10 research outputs found

    Identifying Medicinal Plant Leaves Using Textures and Optimal Colour Spaces Channel

    Get PDF
    This paper presents an automated medicinal plant leaf identification system. The Colour Texture analysis of the leaves is done using the statistical, the Grey Tone Spatial Dependency Matrix(GTSDM) and the Local Binary Pattern(LBP) based features with 20 different colour spaces(RGB, XYZ, CMY, YIQ, YUV, YCbCrYC_{b}C_{r}, YES, Uβˆ—Vβˆ—Wβˆ—U^{*}V^{*}W^{*}, Lβˆ—aβˆ—bβˆ—L^{*}a^{*}b^{*}, Lβˆ—uβˆ—vβˆ—L^{*}u^{*}v^{*}, lms, lΞ±Ξ²l\alpha\beta, I1I2I3I_{1} I_{2} I_{3}, HSV, HSI, IHLS, IHS, TSL, LSLM and KLT). Classification of the medicinal plant is carried out with 70\% of the dataset in training set and 30\% in the test set. The classification performance is analysed with Stochastic Gradient Descent(SGD), kNearest Neighbour(kNN), Support Vector Machines based on Radial basis function kernel(SVM-RBF), Linear Discriminant Analysis(LDA) and Quadratic Discriminant Analysis(QDA) classifiers. Results of classification on a dataset of 250 leaf images belonging to five different species of plants show the identification rate of 98.7 \%. The results certainly show better identification due to the use of YUV, Lβˆ—aβˆ—bβˆ—L^{*}a^{*}b^{*} and HSV colour spaces

    Identifying Medicinal Plant Leaves using Textures and Optimal Colour Spaces Channel

    Full text link

    A Vision-Based System for Power Transmission Facilities Detection

    Full text link

    A Markov Random Field Groupwise Registration Framework for Face Recognition

    Get PDF
    In this paper, we propose a new framework for tackling face recognition problem. The face recognition problem is formulated as groupwise deformable image registration and feature matching problem. The main contributions of the proposed method lie in the following aspects: (1) Each pixel in a facial image is represented by an anatomical signature obtained from its corresponding most salient scale local region determined by the survival exponential entropy (SEE) information theoretic measure. (2) Based on the anatomical signature calculated from each pixel, a novel Markov random field based groupwise registration framework is proposed to formulate the face recognition problem as a feature guided deformable image registration problem. The similarity between different facial images are measured on the nonlinear Riemannian manifold based on the deformable transformations. (3) The proposed method does not suffer from the generalizability problem which exists commonly in learning based algorithms. The proposed method has been extensively evaluated on four publicly available databases: FERET, CAS-PEAL-R1, FRGC ver 2.0, and the LFW. It is also compared with several state-of-the-art face recognition approaches, and experimental results demonstrate that the proposed method consistently achieves the highest recognition rates among all the methods under comparison

    Innovative local texture descriptors with application to eye detection

    Get PDF
    Local Binary Patterns (LBP), which is one of the well-known texture descriptors, has broad applications in pattern recognition and computer vision. The attractive properties of LBP are its tolerance to illumination variations and its computational simplicity. However, LBP only compares a pixel with those in its own neighborhood and encodes little information about the relationship of the local texture with the features. This dissertation introduces a new Feature Local Binary Patterns (FLBP) texture descriptor that can compare a pixel with those in its own neighborhood as well as in other neighborhoods and encodes the information of both local texture and features. The features encoded in FLBP are broadly defined, such as edges, Gabor wavelet features, and color features. Specifically, a binary image is first derived by extracting feature pixels from a given image, and then a distance vector field is obtained by computing the distance vector between each pixel and its nearest feature pixel defined in the binary image. Based on the distance vector field and the FLBP parameters, the FLBP representation of the given image is derived. The feasibility of the proposed FLBP is demonstrated on eye detection using the BioID and the FERET databases. Experimental results show that the FLBP method significantly improves upon the LBP method in terms of both the eye detection rate and the eye center localization accuracy. As LBP is sensitive to noise especially in near-uniform image regions, Local Ternary Patterns (LTP) was proposed to address this problem by extending LBP to three-valued codes. However, further research reveals that both LTP and LBP achieve similar results for face and facial expression recognition, while LTP has a higher computational cost than LBP. To improve upon LTP, this dissertation introduces another new local texture descriptor: Local Quaternary Patterns (LQP) and its extension, Feature Local Quaternary Patterns (FLQP). LQP encodes four relationships of local texture, and therefore, it includes more information of local texture than the LBP and the LTP. FLQP, which encodes both local and feature information, is expected to perform even better than LQP for texture description and pattern analysis. The LQP and FLQP are applied to eye detection on the BioID database. Experimental results show that both FLQP and LQP achieve better eye detection performance than FLTP, LTP, FLBP and LBP. The FLQP method achieves the highest eye detection rate

    Investigation of new learning methods for visual recognition

    Get PDF
    Visual recognition is one of the most difficult and prevailing problems in computer vision and pattern recognition due to the challenges in understanding the semantics and contents of digital images. Two major components of a visual recognition system are discriminatory feature representation and efficient and accurate pattern classification. This dissertation therefore focuses on developing new learning methods for visual recognition. Based on the conventional sparse representation, which shows its robustness for visual recognition problems, a series of new methods is proposed. Specifically, first, a new locally linear K nearest neighbor method, or LLK method, is presented. The LLK method derives a new representation, which is an approximation to the ideal representation, by optimizing an objective function based on a host of criteria for sparsity, locality, and reconstruction. The novel representation is further processed by two new classifiers, namely, an LLK based classifier (LLKc) and a locally linear nearest mean based classifier (LLNc), for visual recognition. The proposed classifiers are shown to connect to the Bayes decision rule for minimum error. Second, a new generative and discriminative sparse representation (GDSR) method is proposed by taking advantage of both a coarse modeling of the generative information and a modeling of the discriminative information. The proposed GDSR method integrates two new criteria, namely, a discriminative criterion and a generative criterion, into the conventional sparse representation criterion. A new generative and discriminative sparse representation based classification (GDSRc) method is then presented based on the derived new representation. Finally, a new Score space based multiple Metric Learning (SML) method is presented for a challenging visual recognition application, namely, recognizing kinship relations or kinship verification. The proposed SML method, which goes beyond the conventional Mahalanobis distance metric learning, not only learns the distance metric but also models the generative process of features by taking advantage of the score space. The SML method is optimized by solving a constrained, non-negative, and weighted variant of the sparse representation problem. To assess the feasibility of the proposed new learning methods, several visual recognition tasks, such as face recognition, scene recognition, object recognition, computational fine art analysis, action recognition, fine grained recognition, as well as kinship verification are applied. The experimental results show that the proposed new learning methods achieve better performance than the other popular methods

    Eye detection using discriminatory features and an efficient support vector machine

    Get PDF
    Accurate and efficient eye detection has broad applications in computer vision, machine learning, and pattern recognition. This dissertation presents a number of accurate and efficient eye detection methods using various discriminatory features and a new efficient Support Vector Machine (eSVM). This dissertation first introduces five popular image representation methods - the gray-scale image representation, the color image representation, the 2D Haar wavelet image representation, the Histograms of Oriented Gradients (HOG) image representation, and the Local Binary Patterns (LBP) image representation - and then applies these methods to derive five types of discriminatory features. Comparative assessments are then presented to evaluate the performance of these discriminatory features on the problem of eye detection. This dissertation further proposes two discriminatory feature extraction (DFE) methods for eye detection. The first DFE method, discriminant component analysis (DCA), improves upon the popular principal component analysis (PCA) method. The PCA method can derive the optimal features for data representation but not for classification. In contrast, the DCA method, which applies a new criterion vector that is defined on two novel measure vectors, derives the optimal discriminatory features in the whitened PCA space for two-class classification problems. The second DFE method, clustering-based discriminant analysis (CDA), improves upon the popular Fisher linear discriminant (FLD) method. A major disadvantage of the FLD is that it may not be able to extract adequate features in order to achieve satisfactory performance, especially for two-class problems. To address this problem, three CDA models (CDA-1, -2, and -3) are proposed by taking advantage of the clustering technique. For every CDA model anew between-cluster scatter matrix is defined. The CDA method thus can derive adequate features to achieve satisfactory performance for eye detection. Furthermore, the clustering nature of the three CDA models and the nonparametric nature of the CDA-2 and -3 models can further improve the detection performance upon the conventional FLD method. This dissertation finally presents a new efficient Support Vector Machine (eSVM) for eye detection that improves the computational efficiency of the conventional Support Vector Machine (SVM). The eSVM first defines a Θ set that consists of the training samples on the wrong side of their margin derived from the conventional soft-margin SVM. The Θ set plays an important role in controlling the generalization performance of the eSVM. The eSVM then introduces only a single slack variable for all the training samples in the Θ set, and as a result, only a very small number of those samples in the Θ set become support vectors. The eSVM hence significantly reduces the number of support vectors and improves the computational efficiency without sacrificing the generalization performance. A modified Sequential Minimal Optimization (SMO) algorithm is then presented to solve the large Quadratic Programming (QP) problem defined in the optimization of the eSVM. Three large-scale face databases, the Face Recognition Grand challenge (FRGC) version 2 database, the BioID database, and the FERET database, are applied to evaluate the proposed eye detection methods. Experimental results show the effectiveness of the proposed methods that improve upon some state-of-the-art eye detection methods

    Face recognition using multiple features in different color spaces

    Get PDF
    Face recognition as a particular problem of pattern recognition has been attracting substantial attention from researchers in computer vision, pattern recognition, and machine learning. The recent Face Recognition Grand Challenge (FRGC) program reveals that uncontrolled illumination conditions pose grand challenges to face recognition performance. Most of the existing face recognition methods use gray-scale face images, which have been shown insufficient to tackle these challenges. To overcome this challenging problem in face recognition, this dissertation applies multiple features derived from the color images instead of the intensity images only. First, this dissertation presents two face recognition methods, which operate in different color spaces, using frequency features by means of Discrete Fourier Transform (DFT) and spatial features by means of Local Binary Patterns (LBP), respectively. The DFT frequency domain consists of the real part, the imaginary part, the magnitude, and the phase components, which provide the different interpretations of the input face images. The advantage of LBP in face recognition is attributed to its robustness in terms of intensity-level monotonic transformation, as well as its operation in the various scale image spaces. By fusing the frequency components or the multi-resolution LBP histograms, the complementary feature sets can be generated to enhance the capability of facial texture description. This dissertation thus uses the fused DFT and LBP features in two hybrid color spaces, the RIQ and the VIQ color spaces, respectively, for improving face recognition performance. Second, a method that extracts multiple features in the CID color space is presented for face recognition. As different color component images in the CID color space display different characteristics, three different image encoding methods, namely, the patch-based Gabor image representation, the multi-resolution LBP feature fusion, and the DCT-based multiple face encodings, are presented to effectively extract features from the component images for enhancing pattern recognition performance. To further improve classification performance, the similarity scores due to the three color component images are fused for the final decision making. Finally, a novel image representation is also discussed in this dissertation. Unlike a traditional intensity image that is directly derived from a linear combination of the R, G, and B color components, the novel image representation adapted to class separability is generated through a PCA plus FLD learning framework from the hybrid color space instead of the RGB color space. Based upon the novel image representation, a multiple feature fusion method is proposed to address the problem of face recognition under the severe illumination conditions. The aforementioned methods have been evaluated using two large-scale databases, namely, the Face Recognition Grand Challenge (FRGC) version 2 database and the FERET face database. Experimental results have shown that the proposed methods improve face recognition performance upon the traditional methods using the intensity images by large margins and outperform some state-of-the-art methods

    Jurnal Ilmu Komputer dan Informasi (JIKI)

    Get PDF
    corecore