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Machine Learning (ML) through pattern recognition algorithms is currently becoming an

essential aid for the diagnosis, treatment, and prediction of complications and patient

outcomes in a number of neurological diseases. The evaluation and treatment of Acute

Ischemic Stroke (AIS) have experienced a significant advancement over the past few

years, increasingly requiring the use of neuroimaging for decision-making. In this review,

we offer an insight into the recent developments and applications of ML in neuroimaging

focusing on acute ischemic stroke.

Keywords: stroke, neuroimaging, machine learning (artificial intelligence), neurosciences, support vector machina
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Machine Learning (ML), considered a branch of artificial intelligence, is a field of computer
science and engineering that facilitates extraction of data based on pattern recognition. A computer
learns from previous mistakes after repeated analysis of data and masters tasks that were previously
considered too complex for a machine to process (1). The development of these systems to interpret
data in neuroimaging has provided valuable information for research in matters of the interaction,
structure, and mechanisms of the brain and behavior in certain neurological disorders (2, 3).

Machine learning systems are now being implemented in the clinical neurosciences to
devise imaging-based diagnostic and classification systems of neoplasms of the brain (4–6),
certain psychiatric disorders (7–11), epilepsy (12, 13), neurodegenerative disorders (14–20), and
demyelinating disorders (21–23). In this review, we discuss the present-day role of ML focusing on
acute ischemic stroke (AIS), discussing its potential and limitations.

MACHINE LEARNING IN THE CLINICAL NEUROSCIENCES

The use of neuroimaging in the evaluation of many neurological diseases such as dementia,
epilepsy, demyelinating diseases, depression, and schizophrenia has grown tremendously. This
burgeoning interest has been met with an expansion of ML algorithms in neurosciences (1, 24).

Oliveira et al. (14) evaluated an unsupervised ν-One-Class Support Vector Machine
(ν-OC-SVM) trained with neuroimaging variables, such as cortical thickness and cerebral volume
of the brain, from healthy subjects to calculate an abnormality index and compare it with patients
diagnosed with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). The method
correctly classified AD subjects as outliers with an accuracy of 84.3%, and the brain abnormality
index was directly associated with the group diagnosis, clinical data, biomarkers, and risk of future
conversion to AD.

In schizophrenia, Greenstein et al. (9) used Random Forest (RF), a machine learning algorithm,
to discriminate between childhood-onset schizophrenia and healthy patients based on brain
magnetic resonance imaging (MRI) measurements of regions of interest (ROI): left temporal
lobes, bilateral dorsolateral prefrontal regions, and left medial parietal lobes. The algorithm
correctly classified groups with 73.7% accuracy, and a greater brain-based probability of illness
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was associated with a statistically significant worse functioning
and fewer developmental delays. Machine learning can also
help distinguish between subsets of a certain disease. Bleich-
Cohen et al. (7) utilized Searchlight Based Feature Extraction
(SBFE), a data-driven multi-voxel pattern analysis (MVPA)
approach, to search for activation clusters of cognitive loads in
brain functional Magnetic Resonance Imaging (fMRI). This ML
method helped to identify the two subgroups of schizophrenic
patients with and without Obsessive-Compulsive Disorder
(OCD) with a 91% accuracy, successfully delineating between
symptom severity and a psychiatric comorbidity.

An et al. (12) compared whole-brain white matter changes
in patients with mesial temporal epilepsy and matched healthy
controls, evaluating tract-based spatial statistics and fractional
anisotropy with an ML approach. This ML-based approach
discriminated each group accurately and demonstrated high
sensitivity to changes in fractional anisotropy in mesial temporal
epilepsy patients, which may be beneficial when no lesion can
be identified on neuroimaging. Moghim et al. (13) introduced a
predictive model for seizure occurrence in a single patient. This
approach was based on a multi-class support vector machine
(SVM) and 14 selected features of an electroencephalogram
in patients with epilepsy. The predicted time of seizure
with a window between 20 and 25min was reported with
an average sensitivity of 90.15, 99.44% specificity, and 97%
accuracy.

Lesion burden estimation in traumatic brain injury (TBI),
AIS, dementia, and multiple sclerosis serves to identify the
affected regions, the extent of damage, and therefore, the
functional outcome in such patients. Kaminatas et al. (25)
proposed an approach for lesion segmentation using a multi-
modal brain MRI based on an 11-layers deep, multi-scale, 3D
Convolutional Neural Networks (CNN) called Deep Medic.
Their proposed novel training scheme is based on two main
components, a 3DCNN that produces accurate soft segmentation
maps and a connected Conditional Random Field that imposes
regularization constraints on the CNN output and produces the
final hard segmentation labels. This allows for a deeper and more
discriminative delimitation of lesion burden, with the highest
reported accuracy observed in a cohort of patients with severe
TBI.

CHALLENGES IN ACUTE ISCHEMIC
STROKE

Stroke is the leading cause of serious long-term disability and
the fifth leading cause of death in the United States, with its
prevalence increasing with advancing age in both males and
females, as each year ∼795,000 Americans experience a new
or recurrent stroke (26). This burden is coupled with a direct
medical expense of an estimated $23.6 billion according to the
last annual report of 2014 (26). With the increasing complexity
of the acute ischemic stroke therapy and the rising of per-person
costs, there is a real and urgent need for a technological solution
to aid in the streamlined care of patients and selection of the
appropriate therapeutic intervention.

Present treatments for AIS revolve around rapid reperfusion
of ischemic tissue, using intravenous (IV) thrombolytic
medications such as tissue plasminogen activator (tPA)
and/or endovascular techniques to mechanically remove the
obstruction to blood flow. Contemporary clinical trials are now
implementing a higher complexity of neuroimagingmodalities to
define treatment standards, resulting in an increased economic
as well as logistical burden on healthcare. The WAKE-UP
multicenter clinical trial (27) used magnetic resonance imaging
(MRI) in patients that presented with an unknown time of
onset of symptoms to identify brain regions that exhibited a
restricted diffusion on diffusion-weighted imaging (DWI) scan
and no T2-signal hyperintensity on fluid-attenuated inversion
recovery (FLAIR) sequence, estimating the onset of the infarct
to be <4.5 h and thus guiding stroke therapy. Previous to
this study, non-contrast head CT, an imaging modality that is
widely and readily available, was the only imaging screen used
to assess for tPA eligibility. The new, expanded tPA indication
requiring MRI poses challenges for a majority of centers, which
do not have ready access to this type of imaging emergently
and 24/7.

The growing dependence on neuroimaging in determining
treatment options for acute ischemic stroke is observed as well for
endovascular stroke therapy (EST), which has shown to improve
outcome when used in combination with standard medical care
(28). In 2015, numerous clinical trials demonstrated a clear
benefit of endovascular treatment over medical management
alone for a select group of patients with acute ischemic stroke
seen within 6 h of the onset of stroke (29–33), and relied
on imaging modalities including NCHCT, CT/MR angiography
(CTA/MRA) and CT/MRI perfusion (CTP/MRP) scans. Results
derived from these trials showed an advantage in using
advanced imagingmodalities in identifying patients with a higher
likelihood of better outcomes from EST. Two additional clinical
trials (34), DAWN and DEFUSE3, published in 2018 evaluated
a much larger population of stroke patients, those presenting up
to 24 h after their symptoms, and required the use of perfusion
imaging with CT or MRI.

This increased reliance on neuroimaging has led to a
tremendous improvement in our ability to care for patients
with AIS but has been coupled with a number of challenges.
Specifically, limited availability of these imaging modalities, a
shortage of specialists to promptly interpret these studies, as
well as inter-observer variability have limited the implementation
of the above findings. Indeed, studies evaluating inter-observer
performance on Alberta Stroke Program Early CT Score
(ASPECTS), a 10-region imaging grading system in stroke,
showed significant variability (35–39). Further adding to the
complexity of acute stroke treatment is that while the need
to perform and interpret advanced neuroimaging has recently
increased, the urgency with which such evaluation is being
performed has remained the same. For every minute that a
patient with a large vessel occlusion fails to be treated, an
estimated 1.9 million neurons and 14 billion synapses are
lost in the brain (40). Trials evaluating efforts to promptly
assess and treat patients with AIS have demonstrated superior
outcomes and decreased morbidity. In patients treated with
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intravenous thrombolysis, reducing treatment times by 15-
min was associated with reduced in-hospital mortality, reduced
incidence of symptomatic intracranial hemorrhage, and a greater
likelihood of independent ambulation at discharge (41, 42). In
patients treated with endovascular therapy, for every 15-min
reduction of onset to recanalization of the occluded artery, 34 per
1,000 treated patients had improved disability outcome (43). As
such, there is an urgent need for systems to rapidly and precisely
interpret neuroimaging data in acute ischemic stroke.

IMPLEMENTATIONS OF MACHINE
LEARNING IN ACUTE ISCHEMIC STROKE

Machine learning algorithms have been used to assist in
the diagnosis and individualized treatment decisions in acute
ischemic stroke. The implementations of machine learning
are numerous, from early identification of imaging diagnostic
findings (44), estimating time of onset (27, 45), lesion
segmentation (46), and fate of salvageable tissue (47, 48), to the
analysis of cerebral edema (49, 50), and predicting complications
(51–53) and patient outcomes (54–57) after treatment. A
summary of themost recent articles investigating the applications
of machine learning for automated diagnosis and outcome
prediction in acute ischemic stroke is given in Table 1.

One of the most relevant clinical criteria to decide if a patient
with an acute ischemic stroke is eligible for IV thrombolysis with
tPA is a time from symptom onset of <4.5 h, but in medical
practice, stroke symptom onset is usually unknown. Ho et al. (45)
developed a deep learning algorithm based on an autoencoder
architecture to extract imaging features in perfusion-weighted
images (PWI) in MRI to determine the time elapsed since stroke
onset.

Lesion estimation and identification of salvageable tissue are
essential in the acute decision making in stroke, but the expense
and resources involved present a challenge for physicians. Chen
et al. (46) used a framework with two CNNs to segment stroke
lesions using DWI in MRI. One CNN was a combination of
two DeconvNets (EDD Net), and the second CNN was a multi-
scale convolutional label evaluation net (MUSCLE Net) to help
reduce the potential false positives detected by the EDD Net. The
dataset was built with clinical acquired DWI from 741 subjects,
exhibiting a high lesion detection rate, and accuracy.

Measurement of the perfusion-diffusion mismatch and
calculation of infarction probability usingMRI-based approaches
for tissue-at-risk evaluation can be applied in stroke treatment
decisions. Bouts et al. (47) analyzed the ability of five
algorithms to depict potentially salvageable tissue using MRI
imaging from rats subjected to a right-sided MCA occlusion
without subsequent reperfusion, and with spontaneous or
thrombolysis-induced reperfusion. The highest accuracy of risk-
based identification of acutely salvageable ischemic tissue that
could recover on subsequent reperfusion was observed using a
generalized linear model (Dice’s similarity index = 0.79 ± 0.14).
Similarly, Huang et al. (48) used an SVM to predict infarct on
a pixel-by-pixel basis using acute cerebral blood flow (CBF) and
apparent diffusion coefficient (ADC) on MRI data. Serial images

were collected during the acute phase up to 3 h and again at 24 h
from 12 rats in each of the stroke groups exposed to a 30-min,
60-min, or permanent middle cerebral artery (MCA) occlusion.
The accuracy observed for this approach was high in all groups
and was enhanced by adding neighboring pixel information and
spatial infarction incidence.

Takahashi et al. (44) designed a method to identify a
hyperdenseMCA, also known as theMCA dot sign, an important
evaluation in an NCHCT as it represents a thrombus in a vessel.
The authors created ROIs around the Sylvian fissure region
and identified MCA dots based on the morphologic top-hat
transformation, and classified images using an SVM with four
features. Two hundred and ninety-seven CT images from seven
patients with anMCA dot sign were classified by an SVM system,
which exhibited amaximum sensitivity of 97.5% at a false positive
rate of 1.28 per image and 0.5 per hemisphere while assessing the
MCA dot sign.

Another application ofML inAIS is predicting factors that will
contribute to neurological deterioration and increasedmorbidity,
such as cerebral edema. Chen et al. (49) proposed a machine
learning algorithm using serial CT scans of stroke patients to
delineate and measure cerebrospinal fluid (CSF) volume over
time, as it may represent a sensitive biomarker of cerebral edema
progression. The initial cohort consisted of 155 subjects and
preliminary processing using a generalized estimating equations
(GEE) model top to calculate CSF volumes over time, adjusting
for age, demonstrated that a reduction in CSF volume from
baseline to final CT was correlated with infarct volume, the
presence of cerebral edema, and the degree of midline shift.
Comparatively, Dhar et al. (50) validated an automated technique
for intracranial CSF segmentation by an ensemble of RF-
based machine learning with a geodesic active contour (GAC)
segmentation. CSF spaces were outlined on scans performed
within 6 h of stroke onset and then closest to 24 h later in 38
patients. This method accurately tracked changes in CSF volume
with an average DSC > 0.7. Pearson correlation coefficients
between the changes in CSF and the ground truth were found to
be statistically significant. These algorithms represent a potential
for future research and may serve as a biomarker of cerebral
edema severity.

The outcome of acute ischemic stroke patients is dependent
on therapy, and risks for complications should be considered
when deciding for stroke therapy. Yu et al. (53) established
a method to predict the location and extent of hemorrhagic
transformation (HT) in stroke, the most severe complication
following reperfusion therapy. PWI and DWI of 165 patients
treated with reperfusion therapy in a stroke center were collected
and analyzed using five machine learning approaches, with
Kernel spectral regression exhibiting an accuracy of 83.7± 2.6%.
A multi-center retrospective study (52) assessed the predictive
power for hemorrhagic transformation of PWI in MRI. Dynamic
T2- weighted perfusion MR images from 263 patients from four
medical centers were collected and served as input for linear
and nonlinear predictive models, the latter having an average
accuracy >85% in predicting HT. In one study, Nielsen et al.
(54) ran a deep learning convoluted neural network (CNNdeep)
with 9 biomarkers as input to calculate lesion volume in patients
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TABLE 1 | Use of machine learning in stroke diagnosis and outcome prognosis.

References ML-based approach Feature Results*

Asadi et al. (55) Artificial neural network Prediction of Dichotomized mRS 70% accuracy

Bentley et al. (51) Supported vector machine Prediction of sICH 74.4% accuracy

Bouts et al. (47) Adaptive boosting Prediction of infarction volume 89 ± 5% accuracy

Chen et al. (46) RF + GAC Relation of CSF shifts and cerebral edema r = 0.879

Forkert et al. (56) Multi-class supported vector machine Predicted 30-day post-stroke mRS

Multi-value mRS 56% accuracy

Multi-value mRS±1 82% accuracy

Dichotomized mRS 85% accuracy

Huang et al. (48) Supported vector machine Predicted infarct penumbra volume

30-min occlusion of MCA 86 ± 2.7% accuracy

60-min occlusion of MCA 89 ± 1.4% accuracy

Permanent occlusion of MCA 93% accuracy

Scalzo et al. (52) Non-linear regression model Prediction of HT >85% accuracy

Takahashi et al. (44) Supported vector machine Detection of MCA dot sign 97.5% sensitivity

Yu et al. (53) SR-KDA Prediction of HT 83.7 ± 2.6% accuracy

Nielsen et al. (54) Deep features CNN Prediction of patient outcome after IV thrombolysis 88 ± 0.12% accuracy

*The results displayed for each article are the most accurate or relevant in matter of the machine learning approach utilized according to the author.

CNN, Convoluted Neural Network; GAC, Geodesic Active Contour; HT, Hemorrhagic transformation; MCA, Middle Cerebral Artery; mRS, modified Rankin Scale; RF, Rain Forest; sICH,

symptomatic Intracranial Hemorrhage; SR-KDA, Spectral Regression Kernel Discriminant Analysis.

treated with IV tPA. Input data from 29 untreated patients and
35 patients that received IV tPA were compared. This model
predicted final infarct volume with 88% accuracy, being superior
to other models in this study. Bentley et al. (51) predicted
the risk of symptomatic intracerebral hemorrhage (sICH) after
IV thrombolysis therapy. CT images of 116 patients who were
treated with IV tPA, 16 of which had sICH, were entered as inputs
into an SVM along with clinical severity. They found a better
prognostication of the SVM when compared to the traditional
clinician-based prognostication tools such as Hemorrhage after
thrombolysis (HAT), and Sugar, Early Infarct signs, Dense
cerebral artery sign, Age, and NIHSS scores (SEDAN).

Machine learning algorithms based on structural and
functional MR images as input may assist in predicting motor
deficits in stroke patients. Forkert et al. (56) applied 12 SVM
classification models in calculating the corresponding 30-day
mRS score of ischemic stroke patients through parameters
including lesion overlap from different brain regions, stroke
laterality, and other optional features such as infarct volume,
NIHSS at admission, and patient age. Superior mRS prediction
was observed by integrating the optional features and providing
stroke location information, with a multi-value mRS prediction
accuracy of 56%, and a dichotomized mRS (0–2 vs. 3–5)
prediction accuracy of 85%. In a study by Rondina et al. (57),
a proposed model to predict upper extremity motor deficit
in 50 stroke patients was developed from data on structural
MRI instead of functional MRI. Lesion probability images were
derived using patterns of voxels and was then compared to lesion
load per ROI in predicting outcomes, with the former providing
better results when multiple regions of interest such as a range of
cortical and subcortical motor areas and corticospinal tract were
analyzed.

CURRENT CHALLENGES AND FUTURE
DIRECTIONS IN MACHINE LEARNING FOR
ACUTE ISCHEMIC STROKE

Early promising results have demonstrated that ML techniques
may be useful as decision support tools in treatment choices
for AIS. To improve the generalizability of the findings
discussed above, however, there are a number of limitations
in currently existing architectures that need to be addressed.
The first limitation is that of sample size. Deep learning
algorithms using medical imaging often require datasets of
tremendous magnitude, the types of which may not be readily
available. For example, an ML algorithm demonstrated superior
performance at differentiating skin cancer lesions from their
benign corresponding equivalent when compared against 21
board-certified dermatologists, using a dataset of nearly 130,000
images (58). A dataset of this size in AIS for public use
does not currently exist. This shortcoming, however, has been
recognized as a problem that can and ought to be solved,
and multiple calls for the creation of such a repository
have been made (59). The obstacles in inter-institutional data
sharing, as well as a lack of funding to correctly pre-process
and curate these images, along limitations to host such a
dataset account for some of the delays in the creation of this
repository.

Another limitation encountered in neuroimaging-based ML
techniques is the need for labeling regions of interest or “gold
standard” findings on the images. That is to say, beyond collecting
the images, the images and the findings on the images would need
to be identified for the question being evaluated. For example, a
study evaluating the presence or absence of a hyperdense MCA
would need each image to be tagged with the true result, to train
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the algorithm. Without foresight, this degree of manual curating
could be required for each individual project.

CONCLUSION

Machine learning applications are expanding in the medical
field for diagnostic and therapeutic purposes, and the rapidly
expanding and increasingly neuro-imaging reliant field of
AIS is proving to be fertile ground. There is a particular
need for ML solutions in this field, which is faced with the
challenge of increasingly complex data, with limited human

expert resources. Future directions in ML for AIS may
require collaborative approaches across multiple institutions
to build a robust dataset for efficient training of ML
networks.
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