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6.2  Future Work 

The future of the system will include the formation of coalitions between similar agents in 

order to better achieve their objectives without undermining sustainable development in the 

region and in the ecosystem in particular. This type of coalitions represent associations of 

producers of shellfish, for example, associations of municipalities or associations for tourism or 

owners. 

The integration of all these applications and agents in the system will generate more 

distinguishable scenarios and bring the simulations closer to the reality, and will provide a 

more comprehensive decision-making process focused on the management of coastal 

ecosystems. 

Certainly, the methods and procedures adopted in this work could be applied to other 

ecosystems, and with the appropriate approaches, to other decision’ systems with multiple 

and conflicting interests in confront. 

One interesting application of these methodologies could be tested in the project of a 

Calibration Agent (CA) with automatic and optimized processes for the calibration of “any” 

model, without access to its database or the mathematical equations that describes the model 

behaviour. This agent could be integrated in the EcoSimNet framework supplying the system 

with the VV&A phases of the simulation process (cf. 2.2.1 ), communicating through ECOLANG 

messages and implementing some ideas conceptualized in Pereira et al. (2004a).  
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Annex 1 – EcoDynamo User’s Manual 

The complete user’s manual of EcoDynamo is accessible in the help section of the application 

and a copy of it is shown in this section. 

What is EcoDynamo? 

EcoDynamo (Ecological Dynamics Model) is an application built to enable physical and 

biogeochemical simulation processes of aquatic ecosystems. It is an object oriented program 

application, written in C++ language, with a shell that manages the graphical user interface, 

the communications between classes and the output devices where the simulation results are 

saved. 

The simulated processes include: 

 hydrodynamics of aquatic systems: current speeds and directions; 

 thermodynamics: energy balances between water and atmosphere and water 

temperature; 

 biogeochemical: nutrient and biological species dynamics; 

 anthropogenic pressures, such as biomass harvesting. 

The ecosystem characteristic properties are described in a model database: definitions as 

morphology, geometric representation of the model, dimensions, number of cells, classes, 

variables, parameter initial values and ranges are present. 

The user can choose between file, chart or table to store the simulation results. These output 

formats are compatible with some commercial software (like MatLab®) products, enabling 

their posterior treatment. 

Different classes simulate different variables and processes, with proper parameter and 

process equations. Classes can be selected or deselected from shell dialogs determining its 

inclusion or exclusion in each simulation run of the model. 

Simulation runs can be traced in real time, observing the threads activity and the inter-classes 

messages, or analyzed a posteriori with the help of log files, activated previously before the 

simulation run. 
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This application has an interface module (implementing the EcoDynamo Protocol) that enables 

communications with other programs for external control. For example the simulation runs 

can be controlled by protocol commands like start / stop / pause / step. 

The messages interchanged with other applications can be monitored activating the trace of 

protocol messages. 

Command Line Arguments 

EcoDynamo can be launched from the command line enabling the customization of some 

runtime values. The usage is:   

EcoDynamo [options] 

Where the options are: 

Option Significance Default value 

-port <portNumber> Listen port for ECOLANG messages (TCP/IP) 45000 

-name <simulatorName> Simulator name for EcoSimNet framework – 

name without spaces 

EcoDynamo 

-recover Recover last model configuration from 

“LastConfiguration” folder 

 

 

When the simulator is launched by double clicking the executable file, the default values are 

assumed. The easiest way to change default values is to define a batch file with the command 

line filled with the new values, and run the batch file. Example of a batch file: 

EcoDynamo   -name  EcoDynamo_2  -port  46000  -recover 

Main Window 

The  main window of EcoDynamo is the privileged interface for the user to manipulate the 

models simulation. 
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When a model is opened its name is added to the name of the application in the title area.  

The Main Window has 5 principal areas: Menus, Simulation Panel (also called Execute Panel), 

Output Panel, Communications Area and Status Bar. 

The Communications Area is hidden when the application starts and becomes visible when 

options of the Display Menu are activated. 

Model Menu 

The Model Menu is used to define new models, open and remove existing models, close the 

working model and set the default model when the application starts. There is also an option 

to save the model configuration with the current values of variables and parameters. 

The application exit command is also present in this menu. 

 

 New... - define a new model with proper Configuration Files. 

 Open... - open a defined model. 
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 Close - close the working model. 

 Remove... - remove an existing model. 

 Defaults... - set the default model for the application. 

 Save Variables and Parameters... - save the current model configuration. 

 Exit - exit EcoDynamo application. 

New Model 

The New submenu opens a dialog where the user defines a new model for simulation.  

In this dialog the user must browse for the directory where the model is defined (Configuration 

Files present), supply a name for the model, define if the model will be the default model on 

start-up of the EcoDynamo application and if the model is automatically initialized on opening. 

When all the mandatory Configuration Files are present in the browsed directory, the dialog 

looks like the following figure (if some configuration file misses, background will be gray): 
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The user can select the Classes, variables and Time specs for the simulation. 

After click OK button one entry is added to the Model Properties file. 

Open Model 

The Open submenu opens a dialog where the user selects one already created model for 

simulation (saved in Model Properties file).  

If the model was defined as automatically initialized after opened, it is initialized after the click 

on the OK button. 

 

If one model was in use the EcoDynamo Properties file is saved in the model directory with the 

simulation properties (Time specs, Classes and Variables). 

Close Model 

The Close menu closes the working model.  

The EcoDynamo Properties file, with the simulation properties, is saved in the model directory. 

Remove Model 

The Remove submenu opens a dialog where the user selects one already created model for 

deletion.  

The corresponding entry in the Model Properties file is removed. 
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Defaults Model 

The Defaults submenu opens a dialog where the user selects the default behaviour for each 

model and the default model on start-up.  

The corresponding entries in the Model Properties file are changed. 

 

For the default model on start-up the background color of the Location textbox is changed to 

smooth yellow. 

Save Model Configuration 

The Save Variables and Parameters option provides the facility of saving the model 

configuration, with the current values of variables and parameters, time step and classes 

selected. 

The user should define the folder in which the new model database will be saved. 
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Exit 

This options exits the EcoDynamo application. 

If one model is in use the corresponding EcoDynamo Properties file is saved. 

Specs Menu 

The Specs Menu is used to define the simulation options for the model run, like time specs, 

classes selected, variables to output and sub domain of the model. 

 

 Time specs... - defines time specs for simulation and output register. 

 Classes... - selects Classes for simulation and Variables for output. 

 Sub Domain... - selects domain for simulation. 

 Morphology... - checks morphology values 
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Time specs 

The Time Specs submenu opens a dialog where the user defines the time specifications, for 

simulation and output, in different tabs. The user can also specify the configuration of cyclic 

simulations: 

The Simulation tab select the simulation time step and duration: 

 

If the checkbox EcoWin reference time is selected the time for each time step is based on the 

EcoWin® reference time. 

The Run mode option is linked with cyclic simulation, but it is not completely integrated with 

the facilities developed in the "Cyclic Simulation" tab. 

The other options of this menu are: 

 Integration tab - selects type of time integration 

 Output Register tab - defines output register frequency 

 Cyclic Simulation tab - activates cyclic simulation and define number of periods 
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Integration 

The Integration tab only allows the "Euler" integration. The two types of Runge-Kutta time 

integration will be implemented in future releases. 

 

Output Time 

The Output Register tab select the output register frequency and the output start and finish 

time: 



A1 – EcoDynamo User’s Manual 

- 232 - 

 

Cyclic Simulation 

The Cyclic Simulation tab enables the activation of cyclic simulations and the definition of the 

number of cyclic periods: 

 

Pressing the "Define Periods" button will open the Periodic Simulations Configuration window. 
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Periodic Simulations Definitions 

In this window the user can configure the periods of the periodic simulations. The number of 

periods is configured in the Cyclic Simulation tab of the Time specs window. 

In each line the fields Start Time and Finish Time refer the simulation time, the Cycle and Time 

Unit fields refer the cycle duration and the First File Index field refers the name of the first file 

that must be considered to read the values of the hydrodynamic variables. The file names start 

by "HydroTimeSeriesValues_" and are appended by the file index (description in Mean Values 

Files 

 

Classes 

The Classes submenu opens a dialog where the user select the classes for simulation and the 

variables to output results in different tabs. 

The Classes definition tab selects the classes for simulation: 
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The  button select classes for simulation (transfers the classes marked in the 

"Available classes" list to the "Selected classes" list). 

The  button deselect the classes marked in the "Selected classes" list. 

In the "Variables output selection" tabbed panel the user selects the variables for output 

register. 

Variables 

From the Classes submenu the user selects the variables for output results. 

The tab for variables output selection is: 
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The  button transfers the selected variables in the "Available variables" area to all 

output options. 

Each  button copies the variables selected in "Available variables" list to the related 

output area. 

Each  button removes the variables selected from the corresponding output area. 

Sub Domain 

The Sub domain submenu opens a dialog where the user select the domain for the simulation: 
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The different exclusive options for points selection are: 

 All Boxes - complete domain. 

 Read from file... - read sub domain points from a file. Button click opens a file dialog 

enabling the user to browse the file's location. Files must have the format described in 

Points File to be considered. 

 Boxes - select only the boxes listed in the textbox. 

 Columns and Lines - the boxes selected are the intersection of the line and column 

numbers listed in the textboxes. 

Morphology 

This dialog shows the model's general morphology - name, grid size and type, number of lines, 

number of columns and number of layers. 
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The information of this panel is filled only after the model initialisation. 

The tab Boundaries is not used in this version of EcoDynamo. 

Output Menu 

The Output Menu is used to select the options for register the model output results. 

The user can choose different output devices like file, chart and table.  

It is also possible to log the messages exchanged between the different classes and at different 

simulation steps. 

 

 File... - select output file, variables and points. 

 Chart... - select output charts, variables and points. 

 Table... - select output table, variables and points. 

 Logs... - select log simulation steps and file type 

The selection of the output options can be done in the Output Panel 
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Output File 

The File submenu selects the file and the boxes for register the simulation variables output 

results in two steps. 

Step 1 - Select file name 

 

The file types can be "xls", "hdf" or "txt". 

The xls and txt files are formatted with Tab Separated Values. 

The "hdf" format follows the HDF specifications - see NCSA http server 

(http://hdf.ncsa.uiuc.edu) 

Step 2 - Select points to register 

After entering the filename and click on the "Save" button, one dialog (similar to Sub Domain) 

appears to select the register points: 
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The name of the file chosen will be displayed in the Output Panel. 

Output Chart 

The Chart submenu selects the boxes for register the simulation variables output results in 

chart format and the type of chart. One dialog (similar to Sub Domain) appears for select the 

register points: 
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The chart types available are Line Plot, Filled Contour Plot and Surf/Contour Plot. 

To create the output charts, one for each variable, the EcoDynamo launches the MatLab® 

application and benefits from all the features that MatLab® supplies to manipulate the chart 

images. 

Output Table 

The Table submenu selects the boxes for register the simulation variables output results in 

table format. One dialog (similar to Sub Domain) appears for select the register points: 
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The table output format is not implemented in this version. 

Output Logs 

The Logs submenu presents a dialog to specify the steps where the messages exchanged 

between the different classes will be logged: 
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The log file format can be specified by the user within "xml", "xls" and "txt". 

The xls and txt formats are saved with Tab Separated Values. 

The xml format is more elaborated and is used for more sophisticated pos-processing 

methods. 

The format of the file behind each type is described in Log File. 

Execute Menu 

The Execute Menu controls the simulation runs. 

 

 Initialise - initialise model for simulation. 

 Step - run the simulation one step. 

 Run - run the simulation. 

 Pause - pause the simulation. 

 Stop - stop/end the simulation. 

The control of the simulation runs can be done in the Simulation Panel 

Layout Display Menu 

The actions of the Display Menu enable the user to see information related with simulation 

execution (trace simulation) and to display information related with the communications 

between the EcoDynamo and agents, behind the EcoDynamo protocol, and the list of agents 

known by the EcoDynamo. 
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The Agents List option opens one frame with a table of agents known by the EcoDynamo. 

The ECOLANG Messages option opens one frame that enables the trace of the received and 

transmitted messages between EcoDynamo and agents. 

The Run Thread Activity and Intra-Classes Messages expand the main window of the 

EcoDynamo in order to include two areas with the trace to simulation activity. 

Agents List 

This frame shows the list of agents known by the EcoDynamo. The columns of the table 

represent the index of the agent entry in the list of agents, the identifier of the agent, the 

agent name, the name and the address of the host computer of the agent, the port number 

where the agent listens for connections and the connection state. 

 

ECOLANG Messages 

This frame displays the ECOLANG messages exchanged between EcoDynamo and the agents 

connected to it. The user can select the trace to the received and / or transmitted messages. 
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The messages received are headed by +++ Rx +++ and the messages transmitted are headed by 

---- Tx ----, respectively. 

Run Thread Activity 

The run thread activity is shown in the Main Window, that is expanded when the option Run 

Thread Activity is selected in the Display menu. When toggled on, the main window creates 

one text area to display the activity of the Run Thread, namely the calls to the simulation 

functions in each class (Go, Integrate, Reinitialize). 
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Intra-Classes Messages Area 

The intra-classes messages area is shown in the Main Window, that is expanded when the 

option Intra-Classes Messages is selected in the Display menu. When toggled on, the main 

window creates one text area to display internal messages of the simulation objects, since they 

invoke the DebugMessage in the base class. 

 

Help Menu 

The Help Menu presents the contents of the users manual and the about screen. 

 

 Contents - presents this help manual. 

 Index - presents the index of the users manual 
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 Commands - presents the main window commands 

 Keyboard - presents the keyboard shortcuts 

 Simulation Panel - describes the layout of the simulation panel 

 Output Panel - describes the layout of the output panel 

 Configuration Files - describes the format of the model configuration files 

 Output Files - describes the format of the output files 

 Properties Files - describes the format of the properties files used by EcoDynamo 

 About - presents the about screen information. 

Keyboard Shortcuts 

Some commands are mapped with keyboard shortcuts. The current list is the following: 

Command Shortcut 

New Model... Ctrl + N 

Open Model... Ctrl + O 

Close Model Ctrl + L 

Remove Model... Ctrl + M 

Default Model... Ctrl + D 

  

Initialise  Ctrl + I 

Step  Ctrl + T 

Run Ctrl + R 

Pause Ctrl + P 

Stop Ctrl + S 

  

Exit EcoDynamo Ctrl + F4 

About 

The About Menu presents the about screen with information about the application version, 

developers and copyright. 
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Simulation Panel 

The Simulation Panel presents the simulation state and enables the control of the simulation 

runs. This panel synthesizes the Execute Menu. 

 

The buttons have the general symbols used in hi-fi control panels: 

  Step button - run one step of the simulation. 

  Run button - execute the simulation until stopped or paused. 

  Toggled on when model running. 

  Pause button - exchange between pause and run mode. 

  Toggled on when model paused. 
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  Stop button - stops the simulation run. 

The labels has the following meaning: 

 Status - simulation status (Idle, Running, Paused, Stopped). 

 Step - simulation step number. 

 Foreseen Nr of Steps - expected number of steps for all simulation. 

 Elapsed time - simulation time from the beginning. 

 Estimated time left - presents the expected time for simulation end. 

The Status Bar complements the information of the simulation panel, adding the date and time 

of the simulated step in the model. 

Output Panel 

The Output Panel presents the outputs selected for the simulation run and enables the control 

of the output type. 

 

The checkboxes enable/disable the corresponding output device (File, Chart and Table).  

Each  button opens the dialog to select the points for the corresponding output 

(see File, Chart and Table). 

The  button opens the dialog to select the filename of the output file (see File). The 

filename is printed in the combo-box area. 

The checkbox Only Mean Values enables a special kind of output register that saves only the 

mean values (see Mean Values File). The number of samples in each file is configured in the 

respective field. 
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The checkbox HDF Separated Files saves the outputs in several HDF formatted files (follow the 

HDF specifications - see NCSA http server (http://hdf.ncsa.uiuc.edu). The number of samples in 

each file is configured in the respective field. When this option is selected one sequence 

number is appended to the filename. 

This panel is an extension of the Output Menu. 

Configuration Files 

The configuration files are the files used to initialise and run the model for simulation. Each file 

has its own significance and utility.  

The mandatory files are: 

 Morphology File - describe the morphology of the ecosystem, including the number of 

cells, localisation, geometry and boundary type of each one. 

 Classes File - list all classes that can be used by the simulation. 

 Variables File - each class has its own list of variables treated and their initial values. 

 Parameters File - each class has its own list of parameters and their initial, minimum, 

maximum and increment values. 

The following files are not mandatory but can be useful in some ecosystems or simulations: 

 Loads File -  requested when the loads process is active. 

 River Loads File -  requested when there are rivers loading to the model. 

 Losses File - requested when the model flows to the exterior. 

 Sea Boundaries File - file with the sea boundaries definitions. 

 Benthic Species File -  configures where there are benthic species spread by the model. 

 Sediments File -  configures the type of sediments existent in the model. 

 Points File - list sub domain points. 

All these files are saved in text format (tab or comma separated values) and can be accessed 

and modified by any text editor or commercial application (Excel, Word, Wordpad, Notepad, 

...). 
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Morphology File 

The morphology file must terminate with the suffix "Morphology.xls". 

It must have the format showed in the next figure: 

 

The field names NumberOfColumns, NumberOfLines and NumberOfBoxes are mandatories 

and the columns that follow each one of them define the dimensions of the model grid: 

 NumberOfColumns - number of cells in the longitude direction 

 NumberOfRows - number of cells in the latitude direction 

 NumberOfLayers - number of layers in 3-D models (can be omitted if it is 1)  

 NumberOfBoxes - product of the three previous values 

 Critical depth for land boundary - minimum value of water height considered for 

hydrodynamic calculations 

 ModelType - type of model (0D, 1D, 2DH, 2DV, 3D) 

After the model initialisation these values are displayed in the dialog of the Morphology menu. 

There must be an head line with the following mandatory labels: 

 Columns - number of cell column - increases from West to East (left-right) 

 Lines - number of cell line - increases from North to South (top-down) 

 Layers - number of cell layer - increases from deep to surface (bottom-up) - can be 

omitted if NumberOfLayers = 1 

 BoxDepth - cell depth (meters) - negative values for land 

 BoxLength - cell length (meters) 

 BoxWidth - cell width (meters) 

 BoxElevation - cell elevation of free surface (sea 0-level) 

 BoxType - cell type (1 - border cell, 0 - inner cell) 

 Nboundary - cell North boundary type 
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 Eboundary - cell East boundary type 

 Sboundary - cell South boundary type 

 Wboundary - cell West boundary type 

Boundary types are coded like: 

 0 - no frontier; 

 1 - river boundary; 

 2 - sea boundary; 

 4 - solid boundary (earth). 

Next picture shows the notation followed for the model grid numbering. 

 

Classes File 

The classes file must terminate with the suffix "Classes.xls".  

It must have the format showed in the next figure: 
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The labels Number of Classes, Class name and Status are mandatory. 

The column that follows the label Number of Classes must define the number of classes that 

will be used by the model. 

The line with labels Class name and Status head those with the classes names and their initial 

state of activation. There must be an agree between the number of classes defined and the 

number of lines with class names. 

The names of the classes are the names of the class objects defined by each DLL, included with 

the EcoDynamo code, that implements the simulation of the different processes.  

In this version of EcoDynamo the field Status is not taken into account because the class 

activation is done in the Classes menu and activation changes are saved when the model is 

closed in the EcoDynamo Properties File. 

Variables File 

Each class type has its own variables file. The file lists all the class variables, possibly with their 

initial values, and each class imposes its own format for the variables filling. 

The figure shows one example for the class Light: 
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Detailed information about each class is documented by the DLL class developer team. 

Parameters File 

Each class has its own parameters file. The file lists all the class parameters and their initial 

values. Each class imposes its own format for the parameters filling, and the minimum, 

maximum and increment values can also be found as auxiliary values for the model calibration, 

as well as the parameter units. 

The figure shows one example for the class Phytoplankton with the initial values and units: 
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Detailed information about each class is documented by the DLL class developer team. 

Loads File 

The loads file must terminate with the suffix "Loads.xls". 

It must follow the format showed in the next figure: 

 

The field names NumberOfLoads, NumberOfDaysForLoads, LoadLines, LoadColumns and 

LoadName are mandatories and act as headers: 

 NumberOfLoads - The line below contains the number of load discharges points.  

 NumberOfDaysForLoads - The line below contains the number of days with load 

discharges. 

 LoadLines - The lines below contain the line numbers of each load discharge point. The 

number of lines filled must agree with the number of loads defined. 

 LoadColumns - The lines below contain the column numbers of each load discharge 

point. The pair Line x Column defines the cell point. The number of lines filled must 

agree with the number of loads defined. 

 LoadName - The lines below contain the names of the load discharges entities. The 

number of lines filled must agree with the number of loads defined. 

For each load discharge point one column labeled FlowN must be added to the file (N is the 

flow number) with NumberOfDaysForLoads lines, one load value for each day. 

The label NumberOfHoursForLoads can replace the label NumberOfDaysForLoads with the 

correspondent significance. 
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River Loads File 

The rivers loads file must terminate with the suffix "Rivers.xls". 

The rivers loads file follows the idea of the loads file, and the format can be seen in the next 

figure: 

 

The field names NumberOfRivers, NumberOfDaysForFlowTimeSeries, InputFlowLines, 

InputFlowColumns, Boundary and RiverName are mandatories and act as headers: 

 NumberOfRivers - The line below contains the number of rivers.  

 NumberOfDaysForFlowTimeSeries - The line below contains the number of days with 

river flows. 

 InputFlowLines - The lines below contain the line numbers of each river point. The 

number of lines filled must agree with the number of rivers defined. 

 InputFlowColumns - The lines below contain the column numbers of each river point. 

The pair Line x Column defines the cell point. The number of lines filled must agree 

with the number of rivers defined. 

 Boundary - Direction of the river flow inside the cell: 

o 1 - Flow to North 

o 2 - Flow to East 

o 3 - Flow to South 

o 4 - Flow to West 

 RiverName - The lines below contain the names of the rivers. The number of lines filled 

must agree with the number of rivers defined. 

For each river one column labeled FlowN must be added to the file (N is the flow number) with 

NumberOfDaysForFlowTimeSeries lines, one flow value for each day. 
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The label NumberOfHoursForFlowTimeSeries can replace the label 

NumberOfDaysForFlowTimeSeries when the flows are registered by hour. 

Losses File 

The losses file must terminate with the suffix "Losses.xls". 

The losses loads file follows the idea of the loads file, as can be seen in the next figure: 

 

The field names NumberOfLosses, NumberOfDaysForLosses, LossesLines, LossesColumns and 

LossesName are mandatories and act as headers: 

 NumberOfLosses - The line below contains the number of losses discharges points.  

 NumberOfDaysForLosses - The line below contains the number of days with losses 

discharges. 

 LossesLines - The lines below contain the line numbers of each loss discharge point. 

The number of lines filled must agree with the number of losses defined. 

 LossesColumns - The lines below contain the column numbers of each loss discharge 

point. The pair Line x Column defines the cell point. The number of lines filled must 

agree with the number of losses defined. 

 LossesName - The lines below contain the names of the losses discharges entities. The 

number of lines filled must agree with the number of losses defined. 

For each loss discharge point one column labeled DischN must be added to the file (N is the 

discharge number) with NumberOfDaysForLosses lines, one loss discharge value for each day. 

The label NumberOfHoursForLosses can replace the label NumberOfDaysForLosses with the 

corresponding significance. 

Benthic Species File 

The benthic species file must terminate with the suffix "BenthicSpecies.xls". 
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It defines the cells and the species names where benthic species are spread within the model 

area. One example of this file is shown in the figure: 

 

The field names NumberOfCellsWithBenthicSpecies, ColumnCoordinate, LineCoordinate and 

SpeciesName are mandatories and act as headers: 

 NumberOfCellsWithBenthicSpecies - The line below contains the number of cells with 

benthic species.  

 ColumnCoordinate - The lines below contain the numbers of the cell columns with 

benthic species. 

 LineCoordinate - The lines below contain the numbers of the cell lines with benthic 

species. The number of lines and columns filled must agree with the number of cells 

defined with benthic species. 

 SpeciesName - The lines below contain the names of the benthic species present in the 

referred cell. The number of lines filled must agree with the number of cells defined 

with benthic species. Some examples of implemented benthic species: 

o Enteromorpha sp 

o Laminaria japonica 

o SaltMarsh 

o Ulva sp 

o Zostera marina 

o Zostera noltii 

o Crassostrea gigas 

o Chlamys farreri 

o Mytilus galloprovincialis 

o Ruditapes decussatus 
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Sediments File 

The sediments file must terminate with the suffix "Sediments.xls" and follows the format that 

can be seen in the next figure: 

 

The field names NumberOfCellsWithSediments, SedimentColumns, SedimentLines, 

SedimentName, Density, Porosity, LayerHeight and SedimentWaterRatio are mandatories and 

act as headers: 

 NumberOfCellsWithSediments - The line below contains the number of cells with 

sediments.  

 SedimentColumns - The lines below contain the numbers of the cell columns with 

sediments. 

 SedimentLines - The lines below contain the numbers of the cell lines with sediments. 

The number of lines and columns filled must agree with the number of cells defined 

with sediments. 

 SedimentName - The lines below contain the names of the sediment type present in 

the referred cell. Some examples of implemented sediment types: 

o Vasa 

o Vasa Arenosa 

o Areia 

o Areia Vasosa 

 Density, Porosity, LayerHeight and SedimentWaterRatio contain the values of the 

correspondent fields. 

Sea Boundaries File 

The sea boundaries file must terminate with the suffix "SeaBoundaries.xls" and follows the 

format that can be seen in the next figure: 
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The field names NumberOfSeaBoundaries, NumberOfDaysForSeaBoundaries, InputFlowLines, 

InputFlowColumns, Boundary are mandatories and act as headers: 

 NumberOfSeaBoundaries - The line below contains the number of cells with sea 

boundaries.  

 NumberOfDaysForSeaBoundaries - The line below contains the number of days with 

forced sea boundaries flows. 

 InputFlowLines - The lines below contain the numbers of the cell lines with sea 

boundaries. 

 InputFlowColumns - The lines below contain the numbers of the cell columns with sea 

boundaries. 

 InputFlowLayers - The lines below contain the numbers of the cell layers with sea 

boundaries. This field is only mandatory if the model has the number of layers greater 

than one. The number of lines and columns and layers filled must agree with the 

number of cells defined with sea boundaries. 

 Boundary - The lines below contain the number of the boundary flow. 

For each sea boundary point, one column labeled Velocity_N must be added to the file (N is 

the sea boundary flow number) with NumberOfDaysForSeaBoundaries lines, one load value for 

each day. 

The label NumberOfHoursForSeaBoundaries can replace the label 

NumberOfDaysForSeaBoundaries with the correspondent significance. 

The use of this file is rare and it is only necessary when there are no class to simulate the sea 

tide. 
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Points File 

The points file should have a format like the one showed in the next figure: 

 

The field names COLUNA_X_ and LINHA_Y_ are mandatories: 

 COLUNA_X_ - The lines behind contain the column numbers of each point. The pair 

Line x Column defines the cell point. 

 LINHA_Y_ - The lines behind contain the line numbers of each point. The pair Line x 

Column defines the cell point. 

In the example shown above the values of columns COLUNA_X_ and LINHA_Y_ were built from 

X and Y (p.e. extracted with the help of one GIS application). 

Output Files 

The output files are the files generated by the EcoDynamo application during the simulation. 

The results can be saved in General Output File or Mean Values Files.  

The Log File saves the communications between classes during the simulation in the specified 

steps. 

General Output File 

The General Output File have, by default, 3 formats: "xls", "hdf" or "txt". 

The "xls" and "txt" formats are text files saved with tabs separating values. The "xls" format is 

used for Excel application quick view with Tab Separated Values. The format is: 
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The header row contains the fields significance. The first seven columns are fixed for all 

registers: time (UTC), time (in hours), register step, column, line, layer and cell numbers. 

After the seventh column the variables appear in the order selected in Variables Selection 

Dialog to file output. 

Only the cells selected in the File Points Dialog are registered. 

The "hdf" format follows the HDF specifications - see HDF Group http server 

(http://www.hdfgroup.org/). When this option is chosen all the points of the model domain 

are saved. 

Mean Values Files 

The option to generate only Mean Values Files enables the user to run the model with a small 

time step (normally only the hydrodynamic part of the model) and save the mean values of 

flows and velocities in files. To do that the classes file must include classes with this feature 

implemented. 

The user will use this files to run the model later with a time step greater than the used in the 

previous simulation. 

The Mean Values Files are named as "xls" files, but the values are saved as Tab Separated 

Values, and their names follow a special order. The number of steps saved in each file is 

configured in the Output Panel. 

The first file to be saved has the name "HydroTimeSeriesValues_0.xls", the second 

"HydroTimeSeriesValues_1.xls", and so on. 
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The header row contains the fields significance. The first four columns are fixed for all 

registers: date_time, time (in seconds from January 1, 1970), register step and cell number. 

After the fourth column the mean variables appear, also, in a fixed order: Mean U Flow, Mean 

U Velocity, Mean V Flow and Mean V Velocity. 

Only the cells selected in the File Points Dialog are registered. 

Log Files 

The log files save the communications between classes during the simulation in some specified 

steps (specified in Logs Menu). Each step is saved in one separated file named "LogfileN", 

where N is the step number. The extension name reflects the format used. 

The "xls" format is obtained with Tab Separated Values and is similar to the "txt" format. The 

header row describes each column field: 

 STEP - time step 

 Class_Name - origin class of the communication 

 Type - method invoked: Update or Inquiry 

 Data_Class - destination class of the communication 

 Variable - variable of destination class 

 Value - value of the variable 

 Box_Number - number of cell 

The Type "Update" means that class Class_Name will update the variable Variable in the class 

Data_Class with the value Value in the cell Box_Number. 

The Type "Inquiry" means that class Class_Name asks for the value of the variable Variable in 

the class Data_Class in the cell Box_Number. The value is returned in Value. 
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The "xml" format is used for more sophisticated pos-processing methods, but the elements of 

the document follow the headers of the XLS file: 

 

The root of the XML file is the LOG element that contains one STEP element, with the attribute 

Number identifying the simulation step number. 

This element is composed by multiple REGISTRY elements, each one with six elements that 

maintain the names and the order of the headers described previously (one registry for each 

line). 
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Properties Files 

There are two kinds of properties files: 

Model Properties file saves the models already created by the EcoDynamo application in the 

application folder. 

EcoDynamo Properties file saves, in the model folder, the last model simulation properties 

defined with the EcoDynamo application. 

Model Properties File 

This file is named "Models.properties" and belongs to the EcoDynamo application's folder. 

The file saves the models used by EcoDynamo application and is created when the application 

ends.  

Here is an example of model properties file: 

 

The first line contains the number of models already created and opened by EcoDynamo 

(property name is DefinedModels). 

For each created model, four properties are included: 

 Model - model name 

 Path - location of the model folder 

 Default - true if the model is the default model; false otherwise 

 AutoInit - true if the model is initialized when opened; false otherwise. 

Each model property has the suffix _N where N is the order number of the model in the file. 
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EcoDynamo Properties Files 

Each model created by EcoDynamo will have one file named "EcoDynamo.properties" in its 

database folder. 

The file is created when the model is closed and saves the model properties for the simulation.  

Here is an example of one EcoDynamo properties file: 

 



A1 – EcoDynamo User’s Manual 

- 266 - 

 

The properties saved in the file are: 

 PrefixName - prefix that heads each mandatory file 

 Type - type of model (0D, 1DH, 1DV, 2DH, 2DV, 3D) 

 PathName - location of the model folder 

 NrClassesAvailable - number of classes available in classes file 

 Available_N - list of available classes [N is the class order number - Classes dialog] 

 NrClassesSelected - number of classes selected 

 Selected_N - list of selected classes [N is the class order number - Classes dialog] 

 NrVariablesAvailable - number of variables available from classes selected  

 AvailableVars_N - list of available variables [N is the variable order number - Variables 

dialog] 

 NrVariablesSelectedFileOutput - number of variables selected for file output [Variables 

dialog] 

 SelectedVarsFileOutput_N - list of selected variables to file output [N is the variable 

order number - Variables dialog] 

 NrVariablesSelectedGraphOutput - number of variables selected for graph output 

 SelectedVarsGraphOutput_N - list of selected variables to graph output [N is the 

variable order number - Variables dialog] 

 NrVariablesSelectedTableOutput - number of variables selected for table output 

 SelectedVarsTableOutput_N - list of selected variables to table output [N is the 

variable order number - Variables dialog] 
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 StartTime - simulation start time (seconds from January 1, 1970) [Time specs dialog 

(Simulation tab)] 

 FinishTime - simulation finish time (seconds from January 1, 1970) [Time specs dialog 

(Simulation tab)] 

 TimeStep - simulation time step (in seconds) [Time specs dialog (Simulation tab)] 

 TimeUnit - simulation time step unit [Time specs dialog (Simulation tab)] 

 RunMode - simulation run mode [Time specs dialog (Simulation tab)] 

 Integration - simulation time integration [Time specs dialog (Integration tab)] 

 OutputStartTime - output register start time (seconds from January 1, 1970) [Time 

specs dialog (Output Register tab)] 

 OutputFinishTime - output register finish time (seconds from January 1, 1970) [Time 

specs dialog (Output Register tab)] 

 OutputFrequency - output frequency time (in seconds) [Time specs dialog (Output 

Register tab)] 

 OutputTimeUnit - output frequency time unit [Time specs dialog (Output Register tab)] 

 SimulationRunType - type of simulation (Cyclic, Continuous) [Time specs dialog (Cyclic 

simulation tab)] 

 NumberOfPeriods - number of periods in cyclic simulation [Time specs dialog (Cyclic 

simulation tab)] 

 StartPeriod_N - start period time [N is the period order number - Time specs dialog 

(Periodic simulations definitions tab)] 

 FinishPeriod_N - finish period time [N is the period order number - Time specs dialog 

(Periodic simulations definitions tab)] 

 CyclePeriod_N - cycle duration time [N is the period order number - Time specs dialog 

(Periodic simulations definitions tab)] 

 UnitPeriod_N - cycle period time unit [N is the period order number - Time specs 

dialog (Periodic simulations definitions tab)] 

 FirstFileIndex - index of the first mean time values file [Time specs dialog (Periodic 

simulations definitions tab)] 
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Annex 2 – EcoDynamo Classes Diagram 

EcoDynClass Hierarchy Diagram 

 

 

AirTemperature Hierarchy Diagram 
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Flow Hierarchy Diagram 

 

 

Man Hierarchy Diagram 
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Nutrients Hierarchy Diagram 

 

 

SuspendedMatter Hierarchy Diagram 
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Transport Hierarchy Diagram 
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WaterTemperature Hierarchy Diagram 
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Wind Hierarchy Diagram 
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Zoobenthos Hierarchy Diagram 
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Zooplankton Hierarchy Diagram 

 

 

Macrophytes and Phytoplankton Hierarchy Diagram 
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Annex 3 – ECOLANG Specification 

One complete description of the ECOLANG communications language can be found in (Pereira, 

2008) and an updated version of the document is available in 

[http://paginas.fe.up.pt/~amcp/index.html].  

A subset of the document is presented in this section. 

Introduction 

ECOLANG is the communication language used in the EcoSimNet framework, a multi-agent 

systems environment for ecological simulations, rooted by the EcoDynamo simulator (Pereira 

and Duarte, 2005), linked with several intelligent agents and visualisation applications. This 

document extends the initial definition of the language (Pereira et al., 2005). 

The agents’ actions and perceptions are translated into messages exchanged between the 

simulator application and the agents. 

The concepts’ definitions used follow the BNF notation (Backus et al., 1960) and they’re 

inspired in the COACH UNILANG language (Reis and Lau, 2002). 

ECOLANG notation is an extension to the original BNF formalism adding the following meta-

symbols:  

{ } – curly braces used for repetitive items (one or more times);  

[ ] – square braces enclose types of values;  

Terminal symbols use bold face letters. 

1 MESSAGE DEFINITION 

The base syntax of each message is as follows: 

<MESSAGE> ::= message (<ID> <SENDER> <RECEIVER> <MSG_CONTENT>) 

<ID> ::= [integer] 

<SENDER> ::= [string] 

<RECEIVER> ::= [string] 

 

<ID> is the message identifier sent by the initiator – it is a sequential integer number 

controlled by each sender (initial value is 1). 
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<SENDER> is the name of the message initiator application (source). 

<RECEIVER> is the name of the message destination application. 

<MSG_CONTENT> is the content of the message. 

Each message will be represented by a numeric reference to facilitate its identification. 

2 MESSAGE TYPES 

Message exchanged by the applications may belong to five types: connection, definitions, 

actions, perceptions, and coordination. 

The connection messages establish the communication sessions between the agents / 

applications and specify the computer where agent belongs and the port number in which the 

agent accepts connections and listens the messages. 

Though there could be actions and perceptions dedicated to some type of the agents 

belonging to the system, there are no restrictions to the messages that applications can use. 

<MSG_CONTENT> ::= <CONNECTION_MSG> | <DEFINITION_MSG> | <ACTION_MSG> | 

<PERCEPTION_MSG> | <COORDINATION_MSG> 

 

2.1 CONNECTION MESSAGES 

Connection messages delimits the sessions between applications. In this group there are also 

messages to ask the agents known by the other partner of the session. This allows the 

establishment of links between multiple applications, facilitating the expansion of the 

communications and knowledge network. 

<CONNECTION_MSG> ::= <CONNECT> | <DISCONNECT> | <ACCEPT> | <ASK_AGENTS> | 

<KNOWN_AGENTS> 

 

The session begins with the connect message and finishes with the disconnect message. The 

accept message answers any of those messages: 

<CONNECT> ::= connect <HOST_NAME> <HOST_ADDR> <SERVER_PORT> [1.1] 

<DISCONNECT> ::= disconnect [1.2] 

<ACCEPT> ::= accept (<ACTION_ID> <ACTION_RESULT>)  [1.3] 

 

<HOST_NAME> ::= [string] 

<HOST_ADDR> ::= [string] 

<SERVER_PORT> ::= [integer] 

<ACTION_ID> ::= <ID> 

<ACTION_RESULT> ::= ok | failed 
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To ask the other partner for the known agents: 

<ASK_AGENTS> ::= agents [1.4] 

<KNOWN_AGENTS> ::= known_agents (<ACTION_ID> {<AGENT>}) [1.5] 

 

<AGENT> ::= (<AGENT_NAME> <HOST_NAME> <HOST_ADDR> <SERVER_PORT> <CONNECTED>) 

<AGENT_NAME> ::=[string] 

<CONNECTED> ::= connected | disconnected 

 

<HOST_NAME> and <HOST_ADDR> identify the computer name and IP address where the 

application runs, <SERVER_PORT> identifies the port number where the application expects 

connections. 

<ACTION_ID> of the answer messages must be the <ID> of the corresponding connection 

message. 

2.2 DEFINITIONS 

From version 1.3 of the protocol, these messages include the definition of regions and 

information about the type of model loaded in the simulator, its dimensions, its morphology 

and species of shellfish and molluscs prevailing in it. 

<DEFINITION_MSG> ::= <REGIONS_MSG> | <MODEL_DEFINITIONS> 

 

Each region is referred to by name, will be of one type and will cover a certain area. It may also 

be defined at the expense of other regions already defined. 

<REGIONS_MSG> ::= <DEFINE_ACTION> | <DELETE_ACTION> | <GET_REGIONS> | 

<GET_REGION> | <DEFINE_RESULT> | <DELETE_RESULT> | 

<GET_REGIONS_RESULT> | <GET_REGION_RESULT> 

 

<DEFINE_ACTION> ::= define (<REG_NAME> <REGION>) [2.1] 

<DELETE_ACTION> ::= delete {<REG_NAME>}  [2.2] 

 

<REG_NAME> ::= [string] 

<REGION> ::= <REGION_TYPE> <REGION_AREA> | {<REG_NAME>} 

 

Each region is of the type land or water and, in the later, is characterized by its quality as well 

as the type and quality of its sediment. 

<REGION_TYPE> ::= <LAND_REGION> | <WATER_REGION> 

<LAND_REGION> ::= land 

<WATER_REGION> ::= <WATER_CARACT> <SEDIMENT_CARACT> 

<WATER_CARACT> ::= <SUB_INTERTIDAL> <WATER_QUALITY> 

<SUB_INTERTIDAL> ::= subtidal | intertidal 

<WATER_QUALITY> ::= <QUAL_SCALE> 

<QUAL_SCALE> ::= excellent | good | poor 
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<SEDIMENT_CARACT> ::= (<SEDIMENT_TYPE> <SEDIMENT_QUALITY>) 

<SEDIMENT_TYPE> ::= sandy | sand_muddy | muddy 

<SEDIMENT_QUALITY> ::= <QUAL_SCALE> 

 

The region area is a set of one or more simple regions, each one defined by one point or a 

simple polygon (rectangle, square, circle or circle arc). 

<REGION_AREA> ::= {<SIMPLE_REGION>} 

<SIMPLE_REGION> ::= <POINT> | (rect <POINT> <POINT>) | (square <POINT> 

<POINT> <POINT> <POINT>) | (circle <POINT> [real]) | (arc <POINT> 

[real] [real] [real] [real]) 

<POINT> ::= (point [integer] [integer]) 

 

Each of the previous messages (define and delete) should be answered by the application that 

receive the message: 

<DEFINE_RESULT> ::= define_result (<ACTION_ID> <ACTION_RESULT>) [2.3] 

<DELETE_RESULT> ::= delete_result (<ACTION_ID> <ACTION_RESULT>) [2.4] 

 

At any time it is possible to know which are the defined regions and their characteristics: 

<GET_REGIONS> ::= get_region_names [2.5] 

<GET_REGION> ::= get_region <REG_NAME> [2.6] 

 

The previous messages should obtain as answers, respectively 

<GET_REGIONS_RESULT> ::= region_names (<ACTION_ID> {<REG_NAME>}) [2.7] 

<GET_REGION_RESULT> ::= region (<ACTION_ID> <REG_NAME> <REGION>) [2.8] 

 

There are also messages to get information about the model loaded in the simulator – they 

can obtain the size, type, morphology and species of molluscs and shellfish prevailing in it: 

<MODEL_DEFINITIONS> ::= <GET_DIMENSIONS> | <GET_MORPHOLOGY> | <GET_SPECIES> 

| <DIMS_RESULT> | <MORPHOLOGY_RESULTS> | SPECIES_RESULTS> 

 

<GET_DIMENSIONS> ::= model_dimensions [2.9] 

<GET_MORPHOLOGY> ::= model_morphology [2.10] 

<GET_SPECIES> ::= model_species [2.11] 

 

The previous messages should obtain as answers, respectively: 

<DIMS_RESULT> ::= dimensions (<ACTION_ID> <LINES> <COLUMNS> <LAYERS> 

<MOD_TYPE>) 

 [2.12] 

<MORPHOLOGY_RESULTS> ::= <MORPHOLOGY_RESULT> | <MORPHOLOGY_END> 

<MORPHOLOGY_RESULT> ::= morphology (<ACTION_ID> > {(<CELL> [real])}) [2.13] 

<MORPHOLOGY_END> ::= morphology_end  [2.14] 

<SPECIES_RESULTS> ::= <SPECIES_RESULT> | <SPECIES_END> 

<SPECIES_RESULT> ::= benthic_species (<ACTION_ID> {(<SPECIES_NAME> 

<BOXES>)}) [2.15] 
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<SPECIES_END> ::= benthic_species_end  [2.16] 

 

<LINES> ::= [integer] 

<COLUMNS> ::= [integer] 

<LAYERS> ::= [integer] 

<MOD_TYPE> ::= 0D | 1DH | 1DV | 2DH | 2DV | 3D 

<CELL> ::= [integer] 

<SPECIES_NAME> ::= ([string]) 

<BOXES>  defined in message [3.13] (<GET_VAR_VALUE>) 

2.3 ACTIONS 

The actions’ messages are closely linked to each type of agent involved in the system. 

An agent / application that has an interest in the production of shellfish has actions of deposit, 

inspect and collect species of molluscs. 

<ACTION_MSG> ::= <SEED_ACTION> | <INSPECT_ACTION> | <HARVEST_ACTION> | 

<ACTION_SIM> 

 

To deposit (seed), the agent indicates the region, the time, the characteristics of the species of 

molluscs to deposit and the total weight seeded. The two real values indicated in the message 

may have different meanings, depending on molluscs in question. By example, for the oysters 

and scallops, the first value indicates the individual weight of the shell and the second 

indicates the individual weight of meat; for clams, the first value indicates the individual dry 

weight, and the second indicates the individual weight. 

To inspect, the agent indicates the region and the time of the inspection. 

To collect (harvest), it must indicate, beyond the region, the characteristics of shellfish to 

collect and time of collection. 

<SEED_ACTION> ::= seed (<REG_NAME> <TIME> <BIVALVE_S> <DENSITY>) [3.1] 

<INSPECT_ACTION> ::= inspect (<REG_NAME> <TIME>) [3.2] 

<HARVEST_ACTION> ::= harvest (<REG_NAME> <TIME> <BIVALVE>) [3.3] 

 

<BIVALVE_S> ::= <BTYPE> ([real] [real]) 

<BIVALVE> ::= <BTYPE> <SHELL_LENGTH> 

<BTYPE> ::= scallop | kelp | oyster | mussel | clam 

<SHELL_LENGTH> ::= (length [real]) 

<DENSITY> ::= (density [real]) 

 

Reference to the action moment can be as quickly as possible (now) or one value that indicates 

the number of seconds from 1970 January, 1 00:00:00. 

<TIME> ::= now | [integer] 
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Any agent / application can act over the simulator choosing the model it wants to simulate, 

controlling the parameterization of the model - gathering / changing parameters of the 

simulated classes and collecting / recording the results of the simulation. Messages can be 

divided into four different types: 

<ACTION_SIM> ::= <MODEL_ACTION> | <EXEC_ACTION> | <SPECS_ACTION> | 

<REG_ACTION> 

 

Actions to choose the model to simulate - open or close model, survey the model in simulation 

<MODEL_ACTION> ::= <OPEN_MODEL> | <CLOSE_MODEL> | <GET_MODEL> | <SAVE_CONF> 

<OPEN_MODEL> ::= open_model <MODEL_NAME> [3.4] 

<CLOSE_MODEL> ::= close_model [3.5] 

<GET_MODEL> ::= model_name [3.6] 

<SAVE_CONF> ::= save_configuration [3.7] 

 

<MODEL_NAME> ::= [string] 

 

Actions over the simulation execution - monitor and influence the simulations - initialising, 

running, stopping, restarting and completing the simulations: 

<EXEC_ACTION> ::= initialise | run | stop | pause | <STEP_CMD> [3.8] 

<STEP_CMD> ::= step [integer] [3.9] 

 

Actions over the model in simulation – to choose / survey classes, choose / inquire initial 

values for variables and parameters, choose / survey frequency and range of simulation, 

choose / survey simulation sub-domain: 

<SPECS_ACTION> ::= <SP_CLASSES> | <SP_VARS> | <SP_PARMS> | <SP_TIME> | 

<SUB_DOMAIN> 

 

<SP_CLASSES> ::= <GET_CLASSES> | <SELECT_CLASSES> 

<GET_CLASSES> ::= get_available_classes | get_selected_classes [3.10] 

<SELECT_CLASSES> ::= select_classes {<CLASS_NAME>} [3.11] 

 

<SP_VARS> ::= <GET_CLASS_VARS> | <GET_VAR_VALUE> | <SET_VAR_VALUE> 

<GET_CLASS_VARS> ::= get_variables <CLASS_NAME>  [3.12] 

<GET_VAR_VALUE> ::= get_variable_value <CLASS_NAME> <VAR_NAME> <BOXES>[3.13] 

<SET_VAR_VALUE> ::= set_variable_value <CLASS_NAME> {(<VAR_NAME> <BOXES> 

[real])} [3.14] 

<SP_PARMS> ::= <GET_PARMS> | <SET_PARMS> 

<GET_PARMS> ::= get_parameters <CLASS_NAME> [3.15] 

<SET_PARMS> ::= set_parameters <CLASS_NAME> {(<PARM_NAME> [real])} [3.16] 

 

<SP_TIME> ::= <GET_TIME> | <SET_TIME> 

<GET_TIME> ::= get_time_spec [3.17] 

<SET_TIME> ::= set_time_spec <STEP> <START_TIME> <FINISH_TIME> [3.18] 

 

<SUB_DOMAIN> ::= subdomain <DOMAIN> [3.19] 



Intelligent Simulation of Coastal Ecosystems 

- 283 - 

 

<CLASS_NAME> ::= ([string]) 

<VAR_NAME> ::= ([string]) 

<BOXES> ::= (<SUB_DOMAIN>) | ({<CELL>}) 

<PARM_NAME> ::= ([string]) 

<STEP> ::= [integer] 

<START_TIME> ::= [integer] 

<FINISH_TIME> ::= [integer] 

<DOMAIN> ::= all | ({<REG_NAME>}) 

 

Actions to record the results - choose variables to register, frequency, range and type of 

recording, choose sub-domain to register or activate the monitoring mode (trace): 

<REG_ACTION> ::= <REG_FILE> | <REG_VARS> | <REG_LOG> | <REG_TIME> | 

<REG_TRACE> 

<REG_FILE> ::= output_file <FILE_NAME> [3.20] 

 

<REG_VARS> ::= <GET_VARS> | <SELECT_VARS> | <UNSELECT_VARS> 

<GET_VARS> ::= get_available_variables [3.21] 

<SELECT_VARS> ::= select_variables <OUTPUT_TYPE> ({<VAR_NAME>}) <BOXES>

 [3.22] 

<UNSELECT_VARS> ::= unselect_variables <OUTPUT_TYPE> {<VAR_NAME>} [3.23] 

 

<REG_LOG> ::= log <LOG_TYPE> ({<LOG_STEP>}) [3.24] 

 

<REG_TIME> ::= <GET_REG_TIME> | <SET_REG_TIME> 

<GET_REG_TIME> ::= get_output_time [3.25] 

<SET_REG_TIME> ::= set_output_time <STEP> <START_TIME> <FINISH_TIME> [3.26] 

 

<REG_TRACE> ::= trace [3.27] 

 

<FILE_NAME> ::= ([string]) 

<OUTPUT_TYPE> ::= file | graph | table | remote 

<LOG_TYPE> ::= xml | xls | txt | remote 

<LOG_STEP> ::= [integer] 

 

2.4 PERCEPTIONS 

The perceptions’ messages are closely related with the type of agent involved in the system 

and also to the actions performed by each over the simulator. 

An agent with an interest in the production of shellfish, seed molluscs and its perceptions are 

the result of the actions taken. 

The response to the seed action of the agent may be positive or negative (in the case such 

action is denied). In response to the inspection action the agent receives a message with the 

bivalve’s characteristics in the region. The resulting harvest is negative or positive, and in this 

case, it is indicated the total weight harvested. 
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<PERCEPTION_MSG> ::= <SEED_RESULT> | <INSPECT_RESULT> | <HARVEST_RESULT> | 

<PERCEPTION_SIM> 

 

<SEED_RESULT> ::= seed_result (<ACTION_ID> <ACTION_RESULT>) [4.1] 

<INSPECT_RESULT> ::= inspect_result (<ACTION_ID> {<BIVALVE>}) [4.2] 

<HARVEST_RESULT> ::= harvest_result (<ACTION_ID> <ACTION_RESULT> <WEIGHT>)

 [4.3] 

 

<WEIGHT> ::= [real] 

 

The <ACTION_ID> of the perception message identifies the <ID> of the corresponding action 

message. 

The agents’ / applications’ perceptions are both messages with the result of the actions 

initiated by the agent / application or messages spontaneously sent by the simulator. They 

may be from 5 types: 

<PERCEPTION_SIM> ::= <MODEL_RESULT> | <EXEC_RESULT> | <SPECS_RESULT> | 

<REG_RESULT> | <EVENT_MSG> 

 

Answers to the actions over the model: 

<MODEL_RESULT> ::= <OPEN_RESULT> | <CLOSE_RESULT> | <GET_RESULT> | 

<SAVE_RESULT> 

<OPEN_RESULT> ::= open_result (<ACTION_ID> <ACTION_RESULT>) [4.4] 

<CLOSE_RESULT> ::= close_result (<ACTION_ID> <ACTION_RESULT>) [4.5] 

<GET_RESULT> ::= model (<ACTION_ID> <MODEL_NAME>) [4.6] 

<SAVE_RESULT> ::= save_result (<ACTION_ID> <ACTION_RESULT>) [4.7] 

 

Answers to the actions over the simulation execution: 

<EXEC_RESULT> ::= exec_result (<ACTION_ID> <ACTION_RESULT>) [4.8] 

 

Answers to the actions over the model configuration: 

<SPECS_RESULT> ::= <CLASSES_RESULT> | <VARS_RESULT> | <PARMS_RESULT> | 

<TIME_RESULT> | <SUB_DOMAIN_RESULT> 

 

<CLASSES_RESULT> ::= <CLASSES_AVAILABLE> | <CLASSES_SELECTED> 

<CLASSES_AVAILABLE> ::= classes_available (<ACTION_ID> {<CLASS_NAME>})[4.9] 

<CLASSES_SELECTED> ::= classes_selected (<ACTION_ID> {<CLASS_NAME>}) [4.10] 

 

<VARS_RESULT> ::= <CLASS_VARS> | <VAR_VALUE> | <VAR_SET> 

<CLASS_VARS> ::= variables (<ACTION_ID> {<VAR_NAME>}) [4.11] 

<VAR_VALUE> ::= variable_value (<ACTION_ID> {(<CELL> [real])}) [4.12] 

<VAR_SET> ::= variable_set_result (<ACTION_ID> <ACTION_RESULT>) [4.13] 

 

<PARMS_RESULT> ::= <CLASS_PARMS> | <PARMS_SET> 

<CLASS_PARMS> ::= parameters_values (<ACTION_ID> {(<PARM_NAME> [real])})

 [4.14] 

<PARMS_SET> ::= parameters_set_result (<ACTION_ID> <ACTION_RESULT>) [4.15] 
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<TIME_RESULT> ::= time_spec (<ACTION_ID> <STEP> <START_TIME> <FINISH_TIME>)

 [4.16] 

 

<SUB_DOMAIN_RESULT> ::= subdomain_result (<ACTION_ID> <ACTION_RESULT>)[4.17] 

 

Answers to the actions over the register of the results: 

<REG_RESULT> ::= <FILE_RESULT> | <REG_VARS_RESULT> | <LOG_RESULT> | 

<REG_TIME_RESULT> | <TRACE_RESULT> 

 

<FILE_RESULT> ::= output_file_result (<ACTION_ID> <ACTION_RESULT>) [4.18] 

 

<REG_VARS_RESULT> ::= <GET_VARS_RESULT> | <SELECT_VARS_RESULT> | 

<UNSELECT_VARS_RESULT> 

<GET_VARS_RESULT> ::= variables_available (<ACTION_ID> {<VAR_NAME>}) [4.19] 

<SELECT_VARS_RESULT> ::= select_variables_result (<ACTION_ID> 

<ACTION_RESULT>) [4.20] 

<UNSELECT_VARS_RESULT> ::= unselect_variables_result (<ACTION_ID> 

<ACTION_RESULT>) 

  [4.21] 

<LOG_RESULT> ::= log_result (<ACTION_ID> <ACTION_RESULT>) [4.22] 

<REG_TIME_RESULT> ::= output_time (<ACTION_ID> <STEP> <START_TIME> 

<FINISH_TIME>) 

  [4.23] 

<TRACE_RESULT> ::= trace_result (<ACTION_ID> <TRACE_STATUS>) [4.24] 

<TRACE_STATUS> ::= on | off 

 

Spontaneous messages sent by the simulator: 

<EVENT_MSG> ::= <REG_MSG> | <LOG_MSG> | <END_MSG> 

 

<REG_MSG> ::= register (<REG_INDEX> <REG_TIME> <VAR_NAME> {(<CELL> [real])})

 [4.25] 

<LOG_MSG> ::= logger (<STEP> {(<CLASS_NAME> <FUNC_TYPE> <DATA_CLASS> 

<VAR_NAME> <CELL> [real])}) [4.26] 

<END_MSG> ::= end_simulation | end_step | running | stopped | paused [4.27] 

 

<REG_INDEX> ::= [integer] 

<REG_TIME> ::= [integer] 

<FUNC_TYPE> ::= Inquiry | Update 

<DATA_CLASS> ::= <CLASS_NAME> 

 

2.5 COORDINATION 

The coordination messages, defined from version 1.4 of the protocol, are used between agents 

and can be grouped by type. The first type includes messages for optimization and for parallel 

simulated annealing (PSA) coordination. 

The PSA algorithm defines one coordinator agent and several workers, each one responsible 

for a group of simulators. The messages are divided into four groups: to define agents’ roles, to 
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configure the simulations and the desired optimization, and to exchange agents’ optimization 

data. 

<COORDINATION_MSG> ::= <FUNCTION_MSG> | <CONFIGURATION_MSG> | <PROCESS_MSG> 

| <OPTIMIZATION_MSG> 

 

Each <COORDINATION_MSG> must be answered by one <EXEC_RESULT> [4.8] perception. 

• Actions to configure the role of each agent: 

<FUNCTION_MSG> ::= <COORDINATOR_MSG> | <WORKER_MSG> | <SIMULATORS_MSG> 

<COORDINATOR_MSG> ::= psa_coordinator [5.1] 

<WORKER_MSG> ::= psa_worker <COORDINATOR_NAME> [5.2] 

<SIMULATORS_MSG> ::= psa_simulator ({<SIMULATOR_NAME>}) [5.3] 

 

<COORDINATOR_NAME> ::= [string] 

<SIMULATOR_NAME> ::= [string] 

 

All the <FUNCTION_MSG> messages are sent from the configuration agent to the agents of the 

PSA process. The message <COORDINATOR_MSG> is sent to the coordinator agent. The message 

<WORKER_MSG> is sent to the coordinator and worker agents. The message <SIMULATORS_MSG> 

is sent to each one of the workers. 

• Actions to configure the simulations and the optimization process: 

<CONFIGURATION_MSG> ::= <TEMPERATURE_MSG> | <ITERATIONS_MSG> | <WORKERS_MSG> 

| <SYNCH_POINTS_MSG> 

 

<TEMPERATURE_MSG> ::= psa_temperature (<INITIAL_T> <FINAL_T> <DRATE_T>)[5.4] 

<ITERATIONS_MSG> ::= psa_iterations [integer] [5.5] 

<WORKERS_MSG> ::= psa_workers [integer] [5.6] 

<SYNCH_POINTS_MSG> ::= psa_synchronization_points [integer] [5.7] 

 

<INITIAL_T> ::= [real] 

<FINAL_T> ::= [real] 

<DRATE_T> ::= [real] 

 

All the <CONFIGURATION_MSG> messages are sent from the configuration agent to the agents of 

the PSA process. The messages <TEMPERATURE_MSG> and the <ITERATIONS_MSG> are sent to 

the coordinator and worker agents. The messages <WORKERS_MSG> and the 

<SYNCH_POINTS_MSG> are sent to the coordinator agent. 

• Actions to start optimization and to exchange agents’ results: 

<PROCESS_MSG> ::= <PUBLISH_MSG> | <RESULTS_MSG> | <RUN_MSG> 

 

<PUBLISH_MSG> ::= <PUBLISH_BEST_RESULT> | <PUBLISH_BEST_SOLUTION> 

<PUBLISH_BEST_RESULT> ::= psa_publish_best_result [real] [5.8] 
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<PUBLISH_BEST_SOLUTION> ::= psa_publish_best_solution ({<SOLUTION>}) [5.9] 

 

<RESULTS_MSG> ::= <BEST_RESULT> | <BEST_SOLUTION> 

<BEST_RESULT> ::= psa_best_result [real] [5.10] 

<BEST_SOLUTION> ::= psa_best_solution ({<SOLUTION>}) [5.11] 

 

<RUN_MSG> ::= psa_run [5.12] 

 

<SOLUTION> ::= (<CELL> [real]) 

<FINAL_T> ::= [real] 

<DRATE_T> ::= [real] 

<CELL>  defined in message [2.13] (<MORPHOLOGY_RESULT>) 

 

The message <RUN_MSG> is initially sent from the configuration agent to the coordinator. The 

<RESULTS_MSG> messages are used by the coordinator and the workers agents to exchange the 

best results, and the messages <PUBLISH_MSG> are sent from the coordinator agent to all the 

others participants, including the configuration agent, in the end of the optimization process. 

• Actions to configure the optimization: 

<OPTIMIZATION_MSG> ::= <SIMULATION_MSG> | <SPECIES_CONFIGURATION_MSG> 

 

<SIMULATON_MSG> ::= simulation_steps [integer] [5.13] 

<SPECIES_CONFIGURATION_MSG> ::= species_optimization {(<BIVALVE_S> <DENSITY> 

<NR_CELLS> <ECONOMICAL_WEIGHT> <REG_NAME> <OPT_TYPE>)} [5.14] 

 

<BIVALVE_S>  defined in message [3.1] (<SEED_ACTION>) 

<DENSITY>  defined in message [3.1] (<SEED_ACTION>) 

<NR_CELLS> ::= [integer] 

<ECONOMICAL_WEIGHT> ::= [real] 

<REG_NAME>  defined in message [2.1] (<DEFINE_ACTION>) 

<OPT_TYPE> ::= areas | density 

 

All the <OPTIMIZATION_MSG> messages are sent from the configuration agent to the 

coordinator and worker agents of the PSA process. 

3 COMMUNICATIONS PROTOCOL 

The communication between the simulator (EcoDynamo application) and the other actors 

present in the simulation system is usually of the type handshake - a message-type action 

expects to receive an answer from the destination application; that response comes in the 

form of a perception type message. 

Only the spontaneous messages and the logging results sent by the simulator don’t require 

feedback. 
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The first message of each agent for the simulator must be connected (connect). The reception 

of a positive acceptance message (to accept ok result) indicates that the agent was registered 

in the simulator as an agent interested in obtaining results from the simulations. When the 

agent leaves the system it must send the message to disconnect from the simulator. 

The simulator, before leaving the system, must send to all registered active agents the 

disconnect message. 

The communications’ protocol establishes the answers expected for each action, according to 

the following table: 

[msg] Message  Expected answer [msg] 

[1.1] connect  accept [1.3] 

[1.2] disconnect  accept [1.3] 

[1.4] agents  known_agents [1.5] 

[2.1] define  define_result [2.3] 

[2.2] delete  delete_result [2.4] 

[2.5] get_region_names  region_names [2.7] 

[2.6] get_region  region [2.8] 

[2.9] model_dimensions  dimensions [2.12] 

[2.10] model_morphology  morphology 5 [2.13] 

[2.10] model_morphology  morphology_end 6 [2.14] 

[2.11] model_species  benthic_species 7 [2.15] 

[2.11] model_species  benthic_species_end 8 [2.16] 

[3.1] seed  seed_result [4.1] 

[3.2] inspect  inspect_result [4.2] 

[3.3] harvest  harvest_result [4.3] 

[3.4] open_model  open_result [4.4] 

[3.5] close_model  close_result [4.5] 

[3.6] model_name  model [4.6] 

[3.7] save_configuration  save_result [4.7] 

                                                      

 

5
 This is the answer while there were messages to send from morphology: morphology of each message 

has, at most, 750 elements. 
6
 This is the answer indicating end of morphology messages. 

7
 This is the answer while there were messages to send from benthic species: each benthic species 

message has, at most, 150 elements. 
8
 This is the answer indicating end of benthic species messages. 
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[3.8] initialise  exec_result [4.8] 

[3.8] run  exec_result [4.8] 

[3.8] stop  exec_result [4.8] 

[3.8] pause  exec_result [4.8] 

[3.9] step  exec_result [4.8] 

[3.10] get_available_classes  classes_available [4.9] 

[3.10] get_selected_classes  classes_selected [4.10] 

[3.11] select_classes  classes_selected [4.10] 

[3.12] get_variables  variables [4.11] 

[3.13] get_variable_value  variable_value [4.12] 

[3.14] set_variable_value  variable_set_result [4.13] 

[3.15] get_parameters  parameters_values [4.14] 

[3.16] set_parameters  parameters_set_result [4.15] 

[3.17] get_time_spec  time_spec [4.16] 

[3.18] set_time_spec  time_spec [4.16] 

[3.19] subdomain  subdomain_result [4.17] 

[3.20] output_file  output_file_result [4.18] 

[3.21] get_available_variables  variables_available [4.19] 

[3.22] select_variables  select_variables_result [4.20] 

[3.23] unselect_variables  unselect_variables_result [4.21] 

[3.24] log  log_result [4.22] 

[3.25] get_output_time  output_time [4.23] 

[3.26] set_output_time  output_time [4.23] 

[3.27] trace  trace_result [4.24] 

[4.25] register  --  

[4.26] logger  --  

[4.27] end_simulation  --  

[4.27] end_step  --  

[4.27] running  --  

[4.27] stopped  --  

[4.27] paused  --  

[5.1] psa_coordinator  exec_result [4.8] 

[5.2] psa_worker  exec_result [4.8] 

[5.3] psa_simulator  exec_result [4.8] 

[5.4] psa_temperature  exec_result [4.8] 

[5.5] psa_iterations  exec_result [4.8] 

[5.6] psa_workers  exec_result [4.8] 
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[5.7] psa_synchronization_points  exec_result [4.8] 

[5.8] psa_publish_best_result  exec_result [4.8] 

[5.9] psa_publish_best_solution  exec_result [4.8] 

[5.10] psa_best_result  exec_result [4.8] 

[5.11] psa_best_solution  exec_result [4.8] 

[5.12] psa_run  exec_result [4.8] 

[5.13] simulation_steps  exec_result [4.8] 

[5.14] species_optimization  exec_result [4.8] 
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Annex 4 – Farmer Agent Configuration 

Configuration Files 

Farmer Agent (FA) is configured by the user to define the goals, tactics and constraints that will 

initialize the optimization processes. Several types of files are considered by FA. 

SIMULATED ANNEALING FILE 

File with one line defining the parameters to control the Simulated Annealing algorithm. This 

file usually has the extension “.sa”, only for convenience. Line example: 

sa  IT  FT  DR  NB  NI  NT  CF  HC 

 

where: 

sa – indicates SA parameters following 

IT – initial temperature 

FT – final temperature 

DR – multiplicative factor to adjust temperature value in each iteration 

NB – neighbourhood breadth distance 

NI – maximum number of iterations 

NT – number of solutions in the list of the best solutions 

CF – use cache files to save results [0 – do not use; 1 – use cache] 

HC – hill climbing [0 – simulated annealing; 1 – hill climbing] 

 

Example: 

sa  1.0  0.0001  0.980  2  341  10  1  0 

 

TACTICS FILE 

Tactics file, also referred as toggles file, define the initial tactic used by FA. For convenience, 

this file usually uses the extension “.tgl”, but this is not mandatory. The algorithms selected to 

influence the optimization process are situated between the lines “init” and “eof”. Each line 

references one algorithm and indicates the moment of actuation or inactivation. The general 

format of the line is: 

tog  ALG  ET ON P1 P2 P3 

 

where: 

tog – indicates algorithm line 
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ALG – algorithm [0- FarmerTabu; 1 – FarmerGA; 2 – FarmerRL] 

ET – entry time of the algorithm (percentage of initial temperature) 

ON – activate/deactivate [0 – deactivate; 1 – activate] 

P1 – first parameter for the algorithm (algorithm dependant) 

P2 – second parameter for the algorithm (algorithm dependant) 

P3 – third parameter for the algorithm (algorithm dependant) - optional 

 

Example of one toggles file: 

init 

tog  0  0.0  1  0.8  1 

tog  1  0.4  1  15  5 

tog  2  0.5  3  0.05 

eof 

 

OPTIMIZATION PROCESS CONFIGURATION FILE 

The complete configuration of the optimization process is grouped in a text file (config.cfg) 

that gathers the duration of the simulations (number of steps) and the type of optimization 

desired to the algorithms previously mentioned.  

Example of config.cfg file: 

initSA 1.0 0.0001 0.980 2 341 10 1 0  

simulation 86400 0 

togglesfile firstTGL.tgl 

species oyster 0.0005 0.00002 55.10 30 1.0 inner-outer.sol areas 

species scallop 1.192300 0.152070 56.50 30 2.0 inner-outer.sol areas 

 

The first line of the file indicates the SA parameters and can be replaced by: 

initSA  <SA filename> 

 

The second line (started with simulation word) indicates the number of simulation time steps 

and the intention to repeat simulations of known solutions [0 – do not repeat; 1 – repeat]. 

The third line (started  with togglesfile word) indicates the name of the toggles file. 

Each line starting with species keyword indicates that optimization is related with aquaculture, 

and have the general format: 

species SP W1 W2 SD NC EW DF OT 

 

where: 

SP – species common name 

W1 – initial dry weight for species individuals 

W2 – initial meat dry weight for species individuals 
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SD – seed density 

NC – number of cells to seed 

EW – economical weight of the species 

DF – name of the file with the domain areas 

OT – optimization type [areas or density] 

 

TASKS FILE 

It is possible to pre-program several tasks to FA. Each line of the tasks file (named 

“taskslist.tsk”) contains the name of a config file, and the optimization process is performed 

sequentially. The start command to the FA is “Run tasks” instead of “Run”. 

File System Structure 

The file system structure hierarchy used by the Farmer Agent was designed to save the 

configuration files and the results, providing each optimization performed with a unique 

identification. This allows the reutilization of previous results for repeated optimization 

configurations. The Figure A4-1 represents the file system hierarchy. 

The base folder for all the files is named “FarmerData”. By default, this folder contains all the 

files that contain the solutions’ domains, the configuration of the algorithms, the saved tactics 

and the predefined tasks used by the FA.  

When an optimization runs, all the internal FA data is saved in one folder named “data”. Each 

optimization has one folder with a unique identification that distinguishes the configuration 

used. The name of the folder must contain the fields: 

 The model name; 

 The number of simulation steps used; 

 The identification of the optimization type and the parameterization of the bivalve 

species optimized. 

All the fields are separated by hyphen and the last one is repeated for each benthic species. 

This folder contains files named “solutionX.dat”, with the optimization results ordered by the 

best to the worst, where the file “solutions0.dat” contains the description of the 100 best 

solutions, the file “solution1.dat” the next 100 solutions, and so on. 
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Figure A4-1: Farmer Agent File System Hierarchy 

The folder “Results” contains the results of each optimization run, named with its initial time. 

Record files are named “AutoExplore-<TimeStamp>”: 

 AutoExplore-<TimeStamp>.csv – contains the results of each iteration 
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 AutoExplore-<TimeStamp>.log – contains the log of the optimization process. 

<TimeStamp> has the form AAAAMMDDhhmmss, where: 

 AAAA – is the four-digit year 

 MM – is the two-digit month number (from 01 to 12) 

 DD –is the two-digit day of month 

 hh – is the two-digit hour of the day (from 00 to 23) 

 mm – is the two-digit minute 

 ss – is the two-digit seconds. 

Each <TimeStamp> folder has folders with the names of the simulators used for the 

optimization and, within them, two files with information related with each simulator process. 

 


