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ABSTRACT

FACE RECOGNITION USING MULTIPLE FEATURES
IN DIFFERENT COLOR SPACES

by
Zhiming Liu

Face recognition as a particular problem of pattern recognition has been attracting sub-

stantial attention from researchers in computer vision, pattern recognition, and machine

learning. The recent Face Recognition Grand Challenge (FRGC) program reveals that un-

controlled illumination conditions pose grand challenges to face recognition performance.

Most of the existing face recognition methods use gray-scale face images, which have been

shown insufficient to tackle these challenges. To overcome this challenging problem in

face recognition, this dissertation applies multiple features derived from the color images

instead of the intensity images only.

First, this dissertation presents two face recognition methods, which operate in

different color spaces, using frequency features by means of Discrete Fourier Transform

(DFT) and spatial features by means of Local Binary Patterns (LBP), respectively. The

DFT frequency domain consists of the real part, the imaginary part, the magnitude, and

the phase components, which provide the different interpretations of the input face im-

ages. The advantage of LBP in face recognition is attributed to its robustness in terms of

intensity-level monotonic transformation, as well as its operation in the various scale image

spaces. By fusing the frequency components or the multi-resolution LBP histograms, the

complementary feature sets can be generated to enhance the capability of facial texture de-

scription. This dissertation thus uses the fused DFT and LBP features in two hybrid color

spaces, the RIQ and the VIQ color spaces, respectively, for improving face recognition

performance.

Second, a method that extracts multiple features in the CID color space is presented

for face recognition. As different color component images in the CID color space display

different characteristics, three different image encoding methods, namely, the patch-based



Gabor image representation, the multi-resolution LBP feature fusion, and the DCT-based

multiple face encodings, are presented to effectively extract features from the component

images for enhancing pattern recognition performance. To further improve classification

performance, the similarity scores due to the three color component images are fused for

the final decision making.

Finally, a novel image representation is also discussed in this dissertation. Unlike

a traditional intensity image that is directly derived from a linear combination of the R,

G, and B color components, the novel image representation adapted to class separability

is generated through a PCA plus FLD learning framework from the hybrid color space

instead of the RGB color space. Based upon the novel image representation, a multiple

feature fusion method is proposed to address the problem of face recognition under the

severe illumination conditions.

The aforementioned methods have been evaluated using two large-scale databases,

namely, the Face Recognition Grand Challenge (FRGC) version 2 database and the FERET

face database. Experimental results have shown that the proposed methods improve face

recognition performance upon the traditional methods using the intensity images by large

margins and outperform some state-of-the-art methods.
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CHAPTER 1

INTRODUCTION

Face recognition, a typical problem in computer vision, pattern recognition, and machine

learning, has been attracting more and more research attention recently, due to the complex-

ity of the problem itself and the enormous applications in the commercial and government

sectors (Bowyer et al. 2006; Zhao et al. 2003; Jain et al. 2004). Although numerous meth-

ods in face recognition have been proposed in the last two decades, there are still many

open problems that remain to be unsolved. The recent Face Recognition Grand Challenge

(FRGC) program reveals that uncontrolled conditions, such as illumination, expression,

blurring, and so on, pose grand challenges to face recognition performance (Phillips et

al. 2005). Some of the typical image variations on face images are shown in Figure 1.1.

Therefore, some new techniques are in great demand to achieve a breakthrough in solving

these obstacles. In this chapter, some popular face recognition approaches will be briefly

introduced first, and then the outline of the work in this dissertation will be presented.

1.1 Face Recognition Using Appearance-based Methods

Pattern recognition relies heavily on the particular choice of features utilized by the clas-

sifiers. Therefore, feature selection and feature extraction are crucial to many pattern clas-

sification problems, e.g., face recognition. One typical block diagram of face recognition

system is shown in Figure 1.2. The common objective of feature selection and extraction

is to map the original measurements into more effective features, which show significant

differences from one class to another, so that the classifiers can be designed more eas-

ily with better performance (Fukunaga 1990). One of the dominant and most successful

approaches in face recognition is appearance-based feature extraction. Figure 1.3 shows

some major methods in this category, which consists of two aspects: statistics-level and

1



2

Figure 1.1 Examples of face image variations. Large image variations in illumination,
expression, and blurring pose challenges to face recognition.

Face image

Image-level / low-level
features

Classifier

Statistics-level features

Figure 1.2 Block diagram of face recognition system.

image-level features. Another important category is model-based feature extraction, which

utilizes the shape, texture, and 3D depth information for face recognition. More details

about these methods can be found in a survey (Lu 2003). In this section, some state-of-the-

art face recognition methods belonging to the first category are briefly presented, because

the work in this dissertation mainly makes use of features derived from holistic and local

face appearance.

1.1.1 Statistics-level Feature Extraction

The face images reside usually in a high-dimensional image space. There is a great de-

mand to find the meaningful and compact patterns in such a space for developing robust

face recognition methods so as to meet two requirements: enhanced discrimination ability

and computational efficiency. Therefore, most appearance-based face recognition algo-
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Statistics-level
features

Appearance-based
feature extraction

Image-level / low-level
features

Linear subspace
analysis

Principal Component Analysis (PCA)

Linear Discriminant Analysis (LDA)

Locality Preserving Projections (LPP)

Multilinear (Tensor) analysis

Kernal Principal Component Analysis
(KPCA)

Kernel Linear Discriminant Analysis
(Kernel LDA)

Isomap, LLE, and Laplacian Eigenmap

Non-linear / 
manifold analysis

Gabor Image Representation (GIR)

Local Binary Patterns (LBP)

Color information

Figure 1.3 Hierarchical structure of the appearance-based feature extraction in face recog-
nition.

rithms usually start with the dimensionality reduction by using some popular linear sub-

space methods. In the following sections, several major statistical methods are introduced.

Principal Component Analysis (PCA)

As an optimal linear transformation in the sense of minimum Mean Square Error

(MSE), Principal Component Analysis (PCA) (Turk & Pentland 1991; Kirby & Sirovich

1990) has been a leading technique for dimensionality reduction of input data. Given a set

of d-dimensional column image vectors {Xi j}, where Xi j ∈ R
d is the j-th image of class i.

Let the training set consist of c persons and li sample images for person i. Thus, the number

of training samples is m = ∑ c
i=1 li. For face recognition, each person is a class with prior

probability of λi. The within-class scatter matrix is defined as:

Sw =
c

∑
i=1

λi

li

li

∑
j=1

(Xi j −Xi)(Xi j −Xi)
T , (1.1)
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where Xi =
1
li ∑ li

j=1 Xi j is the mean of person i. The between-class scatter matrix Sb and the

total (mixture) scatter matrix St are defined respectively as:

Sb =
c

∑
i=1

λi(Xi−X)(Xi−X)T , (1.2)

St =
c

∑
i=1

λi

li

li

∑
j=1

(Xi j −X)(Xi j −X)T , (1.3)

where X = 1
m ∑ c

i=1 ∑ li
j=1 Xi j is the grand mean.

PCA seeks a principal subspace of lower dimensionality to maximize the data re-

construction capability of the features. As a result, the features in this subspace can repre-

sent the original data accurately. The objective function of PCA can be defined as:

W ∗ = argmax
‖W‖=1

|W T StW |. (1.4)

Maximizing the above equation can be solved via eigenvalue-eigenvector analysis. That is,

the matrix W ∗ can be constructed by obtaining the k principal eigenvectors corresponding

to the k largest eigenvalues of St .

Linear Discriminant Analysis (LDA)

The best representation of data may not perform well from the classification point

of view, as the total scatter matrix consists of both the within- and between-class variations.

To obtain the discrimination of features for differentiating face images of one person from

the others, one needs to manipulate the within- and between-class variations separately. To

that end, face recognition using Linear Discriminant Analysis (LDA) (Swets & Weng 1996;

Belhumeur et al. 1997; Etemad et al. 1997) has been an area of increasing interest. LDA is

also known as Fisher Linear Discriminant (FLD). In this dissertation, the terms LDA and

FLD are used interchangeably. The objective function of LDA can be defined as:

W ∗ = argmax
W

|W T SbW |
|W T SwW | . (1.5)
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Equation (1.5) is called the Fisher criterion. To maximize the ratio value of this criterion,

LDA seeks an optimal subspace W ∗ that separates the different classes as far as possible

and compresses the same classes as compactly as possible. To derive W ∗, LDA solves

the generalized eigenvectors of SbW = λSwW , and chooses the k principal eigenvectors

corresponding to the k largest eigenvalues.

Locality Preserving Projections (LPP)

While PCA and LDA aim to preserve the global Euclidean structure, the local man-

ifold structure is more important in many real-world applications, especially when nearest-

neighbor based classifiers are used for classification (He et al. 2005). Given the high-

dimensional data lies on a low dimensional manifold embedded in the ambient space, a

novel linear learning algorithm, called Locality Preserving Projections (LPP) (He et al.

2005), has been proposed to find an optimal linear transformation to preserve the local ge-

ometric structure of the face image space. The objective function of LPP is as follows (He

et al. 2005):

min ∑
i j
‖yi − y j‖2Si j, (1.6)

where yi is the one-dimensional representation of Xi by the linear transformation yi =W T Xi.

The matrix S is a similarity matrix. A possible way to define S is given as (He et al. 2005):

Si j =











exp(−‖Xi−X j‖2/t) ‖Xi−X j‖2 < ε

0 otherwise,
(1.7)

where ε > 0 is very small and defines the radius of the local neighborhood. As the neigh-

boring points Xi and X j are mapped far apart, i.e., ‖yi−y j‖2 is large, the objective function

incurs a heavy penalty. Therefore, minimizing (1.6) makes an effort to ensure that, if Xi

and X j are close, then yi and y j are close as well (He et al. 2005).
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Defining D as a diagonal matrix whose entries are column (or row since S is sym-

metric) sums of S, i.e., Dii = ∑ j S ji (He et al. 2005), one can derive Laplacian matrix as

L = D−S. Following some simple algebraic steps, the objective function (1.6) is rewritten

as:

W ∗ = argmin
W

W T XLXTW s.t. W T XDXW = 1. (1.8)

The optimal transformation vector W can be derived by the minimum eigenvalue solution

to the generalized eigenvector problem: XLX TW = λXDXTW . By using LPP, a new face

recognition method called Laplacianfaces has been proposed to map the face images into

a face subspace for analysis and has demonstrated more discriminative power than Eigen-

faces and Fisherfaces for face recognition (He et al. 2005).

Tension-based Image Representation

Currently, most subspace learning methods handle image data in the form of 1-

D vectors, by concatenating the columns or rows of an image into a single vector. This

process most likely results in the curse of dimensionality dilemma and the small sample

size problem, because the dimensionality of features usually is much larger than the sample

size. However, image essentially is matrix, i.e., second-order tensors, which has motivated

researchers to propose some novel subspace methods, such as 2-D PCA (Yang et al. 2004)

and 2-D LDA (Ye et al. 2004), to extract features directly on images. In recent years,

advances have focused on encoding face images as second- or higher-order tensors and

extending the traditional PCA, LDA, and LPP into their tensorized versions (Yan et al.

2007a; Yan et al. 2007b; Tao et al. 2007; Xu et al. 2008; Fu & Huang 2008a). These

emerging methods have showed the superiority over some traditional subspace learning

methods in both recognition accuracy and computational efficiency.
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Kernel PCA

Linear analysis methods have met with difficulties in extracting the effective fea-

tures for face recognition, when the face images suffer from the large variations due to il-

lumination conditions, viewing directions or poses, facial expression, aging, and disguises

such as facial hair, glasses, or cosmetics. Encountering these challenges, face recognition

schemes are required to possess enhanced discrimination abilities. Since the late 1990s,

enormous efforts have been put into developing nonlinear analysis methods (e.g., kernel-

based methods). By taking advance of a nonlinear kernel mapping, one is able to improve

the discriminating power of the feature representation remarkably.

To obtain higher order correlations beyond variances and covariances between input

variables, linear PCA was extended to a nonlinear form, Kernel PCA (KPCA) (Schölkopf

et al. 1998). The basic idea of KPCA is mapping the original input space to a high-

dimensional feature space, where standard PCA is actually conducted. By applying kernel

functions that implement a canonical dot product in the low-dimensional input space in-

stead of the high-dimensional feature space, KPCA implicitly achieves the nonlinear map-

ping between the input space and the feature space, such that the expensive computation in

directly nonlinear mapping is avoided subtly.

Given a set of samples x1,x2, . . . ,xm ∈ R
d in the input space, the kernel induces a

nonlinear mapping between the input space and the feature space denoted by φ : Rd → H.

Then the kernel mapped data is first centered and then is used to form a data matrix in the

feature space: D = [φ(x1),φ(x2), . . . ,φ(xm)]∈ H. Let K ∈R
m×m be a kernel matrix defined

by the dot product in the feature space. The element Ki j in K is given as:

Ki j = k(xi,x j) = (φ(xi) ·φ(x j)), (1.9)

where k(·) is a kernel function and is usually defined as three types: polynomial kernels,

Gaussian kernels, and sigmoid kernels (Schölkopf & Smola 2002). Rather than directly

eigen-decomposing the covariance matrix, C = 1
m ∑ m

i=1 φ(xi)φ(xi)
t , whose dimensionality is
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very high or even infinite in the feature space, Schölkopf et al. (1998) derived the equivalent

eigenvalue problem:

mλα = Kα, (1.10)

where α = [α1,α2, . . . ,αm]
t is a column vector. Then an eigenvector V of KPCA is com-

puted as follows:

V = Dα =
m

∑
i=1

αiφ(xi). (1.11)

Given a training/test sample x, the corresponding feature in the feature space is

φ(x). The k-th KPCA feature of x is computed as the projection of φ(x) onto the eigenvector

V k:

β (x)k =V kφ(x) =
m

∑
i=1

αk
i K(xi,x). (1.12)

Kernel LDA

Similar to linear PCA, KPCA still captures only the overall variance of input pat-

terns, which is not significant for discrimination purpose. To account for the nonlinear

interactions among patterns, linear LDA needs to be extended to a nonlinear form, ker-

nel LDA, to obtain the enhanced discrimination power. The idea of kernel LDA was first

proposed by Mika et al. (1999), whose method deals with two-class pattern classification

problems. Subsequently, Baudat and Anouar (2000) proposed another type of kernel LDA,

called Generalized Discriminant Analysis (GDA), to address multiclass pattern classifica-

tion problems. Since then, research has witnessed the development of a bunch of kernel

LDA algorithms (Roth & Steinhage 2000; Cooke 2002; Yang et al. 2002; Lu et al. 2003;

Yang et al. 2005). Thus, there are several kinds of kernel LDA formulations. One among

them is called KPCA + LDA (Yang et al. 2005), whose straightforward insight into the na-

ture of kernel LDA makes it easier to understand and implement kernel LDA, particularly
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for new investigators and programmers (Yang et al. 2005).

As revealed in Yang’s paper, the essence of kernel LDA consists of two steps. That

is, KPCA is first used to reduce (or increase) the dimensionality of the input space to n,

which is the rank of the covariance matrix C in the feature space, i.e., the rank of the

centralized Gram matrix K defined in Equation (1.9). Generally, n = m−1, where m is the

number of training samples. Next, LDA is implemented for further feature extraction in the

KPCA-transformed space R
n (Yang et al. 2005). Let yi j be the KPCA feature of the j-th

training sample in class i, calculated by Equation (1.12). The within- and between-class

scatter matrices in R
n are defined as:

Sw =
c

∑
i=1

λi

li

li

∑
j=1

(yi j − yi)(yi j − yi)
T , (1.13)

Sb =
c

∑
i=1

λi(yi− y)(yi− y)T , (1.14)

where li is the number of training samples in class i with prior probability of λi, yi is the

mean of the training samples in class i, y is the grand mean. The ordinary LDA procedures

then derive an optimal transformation matrix U . Finally, given a training/test image, its

kernel LDA features are defined as:

Z =U tV tφ(x) =U tΩtΘ, (1.15)

where Ωand Θ have similar definitions as α and K(xi,x) in KPCA. Please refer to the

paper (Yang et al. 2005) for more details.

Manifold Learning

For conducting nonlinear dimensionality reduction on the high-dimensional data

that can be considered as a set of geometrically correlated points lying on or nearly on a

smooth low-dimensional manifold, some popular manifold learning algorithms include Lo-
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cally Linear Embedding (LLE) (Roweis & Saul 2000), Isomap (Tenenbaum et al. 2000),

Laplacian Eigenmaps (LE) (Belkin & Niyogi 2003) have recently been developed. LLE

maps the input data to a lower dimensional space in a manner that preserves the relation-

ship between the neighboring points; Isomap finds the low-dimensional representations for

a data set by approximately preserving the geodesic distances of the data pairs; LE pre-

serves the similarities of the neighboring points, and its linearized form is LPP. Although

these algorithms are derived on the basis of different motivations, they all can be unified

within the Graph Embedding (GE) framework and its linear/kernel/tensor extensions (Yan

et al. 2007). These nonlinear methods do yield impressive results on some benchmark ar-

tificial data sets. However, the generated maps are defined only on the training data points,

and how to evaluate the maps on novel test data points remains unclear (He et al. 2005).

Therefore, these nonlinear manifold learning algorithms might not be suitable for some

computer vision tasks, such as face recognition (He et al. 2005).

Recent studies also reveal that locality features and intrinsic geometric structures

in the input space may take on additional discriminating power for classification, assum-

ing that Locally Embedded Analysis (LEA) (Fu & Huang, 2005), and Locally Preserving

Projections (LPP) (He et al., 2005). Both nonlinear kernel mapping and locally preserved

graph embedding help improve the discriminating power of feature representation. How-

ever, they generally have the drawback of high-computational cost in classification and

overfitting (Fu et al., 2008; Kim et al., 2005).

1.1.2 Image-level Feature Extraction

Image variations cause the changes of data distribution in high-dimensional image space. If

raw images are used directly for face recognition, such changes pose burden to the process

of statistical feature extraction via either linear or nonlinear way. To facilitate the statistical

feature extraction for classification, some image feature extraction techniques have been

developed to process raw images for extracting image features, which are usually invariant
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Figure 1.4 Gabor wavelets: the real part of the Gabor kernels at five scales and eight
orientations.

to image variations. Some popular methods in image feature extraction include Gabor

Image Representation (GIR) (Daugman 1985; Donato et al. 1999; Liu & Wechsler 2002),

and Local Binary Patterns (LBP) (Ojala et al. 1996; Ojala et al. 2002).

Gabor Image Representation (GIR)

GIR of an image captures salient visual properties such as spatial location, orien-

tation selectivity, and spatial frequency characteristics (Daugman 1985), displaying robust

characteristics in dealing with image variabilities. Specifically, GIR is the convolution of

the image with a family of Gabor kernels that may be formulated as follows (Daugman

1985):

ψµ,ν(z) =
‖kµ,ν‖2

σ 2 e−
‖kµ ,ν ‖2‖z‖2

2σ2

[

eikµ ,ν z − e−
σ2
2

]

(1.16)

where µ and ν define the orientation and scale of the Gabor kernels, z = (x,y), ‖ ·‖ denotes

the norm operator, and the wave vector kµ,ν is defined as follows:
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Figure 1.5 Gabor image representation (GIR): the magnitude representation.

kµ,ν = kνeiφµ (1.17)

where kν = kmax/ f ν and φµ = πµ/8. kmax is the maximum frequency, and f is the spacing

factor between kernels in the frequency domain. Let I(x,y) represent a face image, the

convolution of I(x,y) and a Gabor kernel ψµ,ν may be formulated as follows:

Oµ,ν(z) = I(z)∗ψµ,ν(z) (1.18)

where z = (x,y), ∗ denotes the convolution operator, and Oµ,ν(z) is the convolution result

corresponding to the Gabor kernel at orientation µ and scale ν . Commonly used Gabor

kernels contain five different scales, ν ∈ {0, ...,4}, and eight orientations, µ ∈ {0, ...,7}.

The set S = {Oµ,ν(z) : µ ∈ {0, ...,7},ν ∈ {0, ...,4}}, thus, forms GIR of the image I.

Figure 1.4 shows the the real part of Gabor kernels at different scales and orientations, and

Figure 1.5 shows the magnitude of GIR derived from the convolution of a face image with

these Gabor kernels. Usually, the concatenated magnitude images are considered as Gabor

features for face recognition (Liu et al. 2002).
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Figure 1.6 An example of the basic LBP operation (Ahonen et al. 2006).

Figure 1.7 An example of LBP circular neighborhoods: (8,1), (16,2), and (8,2). When
the sampling point is not at the center of a pixel, the pixel value is bilinearly interpolated.

Local Binary Patterns (LBP)

LBP, which was originally introduced for texture analysis (Ojala et al. 1996), has

been successfully extended to describe face images and demonstrated effective for face

recognition, due to the finding that face images can be viewed as a composition of micro-

patterns that are well described by the LBP operators. In a 3 × 3 neighborhood of an

image, the basic LBP operator assigns a binary label 0 or 1 to each surrounding pixel by

thresholding at the gray value of the central pixel and replacing its value with a decimal

number converted from the 8-bit binary number. Formally, the LBP operator is defined as

follows:

LBP =
7

∑
p=0

2ps(ip− ic) (1.19)

where s(ip− ic) equals 1, if ip − ic ≥ 0; and 0, otherwise. Figure 1.6 illustrates an example

of the basic LBP operator.

Two extensions of the basic LBP were further developed by Ojala et al. (2002). The

first extension allows LBP to deal with any size of neighborhoods by using circular neigh-

borhoods and bilinearly interpolating the pixel values. The notation (P, R) thus represents

P points on a circle of radius of R. Figure 1.7 shows an example of circular neighborhoods.



14

The second extension defines the so called uniform patterns. When the binary string

is traversed circularly, LBP can be called uniform if there are at most two bitwise transitions

from 0 to 1 or vice versa. For example, the patterns 00000000 (0 transitions), 00011100

(2 transitions) and 11000011 (2 transitions) are uniform whereas the patterns 11010011 (4

transitions) and 00101001 (6 transitions) are not. In the computation of LBP histograms,

every uniform pattern has its own bin and all nonuniform patterns are assigned to a separate

bin. Ahonen et al. (2006) have found that 90.6% of the patterns in the (8,1) neighborhood

and 85.2% of the patterns in the (8,2) neighborhood are uniform when processing FERET

facial images. After extensions, LBP can be expressed as: LBPu2
P,R.

1.1.3 Color Information for Face Recognition

Most existing face recognition methods work with the gray-scale images, which have been

revealed to be suffering from severe image variations by the recent Face Recognition Grand

Challenge (FRGC) program (Phillips et al. 2005). Color information has been widely

applied in face detection, but not in face recognition. Recent studies show that different

color spaces transformed from the RGB color space display different discriminating power

for pattern recognition (Hsu et al. 2002; Geusebroek et al. 2001; Torres et al. 1999; Ross

& Govindarajan 2005; Shih et al. 2005). As different color component images in a color

space exhibit the various representations of faces, they could provide the complementary

information to each other. Such a characteristic implies that when some facial features

produce the incorrect classification output due to image variations on the luminance-related

images, such as Y, R, and V of HSV, they could work well on the chromatic images, such as

I, Q, Cr, and so on. As a result, the sets of face images misclassified by the different color

component images would not necessarily overlap. Therefore, data fusion at the image level

or the decision level can be used to combine several color component images to improve the

performance of face recognition, when compared to the methods using gray-scale images

alone.
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There are a few approaches in the literature to address the feature extraction in color

space. Xie and Kumar (2005) proposed the quaternion correlation filter technique for color

face recognition that processes all of the color channels jointly, where the quaternion repre-

sentation encodes the three color components (such as in the RGB and NTSC color spaces)

in the imaginary parts of the quaternion number. Jones and Abbott (2006) further proposed

to use the quaternion representation to extend the Gabor filters from the complex domain to

the hypercomplex domain for color face recognition. To overcome the large illumination

variations on color in face images, Kim and Choi (2007) proposed the construction of a

tensor of color image ensemble. They formed a 4-way tensor whose coordinates are asso-

ciated with rows and columns of face images, color, and samples, and then employed the

higher-order SVD of the tensor to extract such features. The other approaches of extracting

features in color face images include the application of Non-negative Matrix Factorization

(NMF) (Rajapakse et al. 2004) and LBP (Chan et al. 2007).

This section first details ten commonly used color spaces in computer vision and

pattern recognition, then introduces an emerging technique of color space normalization in

face recognition. The ten color spaces include: the RGB color space, the rgb color space,

the I1I2I3 (decorrelated RGB) color space, the human perceptual color spaces HSV and

HSI, the video transmission efficiency color spaces YIQ, YUV and YCbCr, the CIE-XYZ

color space, and the CIE perceptually uniform color space CIE-L∗a∗b∗.

The rgb color space

The RGB colors are sensitive to surface orientation, illumination direction, and

illumination intensity. To alleviate such sensitivities, one can derive the normalized colors

by projecting the R, G, B values onto the R = G = B = max{R,G,B} plane. The projection

spans a normalized rgb chromaticity triangle. The transformation is defined as:
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r = R/(R+G+B)

g = G/(R+G+B)

b = B/(R+G+B).

(1.20)

The I1I2I3 color space

An effective color space to stabilize RGB images is I1I2I3, proposed by Ohta et al.

(1980), which uses Karhunen-Loève transformation (KLT) to decorrelate the RGB compo-

nents. The conversion from RGB to I1I2I3 based on Ohta’s experimental model is given by

the simple linear transformation:













I1

I2

I3













=













1/3 1/3 1/3

1/2 0 −1/2

−1/2 1 −1/2

























R

G

B













. (1.21)

Human perceptual color spaces

The HSI and HSV color spaces are motivated by the human vision system in a sense

that one can describe color by means of hue, saturation, and brightness. Hue and saturation

define chrominance, while intensity or value specifies luminance. The HSI color space is

defined as follows:

I = (R+G+B)/3

S = 1− (1/I)min(R,G,B)

H =











θ if B ≤ G

360−θ otherwise,

(1.22)

where



17

θ = cos−1

{

1
2 [(R−G)+(R−B)]

[(R−G)2+(R−G)(G−B)]
1
2

}

. (1.23)

The HSV color space is defined as:

Let























MAX = max(R,G,B)

MIN = min(R,G,B)

δ = MAX−MIN

H =



































60(G−B
δ ) if MAX = R

60(B−R
δ +2) if MAX = G

60(R−G
δ +4) if MAX = B

not defined if MAX = 0

S =











δ
MAX if MAX 6= 0

0 if MAX = 0

V = MAX.

(1.24)

In order to confine H within the range of [0,360],

H = H +360 if H < 0. (1.25)

Note that the R, G, B values in both Equations (1.22) and (1.24) are scaled to [0,1].

Video transmission efficiency color spaces

The YUV and YIQ color spaces are widely used in video for transmission effi-

ciency. The YUV color space is applied by Phase Alternation by Line (PAL) and the Sys-

tem Electronique Couleur Avec Memoire (SECAM), and the YIQ color space is adopted

by the National Television System Committee (NTSC) video standard in reference to RGB

NTSC. The YUV color space is defined as:
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
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. (1.26)

The I and Q components are derived from their counterparts, U and V, by a clock-

wise rotation (33o), and then the YIQ color space is defined as follows:
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. (1.27)

The YCbCr color space is a scaled and offset version of the YUV color space. To

derive YCbCr, the RGB components are distributed into luminance (Y), chrominance blue

(Cb), and chrominance red (Cr). The Y component has 220 levels ranging from 16 to 235,

while the Cb, Cr components have 225 levels ranging from 16 to 240:


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. (1.28)

where the R, G, B values are scaled to [0,1].

CIE uniform color spaces

In the CIE (Commission Internationale de 1’Éclairage) systems, the starting point

for all color specification is CIE XYZ. XYZ is known as tristimulus values, which lead to

the other CIE perceptually uniform color spaces, such as the L∗a∗b∗ color space. A linear
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transformation from RGB space to XYZ space is defined as:
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. (1.29)

The L∗a∗b∗ color space is one of the most popular color spaces and is modeled

based on the human vision system. The L∗ component represents brightness from 0 (black)

to 100 (white). The a∗ component corresponds to the measurement of redness (positive

values) or greenness (negative values), and the b∗ component corresponds to the measure-

ment of yellowness (positive values) and blueness (negative values). Based on the XYZ

tristimulus, the L∗a∗b∗ color space is defined as:

L∗ = 116 f ( Y
Yo
)−16

a∗ = 500
[

f ( X
Xo
)− f ( Y

Yo
)
]

b∗ = 200
[

f ( Y
Yo
)− f ( Z

Zo
)
]

(1.30)

where

f (x) =











x1/3 if x > 0.008856

7.787x+ 16
116 otherwise.

(1.31)

In addition to the above existing color spaces, a few researchers have devoted to

generating some new color spaces for face recognition (Jones III & Abbott 2004; Liu 2008;

Yang et al. 2008; Liu & Yang 2009). The main idea of these methods can be described as:

first, the color-space total, between-class, and within-class scatter matrices are constructed

using pixel values containing different color components, then some linear learning algo-

rithms, such as PCA, LDA, and Independent Component Analysis (ICA), are applied to

these scatter matrices to derive the transformation vectors, which generate one or several

new color components from original color components. The motivation behind generating

new color spaces is to make the new color components more uncorrelated, more discrimina-
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tive, and more independent than original color components for improving the performance

of face recognition.

Color Space Normalization for Face Recognition

The most important issue of color-based face recognition is to choose the appropri-

ate color spaces, which are able to provide more discriminative power than the others. As

a straightforward way, the exhaustive enumeration strategy has been applied in the refer-

ence (Shih et al. 2005) to seek the best color spaces. Their research reveals that different

color spaces transformed from the RGB color display different discriminating abilities for

face recognition. Specifically, the YIQ color space provides better face recognition perfor-

mance in comparison with other color spaces. One nature question arises “what kind of

color spaces is suitable for color face recognition?", namely, what characteristics are re-

lated to the discriminative color spaces for face recognition? To answer this question, Yang

et al. (2010b) have proposed the concept of Double-Zeros-Sum (DZS) in color spaces.

By discovering what characteristics make the I1I2I3, YUV, and YIQ color spaces

more powerful than the RGB and XYZ color spaces for face classification, Yang et al.

(2010a) found an interesting observation in color transformation matrices: the sums of the

elements in the second and third rows of the transformation matrix are both zero or approx-

imate zero. This characteristic is so called Double-Zeros-Sum (DZS) (Yang et al. 2010b).

However, the RGB and XYZ color spaces do not hold such a property. For example, the

transformation matrix of the RGB color space is given as follows:
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. (1.32)

Note the transformation matrix is an identity matrix, indicating the sums of the elements
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in second and third rows are not zero. A similar situation also appears in other weak

discriminating color spaces, such as XYZ.

Inspired by this finding, Yang et al. (2010a) further proposed the concept of color

space normalization (CSN) and developed two CSN techniques. These CSN techniques can

work well in all color spaces that are derived by a linear transformation of the RGB color

space, so that the normalized color spaces possess the same property as the strong discrim-

inating color spaces. The two normalization techniques, according to whether the com-

putation procedures happen within a color component or across three color components,

are named as within-color-component normalization (CSN-I) and across-color-component

normalization (CSN-II), respectively. Next, the CSN-I technique will be briefly presented,

and readers can refer to the paper (Yang et al. 2010a) for the details of the CSN-II.

Let C1, C2, and C3 be the three color components derived by the following linear

transformation of the RGB color space:
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. (1.33)

The mean values of the second and the third rows in A are m2 = (a21 + a22 + a23)/3 and

m3 = (a31 + a32 + a33)/3, respectively. Subtracting m2 and m3 from the second and third

rows results in a normalized transformation matrix Ã, which generates a normalized color

space C̃1C̃2C̃3 (Yang et al. 2010a):
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For example, the normalized RGB and XYZ color spaces via the CSN-I are defined

as:
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(1.35)

Some Preliminary Evaluations of Different Color Spaces for Face Recognition

To evaluate the feasibility of color information in face recognition, a set of experiments has

been executed on the FRGC version 2 Experiment 4, the most challenging FRGC exper-

iment, which contains 12,776 face images of 222 subjects in the training set, 16,028 face

images of 466 subjects in target set, and 8,014 face images of 466 subjects in the query set.

Image normalization is first used to align the centers of the eyes to specified positions and

fixed interocular distance. To be specific, the centers of the eyes are provided by the FRGC
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Table 1.1 Face Verification Rate (FVR) ROC III of the FRGC Database Using Several
Different Color Spaces

Color FVR ROC III
space color 1 color 2 color 3 Sum rule Product rule
RGB 62.12% 53.78% 39.93% 59.14% 56.54%
XYZ 59.16% 56.41% 40.94% 49.53% 34.38%
HSV 10.87% 53.99% 61.81% 66.95% 53.92%

L∗a∗b∗ 59.30% 47.84% 35.22% 68.77% 40.43%
YUV 56.41% 52.36% 57.20% 72.25% 71.63%
I1I2I3 55.09% 51.56% 52.67% 77.97% 74.36%
YIQ 56.41% 54.20% 53.97% 78.58% 67.19%
R̃G̃B̃ 62.12% 52.67% 51.39% 78.06% 75.24%
X̃ỸZ̃ 59.16% 58.20% 51.24% 71.10% 71.69%
RIQ 62.12% 54.20% 53.97% 79.03% 76.97%

database and the predefined positions in the 64 × 64 images are (17, 18) and (47, 18). A

subimage procedure then crops the face image to the size of 64 × 64 to extract the facial

region. Some example images are shown in Figure 1.1. Finally, an LDA-based algorithm

and the cosine similarity measure are implemented to recognize faces.

The classification results of individual color components are first derived, and then

the sum rule and the product rule are applied, respectively, to fuse these classification

outputs for deriving the performance of color spaces for face recognition. Experimental

results using the different color spaces are derived from the Receiver Operating Character-

istic (ROC) curves. Table 1.1 summarizes the Face Verification Rate (FVR) from the ROC

III curves. As can be seen, when the FVR (56.41%) of the luminance Y is considered as

benchmark, most of color spaces improve the face recognition performance significantly. In

particular, some strong discriminating color spaces, such as YIQ, I1I2I3, YUV, can achieve

good performance in face recognition, while some weak discriminating color spaces, such

as RGB and XYZ, achieve low performance. On the other hand, experimental results show

that the color normalization technique indeed causes the weak color spaces RGB and XYZ

to enhance the discrimination for face recognition. In addition, two nonlinear color spaces
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HSV and L∗a∗b∗ do not demonstrate any advantage over some strong discriminating color

spaces. It should be noted that the hybrid color spaces, such as RIQ, demonstrate the ad-

vantage in improving recognition performance over other color spaces.

1.2 Topics Overview

Most of the existing color-based face recognition methods pay attention to the selection and

generation of color spaces, largely ignoring the research on the low-level feature extraction

in different color spaces. For example, the paper (Shih et al. 2005) assesses comparatively

face recognition performance in different color spaces using a standard PCA algorithm.

The research reveals that some color configurations, such as YV in the YUV color space

and YI in the YIQ color spaces, can help improve face recognition performance. How-

ever, nothing about the low-level feature extraction has been investigated in this paper. To

fill in such a gap, this dissertation focuses on face recognition by addressing facial feature

extractions in different color component images. Specifically, some image feature extrac-

tion methods have been investigated and developed to extract the effective features from

color images for face recognition. The feasibility and effectiveness of the proposed meth-

ods have been evaluated by two large-scale face databases, namely, the Face Recognition

Grand Challenge (FRGC) version 2 database and the FERET database. The FRGC ver-

sion 2.0 Experiment 4, the most challenging FRGC experiment, contains 12,776 training

images, 16,028 controlled target images, and 8,014 uncontrolled query images. To assess

the generalization of the proposed methods, the experiments using the FERET database are

also conducted. The two most challenging probe sets, Dup I and Dup II, which are used

for analyzing the effect of aging on the recognition performance, are evaluated in the ex-

periments. The Biometric Experimentation Environment (BEE) system of FRGC and the

rank-1 accuracy rate of FERET reveal that the proposed methods improve performance of

face recognition significantly, which not only take advantages over the traditional methods

using gray-scale images but also outperform some state-of-the-art face recognition meth-
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ods.

Chapter 2 presents a novel multiple feature fusion method for face recognition by

fusing the frequency, spatial, and color features for improving the face recognition grand

challenge performance. In particular, the hybrid color space RIQ is constructed, accord-

ing to the discriminating properties among the individual component images. For each

component image, the frequency features are extracted from the magnitude, the real and

imaginary parts in the frequency domain of an image. Then, a variant of Regularized Lin-

ear Discriminant Analysis (RLDA) extracts discriminating features from the frequency data

for similarity computation using a cosine similarity measure. Finally, the three similarity

matrices generated using the three components in the RIQ color space are fused by means

of the sum rule — the decision level fusion — to derive the final similarity matrix for face

recognition. The effectiveness of the proposed method is demonstrated using two large-

scale face databases, namely, the FRGC version 2 and the FERET databases. In particular,

experiments on FRGC and BEE show that for the most challenging FRGC version 2 Exper-

iment 4, the proposed method achieves the face verification rate (ROC III) of 82.49% at the

false accept rate of 0.1%. For the FERET Dup I probe set, the proposed method achieves

the rank-1 accuracy of 81.30%.

Chapter 3 describes a novel face recognition method, embodying the “Color + LBP

+ LDA” strategy. First, another hybrid color space VIQ is constructed by replacing the

luminance Y in YIQ by the V component in HSV. As there is more mutual independence

information in VIQ than in the RGB, the hybrid VIQ color space is more feasible as a com-

plementary representation of face images for classification than some color spaces, such

as RGB. On each component image of VIQ, a multipscale LBP fusion is proposed to en-

compass the different LBP histogram features. By utilizing such a fusion scheme, both the

microstructures and macrostructures of face images are fused to extract the discriminating

features, which can contain much more discrimination information than the one a single

LBP operator can provide. Regarding the extraction of discriminating features, a variant
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of RLDA is used to extract the complete discriminating information, which resides in both

the principal and null spaces of the within-class scatter matrix. Experiments on the FRGC

version 2 and FERET databases show that the proposed method using the “Color + LBP

+ LDA” strategy can significantly improve face recognition performance under difficult

conditions.

Chapter 4 is concerned with the application of different feature extraction meth-

ods to different color component images. Now that the different color component images

display the various discriminating properties and face representations, it is more feasible

to apply a variety of feature extraction methods than the single-feature extraction methods

to some color component images for face recognition. This chapter first introduces the

derivation of a new color space, the Color Image Discriminant (CID) color space (Yang et

al. 2008). Then an emphasis is laid on using Gabor Image Representation (GIR), Local

Binary Patterns (LBP), and the frequency features in the different color component images

of the CID color space, respectively, for improving the performance of face recognition. In

particular, experiments on the FRGC data set show that the proposed method can achieve

the FVR of 91.6% at 0.1% FAR.

Chapter 5 discusses the generation of some new image representations for face

recognition. Most existing face recognition methods use the gray-scale image, which is the

simple linear combination of the primary colors R, G, and B. However, the disadvantage

of such an usage is that R, G, and B have strong correlation to each other. Since the

decorrelation property is essential for pattern recognition, the image representations derived

from three primary color components are not ideally suited for face recognition. This

chapter first derives some new image representations from the other color spaces through

a learning algorithm, and then proposes a novel method for addressing the problem of face

recognition under the difficult illumination conditions. Experiments on two large-scale face

databases, FRGC and FERET, show the effectiveness of the proposed method.

The conclusions and future work are presented in Chapter 6, where the major con-
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tribution of this dissertation are summarized and future research directions are discussed.



CHAPTER 2

FUSING FREQUENCY AND COLOR FEATURES FOR FACE RECOGNITION

The preceding chapter has experimentally demonstrated the feasibility of color informa-

tion for improving the performance of face recognition. In particular, the YIQ color space

displays better discrimination than some other color spaces. Under the precondition that

the complementary property is guaranteed, if one of color component images is replaced as

other one with stronger discriminating ability, the overall classification performance pro-

vided by integrating several component images could be enhanced. Recent research has

demonstrated that the R color component image possesses stronger discriminating power

than the luminance Y for face recognition (Shih et al. 2005). A hybrid color space RIQ in-

stead of the YIQ color space, thus, is considered in this chapter to provide color information

for face recognition.

As an important tool in image processing, Discrete Fourier Transform (DFT) has

been widely employed in designing image filters. After processing the input data, DFT

generates four components in the frequency domain: real part, imaginary part, magnitude,

and phase angel. Since these frequency components have the different interpretations for

input data, the potential complementary characteristics could be provided by them. Thus,

it is feasible to combine these DFT frequency components for face recognition (Hwang et

al. 2006).

This chapter investigates the application of frequency and color information to im-

prove the performance of face recognition. The method is hereby carried out in a hybrid

color space, RIQ, which is revealed to have more discriminating capabilities than the YIQ

color space. To represent face image efficiently, the multiple complementary frequency

features, comprising the real part, the imaginary part, and the magnitude of the Fourier

transform, are first extracted from each component image of RIQ. Then, the concatenated

real and imaginary parts, and the magnitude are processed, respectively, to derive the dis-

28
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criminating features using a variant of Regularized Linear Discriminant Analysis (RLDA).

The resulting discriminating features are then concatenated to form an augmented vector,

which is further processed by RLDA. Besides, the spatial information contained in the mul-

tiple scaled face images is investigated to improve recognition performance. Finally, at the

decision level, the similarity matrices corresponding to the three color component images

are fused by the sum rule to generate the final similarity matrix for face recognition. To im-

prove the generalization performance of the FLD method, RLDA analyzes the eigenvalue

spectrum of the within-class scatter matrix and replaces its small-valued trailing eigenval-

ues with a constant. The new eigenvalue spectrum thus replaces the original spectrum of

the within-class scatter matrix for the simultaneous diagonalization of the within- and the

between-class scatter matrices to extract the discriminating features.

To evaluate the effectiveness of the proposed method, experiments are conducted

on two large-scale face databases, the FERET and FRGC databases. Experimental re-

sults show that (i) the hybrid color space improves face recognition performance, and (ii)

the complementary frequency and spatial features further improve face recognition perfor-

mance.

2.1 The Selection of Hybrid Color Space: RIQ

The complementary characteristics of color spaces can be applied to improve face recogni-

tion performance (Torres et al. 1999; Shih et al. 2005). As the multiple imaging in a color

space encodes the complementary and different representations for the same face image,

the data fusion occurred in the image level or the decision level could lead to improved

overall performance. The recent research reveals that the YIQ color space is among the

best ones for face recognition, and the R component image has better discriminating capa-

bility than the gray image Y (Liu et al. 2008; Shih et al. 2005; Liu 2006). Therefore, it

may be a fact that the hybrid color space RIQ contains more discriminating power than the

YIQ color space for face recognition.
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Next, the procedures are presented to calculate the amount of discriminating ca-

pability contained in a color space. Assume that A be a color face image with a size of

m× n, consisting of three component images C1, C2, and C3, where C1,C2,C3 ∈ R
N are

the column vectors and N = m× n. The color image A then can be expressed as an N × 3

matrix: A = [C1,C2,C3] ∈ R
N×3. Let L be the number of subjects in training data set, and

Ai j be the j-th color image in subject i, where i = 1,2, ...,L, and j = 1,2, ...,Mi, and Mi

denotes the number of training samples in subject i. Then, the mean of the training samples

in subject i is defined as

Āi =
1

Mi

Mi

∑
j=1

Ai j = [C̄1i, C̄2i, C̄3i]. (2.1)

The grand mean of training samples is defined as

Ā =
1
M

L

∑
i=1

Mi

∑
j=1

Ai j = [C̄1, C̄2, C̄3], (2.2)

where M is the total number of training samples, i.e., M = ∑ L
i=1 Mi.

Based on Equations (2.1) and (2.2), the color space between-class and within-class

scatter matrices Sb and Sw are defined as follows:

Sb =
L

∑
i=1

Pi[(Āi− Ā)T (Āi − Ā)] (2.3)

Sw =
L

∑
i=1

Pi
1

Mi−1

Mi

∑
i=1

[(Ai j − Āi)
T (Ai j − Āi)] (2.4)

where Pi is the priori probability of subject i, and Sb,Sw ∈ R
3×3. The amount of discrimi-

nating capability of a color space, consisting of C1, C2, and C3, can be calculated by using

the Fisher criterion:

J4 =
tr(Sb)

tr(Sw)
. (2.5)

Given that the color image A consists of three component images R, I, Q, or Y, I,

Q, their J4 values are derived, respectively, by using Equation (2.5). Note that the intensity
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Table 2.1 The Values of the Criterion J4 among R, I, Q, and Y, I, Q Component Images

Color space Criterion J4
RIQ 0.4464
YIQ 0.4319

Multiple frequency
feature fusion for face

representation

Multiple frequency
feature fusion for face

representation

Multiple frequency
feature fusion for face 

representation

similarity matrices
fusion

R component I component Q component

RGB image

Figure 2.1 System architecture of the proposed method.

values of three component images are normalized to zero mean and unit variance before

computation. The results are given in Table 2.1, which shows that the hybrid color space

RIQ contains more discriminating information than the conventional color space YIQ for

face recognition.

Therefore, the hybrid color space RIQ is selected to provide the color information

in the method to recognize face images. Figure 2.1 shows the system architecture of the
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Figure 2.2 The 2D discrete Fourier transform of a face image: the real part (log plot), the
imaginary part, and the magnitude (log plot). The frequency features used in the method
are extracted from the right two quadrants, as indicated by the gray area.

proposed method. For each component image in the RIQ hybrid color space, the multiple

frequency feature fusion for face representation extracts the multiple frequency features

derived from the Fourier domain of face image to calculate the similarity scores. At the

decision level, the similarity scores derived from the color component images in the RIQ

hybrid color space are fused to improve face recognition performance.

2.2 Multiple Frequency Feature Fusion for Face Representation

Fourier transform is able to convert an image from the spatial domain to the frequency

domain, where the image is decomposed into the combination of various frequencies. Ap-

plying this technique, one can extract the salient image properties in the frequency domain

that are often not available in the spatial domain. For an image f (x,y) with a spatial resolu-

tion of N = m×n (x = 0,1, · · · ,m−1 and y = 0,1, · · · ,n−1), let F(u,v) be its 2D Discrete

Fourier Transform (DFT) (Gonzalez & Woods 2002):

F(u,v) =
m−1

∑
x=0

n−1

∑
y=0

f (x,y)e− j2π(ux/m+vy/n) (2.6)

where u = 0,1, · · · ,m− 1 and v = 0,1, · · · ,n− 1. Generally speaking, the DFT F(u,v) is

complex, comprising the real and imaginary parts: R(u,v) and I(u,v). The Fourier spec-
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Extraction of real, imaginary,
and magnitude features, XR, XI,
and XM, from Fourier domain 

Similarity scores

YMZRI

Concatenation of real 
and imaginary features:

YRI

Magnitude
feature: XM

RLDA

Augmented
vector: F1

RLDA

RLDA

Figure 2.3 The multiple frequency features fusion scheme for the R component image.

trum or magnitude is defined as follows (Gonzalez & Woods 2002):

|F(u,v)|= [R2(u,v)+ I2(u,v)]1/2 (2.7)

Figure 2.2 shows the 2D discrete Fourier transform of a face image: the real part, the

imaginary part, and the magnitude (log plot). As the Fourier domain is symmetric with

respect to the origin, the frequency features contained in the right two quadrants are chosen

to reduce the feature size in the Fourier domain.

Figure 2.3 shows the outline of the multiple frequency feature fusion scheme for

the R component image. The real, imaginary, and magnitude parts are first extracted from

the Fourier domain. Let XR, XI , and XM be the real part, imaginary part, and magnitude

part of frequency features from the right two quadrants, respectively. These features are
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then converted into column vectors, XR,XI,XM ∈ R
N/2. The concatenated form of real

and imaginary parts can be expressed as YRI = (XR;XI) ∈ R
N . Subsequently, YRI will be

processed by RLDA for discriminating feature extraction, and the resulting feature vector

is ZRI ∈ R
d , where d is less than L, the number of subjects. As the magnitude feature

XM is related to the real and imaginary parts, it is fused with the counterpart at the feature

level after the RLDA feature extraction. Let YM ∈R
d be the feature vector after the RLDA

process of XM, then an augmented vector is defined as:

F1 = (
ZRI −µRI

δRI
;
YM −µM

δM
) (2.8)

where µRI , µM , and δRI , δM are the mean values and the standard deviations of ZRI and

YM, respectively. Finally, the augmented vector F1 will be processed by RLDA to derive

the similarity scores, through a cosine similarity measure.

The multiple frequency feature fusion scheme applies to the I and Q component

images as well to generate the similarity scores, respectively. At the decision level, the

similarity scores derived from the these color component images are fused for improving

face recognition performance.

2.3 A Variant of Regularized Linear Discriminant Analysis

As face images usually reside in a very high dimensional space, learning to recognize hu-

man faces demands great capabilities in finding the compact representations of the mean-

ingful features with low dimensionality from the high dimensional face space. Fisher Lin-

ear Discriminant analysis (LDA or FLD) is an efficient way to extract such discriminative

features as it defines the separation between classes to be the ratio of the between-class

scatter SB to the within-class scatter SW and attempts to maximize this ratio JLDA(Wopt) =

max(|W T SBW |/|W T SWW |). Thus some LDA-based face recognition methods have been

extensively studied and achieved promising results (Liu & Wechsler 2000; Huang et al.
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2002; Jiang et al. 2008).

In the paper (Liu & Wechsler 2000), analysis in eigen-spectrum shows that the

limited number of training samples results in the poor estimates of the small-valued trail-

ing eigenvalues of SW . As these eigenvalues tend to capture noise, their inverses in the

whitening step may cause LDA to fit misleading variations, as a result, overfitting occurs.

Therefore, Principal Component Analysis (PCA) is used to reduce the dimensionality of

input data and the principal space of SW is chosen for face recognition (Liu & Wechsler

2000). By contrast, the null space approach (Huang et al. 2002) assumes that the most dis-

criminative information resides in the null space of SW . In this method, the Fisher criterion

can be maximized by first removing the null space of the total scatter matrix ST and then

deriving the null space of SW for the transformed data. One common disadvantage of the

methods mentioned above is that they all ignore some discriminative information either in

the null or in the principal space.

In the paper (Jiang et al. 2008), a regularization-based subspace approach is pro-

posed for face recognition. Specifically, the eigenspace of SW is decomposed into three

subspaces: the face, noise, and null subspaces. Eigenfeatures are regularized differently

in these subspaces based on an eigenspectrum model to alleviate problems of instability,

overfitting, or poor generalization (Jiang et al. 2008). Due to their merit in exploiting com-

prehensive discriminative information, a variant of the RLDA methods is adopted in this

chapter. The major steps are as follows.

• Extracting the principal space of ST . Apply PCA on ST and select the first n principal

eigenvectors to construct the principal space Pn, where n < r and r is the rank of ST .

Then S
′
W = PT

n SW Pn and S
′
B = PT

n SBPn.

• Subspace decomposition of S
′
W . Apply PCA on S

′
W to derive the eigenspace Φ =

{φi}l
i=1 and the eignvalues that are sorted in descending order λ1≥λ2≥·· ·≥λl. Φ can
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Figure 2.4 The eigenvalue spectrum of S
′
W . While the large eigenvalues are unchanged,

the small eigenvalues with indices larger than m are replaced by a constant, ρ = λm+1,
where λm+1 is the (m+1)th eigenvalue in the eigenvalue spectrum of S

′
W .

be expressed as the form of a matrix:

Φ = [φ1,φ2, . . . ,φl]n×l (2.9)

where φi ∈ Rn is an eigenvector of S
′
W . The Φ of S

′
W can be decomposed into two

subspaces: a principal subspace {φi}m
i=1 and its complement, a trailing subspace

{φi}l
i=m+1. The m can be estimated by using a median-based operation (Jiang et

al. 2008).

• Eigenspectrum regularization. In the trailing subspace {φi}l
i=m+1, the largest eigen-

value λm+1 is used to replace the remaining eigenvalues λi (m+ 2≤i≤l). Now, for

Φ , one can form a new eigenvalue matrix Γm, whose diagonal elements are the union

of the eigenvalues in {φi}k
i=1 and the replaced ones in {φi}m

i=k+1. An example of the

regularized eigenspectrum is given in Figure 2.4.
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• Discriminative feature extraction. After whitening S
′
W , the new between-class scatter

matrix can be given as:

KB = Γ−1/2
m Φ tS

′
BΦΓ−1/2

m . (2.10)

After deriving the eigenspace Θ of KB, the transformation matrix to extract the dis-

criminative features is:

T = PnΦΓ−1/2
m Θ. (2.11)

2.4 Experiments

2.4.1 Effectiveness of the Hybrid Color Space

To evaluate the effectiveness of the hybrid color space RIQ, experiments are first imple-

mented on the FRGC version 2 Experiment 4 and the FERET Dup I probe set using the

original R, Y, I, and Q component images, and then the performance of the RIQ and YIQ

color spaces are assessed by fusing the similarity matrices of their corresponding color

components. For the color FERET database, 1,660 images comprising of 830 persons (two

images fa/fb per person) are randomly selected to construct the training set. The gallery

set fa contains 967 images. The probe set Dup I, which is used for analyzing the effect of

aging on the recognition performance, is evaluated in experiments. The Dup I set contains

722 images.

Specifically, the RLDA method first processes each individual component image to

derive discriminating features. These features then apply the cosine similarity measure to

generate a similarity matrix. Based on the z-score (Jain et al. 2005) normalized similarity

matrix, the BEE system generates three ROC curves (ROC I, ROC II, and ROC III) to

derive the face verification rate for the FRGC database, while for the FERET database the

algorithm generates the rank-1 accuracy. For the YIQ and RIQ color spaces, the three
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Table 2.2 FRGC Version 2 Experiment 4 (ROC III) Face Verification Rates at 0.1% False
Accept Rate Using Different Color Component Images and Color Spaces

Color component/space FVR (ROC III) at 0.1% FAR Number of m
R 63.61% 800
Y 58.64% 850
I 56.77% 600
Q 56.85% 450

YIQ 80.46% -
RIQ 80.71% -

Table 2.3 FERET Dup I Rank-1 Face Recognition Rates of Different Color Component
Images and Color Spaces

Color component/space Rank-1 accuracy Number of m
R 62.18% 600
Y 54.29% 600
I 62.04% 600
Q 70.36% 600

YIQ 78.39% -
RIQ 81.02% -

z-score normalized similarity matrices corresponding to their component images are first

fused to form a new similarity matrix using the sum rule (Kittler et al. 1998). The new

similarity matrix is further normalized using the z-score normalization method and then

analyzed to generate the final classification results. Tables 2.2 and 2.3 list the experimental

results derived from the face verification rate of the curve ROC III at 0.1% false accept rate

and the rank-1 accuracy, respectively, for the FRGC and FERET databases. The numbers

of m used in RLDA are also given in two tables. The results can conclude that (i) the R

component image possesses more discriminating capabilities than the Y component image,

(ii) fusion of individual color component images boosts the performance significantly, and

(iii) the RIQ color space achieves better face recognition performance than the YIQ color

space does.
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2.4.2 Multiple Frequency Feature Fusion for Face Recognition

In the method, the frequency features (the real and imaginary parts, the magnitude) are

extracted from the right two quadrants in the Fourier domain, because of the symmetry

property with respect to the origin. These frequency features are processed by a two-level

fusion strategy, as shown in Figure 2.3, i.e., the image fusion (concatenation at the image

level) for the real and imaginary parts, and the feature fusion (formation of augmented

vector) for the transformed features via RLDA upon the concatenated real and imaginary

parts and the magnitude. The resulting vector is F1 in Equation (2.8). Of course, there are

three other fusion strategies to fuse the real and imaginary parts and the magnitude, i.e.,

image fusion, feature fusion and decision fusion.

For image fusion, the real and imaginary parts and the magnitude are first centered,

respectively, and then are fused by the concatenation operation. Let µR, µI , µM , and δR,

δI , δM be the mean values and standard deviations of XR, XI , and XM, respectively. The

concatenated vector can be obtained by:

F2 = (
XR −µR

δR
;
XI −µI

δI
;
XM −µM

δM
) (2.12)

For feature fusion, the real and imaginary parts and the magnitude are first pro-

cessed by RLDA to derive the corresponding features, YR, YI , and YM , respectively, and

then these resulting features are centered and concatenated to form:

F3 = (
YR −µR

δR
;
YI −µI

δI
;
YM −µM

δM
) (2.13)

where µR, µI , µM , and δR, δI , δM are the mean values and standard deviations of YR, YI ,

and YM, respectively.

For decision fusion, since the matching scores derived from the various features

and classifiers are heterogenous, the score normalization is a crucial step to transform these

scores into a common domain prior to combining them (Jain et al. 2005). One of the

most commonly used score normalization techniques is the z-score that transforms the
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Figure 2.5 The face verification rates (ROC III) at 0.1% false accept rate of the R and Y
component images using different fusion strategies to fuse the real part, the imaginary part,
and the magnitude.

matching scores by calculating the arithmetic mean and standard deviation of the given

data. Suppose that there exist m target vectors X1,X2, · · · ,Xm. Given a query vector Y, a

similarity score vector S= [S1,S2, · · · ,Sm]
T = [δcos(X1,Y),δcos(X2,Y), · · · ,δcos(Xm,Y), ]T

can be obtained by calculating the cosine similarity measure between each pair of Xi and

Y: δcos(Xi,Y) =− XT
i Y

‖Xi‖‖Y‖ . The normalized scores are given by

S′i =
Si−µ

δ
, (2.14)

where µ is the arithmetic mean of S1,S2, · · · ,Sm and δ is the corresponding standard devi-

ation. Specifically, for a given face image, the features of the real and imaginary parts and

the magnitude, XR, XI , and XM, are first processed by RLDA to derive the discriminating

features, respectively, and then these features are used to calculate the cosine similarity

scores to form three normalized similarity score vectors, SR, SI , and SM , by the z-score

normalization, respectively. The next step is to combine these vectors by means of the sum

rule, which has been demonstrated to be more effective than all the other fusion techniques

on fusing the similarity scores (Kittler et al. 1998; Jain et al. 2005). The final similarity

score vector is then SR +SI +SM .

To compare the effectiveness of these fusion strategies discussed above, Figure 2.5



41

Figure 2.6 Example FRGC images used in experiments that are already cropped to the
size of 64 × 64 with two different scales, the scale 1 in the top row and the scale 2 in the
bottom row. In particular, the images from left to right are the R, Y, I, and Q component
images, respectively.

shows the experimental results of the R and Y component images using these fusion meth-

ods to fuse the real and imaginary parts and the magnitude on the FRGC database. It

clearly shows that the vector F1, i.e., combination of two fusion strategies, achieves better

performance than the others. As the magnitude is related to the real and imaginary parts,

the fusion at the image level achieves somewhat lower performance than the fusion at the

feature space via RLDA. Furthermore, the magnitude produces the low performance. As a

result, the overall performance after fusion at the decision is the lowest. Here, the analysis

results on the FRGC database are shown only, and the similar results are achieved on the

FERET database.

2.4.3 Multiple Spatial Feature Fusion for Face Recognition

The multiple spatial features are contained in the multiple scaled face images. Now that the

different scaled images encode different discriminating information (Hwang et al. 2006)

that can produce the complementary classification outputs, the fusion of these classification

outputs could further improve the overall face recognition performance. Besides the images

used in the previous sections, which contain the partial face contour information, the images

containing the fine face region are cropped from the original FRGC images. Figure 2.6
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Table 2.4 FRGC Version 2 Experiment 4 (ROC III) Face Verification Rates at 0.1% False
Accept Rate of the R, Y, I, and Q Component Images, Applying the Multiple Frequency
and Spatial Feature Fusion Scheme. The Numbers of m Used in RLDA are Included in
Parentheses

FVR (ROC III) at 0.1% FAR
Method R Y I Q

Scale 1 Scale 2 Scale 1 Scale 2 Scale 1 Scale 2 Scale 1 Scale 2
XM 18.95% 21.50% 14.50% 15.85% 16.96% 15.45% 9.02% 10.34%

(600) (550) (600) (600) (400) (350) (200) (150)
YRI 63.49% 61.84% 58.61% 55.70% 56.75% 52.89% 56.91% 54.00%

(850) (650) (850) (700) (650) (500) (450) (400)
F1 65.68% 65.41% 60.65% 60.04% 58.50% 56.00% 57.22% 54.98%

(430) (430) (430) (430) (430) (430) (300) (250)
Fusion 69.21% 64.44% 60.89% 59.64%

shows these two scaled face images that are referred to as the scale 1 image and the scale

2 image, respectively. They both have the same resolution of 64 × 64. Note that the

concept of the multiple scaled images differs from that used in the paper (Singh et al.

2008), where multiple-resolution images containing the same face region are applied for

face recognition. The method in this chapter lays an emphasis on containing the different

regions with an intent to generate the complementary information.

Experiments on the R, Y, I, and Q component images are conducted by using the

multiple frequency feature fusion scheme across two spatial scales. The experimental re-

sults and the numbers of m in RLDA are listed in Table 2.4 and Table 2.5 for the FRGC

and FERET databases, respectively. Generally speaking, the scale 1 images contain the

more discriminating information than the scale 2 images for face recognition, which means

that the face contour is an important factor that contributes to improving performance. The

results in Table 2.4 and Table 2.5 also reveal that fusing the classification outputs of two

scaled images can lead to improved performance. Finally, to evaluate the effectiveness

of the proposed method utilizing the different color information, experiments are carried

out by fusing the classification outputs from the individual color component images at the
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Table 2.5 FERET Dup I Rank-1 Accuracy of the R, Y, I, and Q Component Images, Using
the Multiple Frequency and Spatial Feature Fusion Scheme. The Numbers of m Used in
RLDA are Included in Parentheses

Rank-1 accuracy
Method R Y I Q

Scale 1 Scale 2 Scale 1 Scale 2 Scale 1 Scale 2 Scale 1 Scale 2
XM 41.27% 38.91% 37.25% 35.87% 44.45% 40.44% 40.30% 38.36%

(170) (175) (195) (155) (163) (171) (167) (141)
YRI 61.77% 57.61% 57.34% 53.04% 63.43% 59.14% 71.88% 67.72%

(583) (376) (645) (316) (583) (372) (380) (385)
F1 65.51% 57.89% 59.00% 52.90% 65.92% 59.55% 70.63% 67.31%

(375) (299) (373) (290) (371) (375) (388) (386)
Fusion 66.20% 60.39% 65.10% 75.21%

Table 2.6 Experimental Results of the RIQ and YIQ Color Spaces Using the Proposed
Method

FRGC ver. 2 Exp. 4 FERET Dup I
Color space FVR (ROC I) FVR (ROC II) FVR (ROC III) Rank-1

RIQ 82.99% 82.92% 82.49% 81.30%
YIQ 82.04% 82.03% 81.95% 79.50%

decision level. The final results are shown in Table 2.6. As can be seen, applying the mul-

tiple color, frequency and spatial feature fusion is indeed able to improve face recognition

performance significantly.

2.5 Conclusion

This chapter presents a novel multiple feature fusion method that fuses the frequency, spa-

tial and color features in a hybrid color space to improve the face recognition grand chal-

lenge performance. In particular, the frequency features are extracted from the magnitude,

the real and imaginary parts in the Fourier domain of an image; the spatial features are

derived from two different scales of a face image; and the color features are from a hybrid

color space, namely, the RIQ color space. To extract the discriminative features efficiently,
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a variant of RLDA is presented in this chapter. Experiments show that the proposed method

achieves the face verification rate (ROC III) of 82.49% at the false accept rate of 0.1% on

the FRGC version 2 Experiment 4 and the rank-1 accuracy of 81.30% on the FERET Dup

I probe set.



CHAPTER 3

FUSING LBP AND COLOR FEATURES FOR FACE RECOGNITION

This chapter presents a novel LBP-based method, which fuses the complementary features

derived from the multiscale LBP histograms in the hybrid VIQ color space, for face recog-

nition. The complementary characteristics of the features thus come from both the multiple

imaging (three component images) in the VIQ color space and the multiple spatial scales

(different LBP operators) in the LBP features.

Face recognition has been an attractive research topic in pattern recognition, com-

puter vision, and machine learning in the last two decades. However, improving the recog-

nition performance under difficult conditions (such as illumination changes, pose varia-

tions, and aging) is still an open issue. Substantial efforts have been put into developing

sophisticated nonlinear learning methods, e.g., kernel-based methods and manifold learn-

ing, to enhance the generalization capability of algorithms, at the expense of computational

efficiency. This chapter shows that the significant improvement of performance under dif-

ficult conditions can be achieved easily, by utilizing some simple but effective features

without resort to the complex learning methods.

The method is straightforward and can be described briefly as the “Color + LBP

(Ahonen et al. 2006) + LDA" strategy. For extracting effective image features, a hybrid

color space VIQ is selected, which is able to provide an intrinsically complementary repre-

sentation for each face image based on dependence analysis. On each component image of

VIQ, a multiscale LBP fusion scheme is proposed to integrate the LBP histogram features at

three scales for increasing the description capability of LBP operators for face skin texture.

For extracting statistical features, a variant of Regularized Linear Discriminant Analysis

(RLDA), which operates in both the principal and null spaces of the within-class scatter

matrix, is adopted to extract the complete discriminative information for classification.

45
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3.1 Independence Analysis for Selecting Color Spaces for Face Recognition

Face recognition using different imaging methodologies has become an area of increasing

interest. One representative example is to fuse visible and thermal infrared (IR) images, by

capturing complementary information of reflectance and radiation from the face (Bebis et

al. 2006). However, the high cost of IR sensors may pose a potential limitation to imple-

ment the IR-based methods in practical face recognition. Recently, advances have focused

on using color information, which offers a promising alternative to IR imaging to generate

multiple representations for the face, to improve the performance of face recognition (Yang

et al. 2008; Yang et al. 2010a). This section discusses the selection of color information in

face recognition based on dependence analysis.

Analyzing the dependence among different feature components is an important and

effective criterion for the process of feature selection. One of important aspects in design-

ing color-based face recognition methods is to select appropriate color spaces, whose high

independence among color components makes the features extracted from different color

components as mutually complementary and uncorrelated as possible. As a result, data

fusion either in feature level or in decision level across different color components usu-

ally yields the improved recognition performance when compared to the individual color

components. In information theory, the mutual information is a quantity that measures

the mutual dependence of two random variables X and Y . Formally, the definition for the

discrete case can be given as:

I(X ;Y) = ∑
y∈Y

∑
x∈Y

p(x,y) log(
p(x,y)

p1(x)p2(y)
), (3.1)

where p(x,y) is a joint density and p1(x) and p2(y) are the marginal densities.

Table 1.1 has shown that both R and V (in HSV) color components can achieve

better accuracy than the luminance Y in face recognition. Thus, another hybrid color space

VIQ is considered for face recognition in this chapter. The dependence information be-

tween different color components is quantitatively analyzed, based on the training set of
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Table 3.1 Mutual Information in Different Color Spaces

Color space Mutual information I
RGB 0.4037
VIQ 0.0855

Figure 3.1 Color component images for two subjects in the FERET (top row) and FRGC
(bottom row) databases, respectively. From left to right, color component images: R, G, B,
V, I, and Q.

the Face Recognition Grand Challenge (FRGC) database, a large-scale face database with

complex image variations. Specifically, all the training images in one color component

are concatenated into a long feature vector. Then the joint and marginal densities p(x,y),

p1(x), and p2(y) are estimated from any pair of feature vectors. Finally, the mutual infor-

mation between two feature vectors is computed using Equation (3.1). Table 3.1 shows the

average values of mutual information of three color components in different color spaces.

The closer the value I comes to zero, the more mutual independence information exists

among features. Thus, the hybrid VIQ color space is better than the RGB color space to

generate a multiple representation of face images for classification. Some examples of

color component images are provided in Figure 3.1. Generally, a competent color space

for face recognition consists of one luminance component (such as Y, R, and V) and two

chrominance components (Yang et al. 2010a).
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Figure 3.2 Three LBP histograms corresponding to the three LBP operators: LBPu2
8,1,

LBPu2
8,2, and LBPu2

8,3, in a subwindow of 9 × 9 pixels.

3.2 Fusion of Multiscale LBP Features

Using local features for face recognition has been attracting substantial attention because

they are more robust against variations in pose and illumination in patch images than holis-

tic features. As a representative approach in local feature category, Local Binary Patterns

(LBP) has shown great capabilities in describing face images for classification due to its

invariance to monotonic gray-level changes and computational efficiency (Ahonen et al.

2006).

In a 3× 3 neighborhood of an image, the basic LBP operator generates a binary

string by thresholding each surrounding pixel ip with the gray value of the central pixel ic.

Formally, the LBP operator is defined as follows:

LBP =
7

∑
p=0

2ps(ip − ic), (3.2)

where s(ip− ic) equals 1, if ip− ic ≥ 0; and 0, otherwise. After the introduction of uniform

patterns (Ojala et al. 2002), LBP can be expressed as: LBPu2
P,R, where P,R means P sampling

points on a circle of radius R. The histograms obtained from a LBP operator in local image

regions are usually concatenated into a global histogram for face recognition. Figure 3.2

shows three local histograms derived from three scale LBP operators in a subwindow of an

image. Most of LBP-based methods measure the similarity between two face images using

histogram matching, which has been proved to be inadequate to utilizing the discriminative

information in histograms for classification when compared to statistical methods, such as
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Figure 3.3 Multi-resolution LBP feature fusion scheme.

LDA (Shan et al. 2006).

In this chapter, a multiscale LBP fusion scheme is proposed based on statistical

method. Note that the Gabor image representation encompasses the features correspond-

ing to five scales for improving face recognition performance. Inspired by this idea, the

multiple-resolution information from the LBP operators is combined. First, three LBP

operators, LBPu2
8,1, LBPu2

8,2, and LBPu2
8,3, are used to extract the multi-resolution histogram

features from the image. It is easy to see from Figure 3.2 that these histograms are com-

plementary to one another. Smaller scale operators extract more detailed information (mi-

crostructure) and maintain the similar profile (macrostructure) as larger operators do. Sec-

ond, three global histogram features are fused to form an augmented feature. One straight-

forward way is to concatenate the three global histograms, corresponding to LBPu2
8,1, LBPu2

8,2,

and LBPu2
8,3. However, this operation will result in the problem of high dimensionality. In

the proposed method, a LBP multiple-resolution feature fusion scheme, as shown in Fig-

ure 3.3, is proposed. For each global LBP histogram, a variant of RLDA is used to extract

features and reduce dimensionality. Let Xh1, Xh2, and Xh3 be the reduced features after

the RLDA process. In particular, the three reduced features first are normalize and then

are concatenated into an augmented feature vector, Y = (Xh1−µ1
δ1

; Xh2−µ2
δ2

; Xh3−µ3
δ3

;), where µi

and δi are the mean and standard deviation of feature Xhi. By applying this fusion scheme,

both the microstructures and the macrostructures of face image are utilized to extract the
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discriminating features, which contain much more face information than what a single LBP

operator can provide.

3.3 Illumination Normalization Procedures

One of the most challenging variations on face image is the illumination variation. The

dramatic changes of face appearance caused by illumination variation pose the complexity

to the feature extraction of face image, hence leading to the degradation of face recognition

performance. Therefore, the preprocessing to alleviate the effect of illumination variations

is an essential procedure for a robust and reliable face recognition algorithm. This section

presents an efficient illumination normalization method, which comprises the adjustment

of DCT coefficients in the logarithm domain (Chen et al. 2006), the Difference of Gaussian

(DoG) filtering, and the contrast equalization (Tan & Triggs 2007a).

An image f (x,y) may be characterized by the production of illumination component

i(x,y) and reflectance component r(x,y) (Gonzalez & Woods 2002):

f (x,y) = i(x,y)r(x,y). (3.3)

Usually, Equation (3.3) is operated by taking the logarithm transform on the left and right

sides, so that the frequency components of illumination and reflectance can be processed

separately (Gonzalez & Woods 2002). Thus the subsequent procedures will occur in the

logarithm domain.

The illumination and reflectance components have their own characteristics. The

illumination component of an image generally makes a feature of slow spatial variations,

while the reflectance component inclines to change quickly, particularly at the junctions

of dissimilar objects (Gonzalez & Woods 2002). This differentiation determines that one

can recover the reflectance of faces and remove the effect of illumination by the frequency

analysis. Rather than using the Fourier transform in Homomorphic filter, the method resorts
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Figure 3.4 Discrete-cosine basis functions for N = 4.

to the Discrete Cosine Transform (DCT), which can demonstrate a straightforward expla-

nation that the intensity variations of an image are encoded in the discrete-cosine basis

functions. Besides, the recent research (Chen et al. 2006) has revealed that DCT has some

advantages over the Fourier transform to remove the illumination effects on face images.

Figure 3.4 shows an example of discrete-cosine basis functions for the case N = 4

(for the images of size 4× 4) (Gonzalez & Woods 2002). It can be seen that (i) block 0

represents the overall illumination of an image, i.e., the average intensity, (ii) block 1 and

block 2 represent the intensity variations along the horizontal and vertical orientations, re-

spectively, (iii) while block 4 represents the intensity variations in both orientations. Based

on these facts, most effects of illumination variations upon face images can be alleviated

by adjusting the coefficient values obtained using these three basis functions, i.e., block 1,

block 2, and block 4, as shown in Figure 3.4.

Let C(0,1), C(1,0), and C(1,1) be the coefficients corresponding to three basis

functions after the DCT transform of a face image. Since these coefficients represent the

illumination variations, each of them is set to a value of zero, i.e., C(0,1) = 0, C(1,0) = 0,
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Figure 3.5 The diagram of illumination normalization procedures.

Figure 3.6 Examples of the illumination normalized gray-scale images. The first column:
original gray images; the second column: IDCT reconstructed images in the logarithm do-
main; the last column: the normalized images after DoG filtering and contrast equalization.

and C(1,1)= 0, and then the inverse DCT transform is conducted to form the reconstructed

image in the logarithm domain. Generally, the adjustment of DCT coefficients still can not

remove some shadow effects, caused by the 3D structure of face surface on some small

areas, which make the spatial details unclear. Thus, the Difference of Gaussian (DoG) fil-

tering is applied to preserve the facial details, particularly in the shading regions. Finally, a

contrast equalization procedure used in (Tan & Triggs 2007a) transforms the intensity val-

ues of images to the specified range. Figure 3.5 summarizes the illumination normalization

procedures presented above.

Figure 3.6 shows some examples of the illumination normalized face images. Note
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that the illumination normalization method is applied to Y and V but not to I and Q com-

ponent images, because the chromatic component images I and Q do not hold the charac-

teristic of illumination-reflectance model.

3.4 Experiments

This section assesses the proposed method using two large-scale face databases, the FERET

and FRGC databases (Phillips et al. 2000; Phillips et al. 2005). For the color FERET, 1,000

images comprising of 500 persons (two images fa/fb per person) are randomly selected to

construct the training set. The image number of the gallery set is 967. The two most

challenging probe sets, Dup I and Dup II, which are used for analyzing the effect of aging

on the recognition performance, are evaluated in experiments. Their image numbers are

722 and 228, respectively. In the FRGC version 2 database Experiment 4, the training set

contains 12,776 images that are either controlled or uncontrolled. The target set has 16,028

controlled images and the query set has 8,014 uncontrolled images. The size of face images

used in experiments is 64×64.

3.4.1 Evaluation of Color Spaces for Face Recognition

This set of experiments evaluates the effectiveness of the different color spaces on face

recognition. An LDA-based method with an Enhanced Fisher Model (EFM) (Liu & Wech-

sler 2000) and the cosine similarity measure are used. Table 3.2 shows the performances

of the color components R, G, B, V, Y, I, and Q in face recognition. As can be seen, the

commonly used luminance Y is not ideally suited for face recognition, as its performance is

lower than those of the color components R and V in both the FERET and FRGC databases.

To evaluate the effect of different color spaces on face recognition performance, the z-score

normalization technique (Jain et al. 2005) is first used to normalize the similarity scores

generated by the different color images, and then the normalized similarity scores are fused
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Table 3.2 Experimental Results Using Different Color Components

Color FERET FRGC
component Rank-1 accuracy FVR (ROC III)

& space Dup I Dup II Exp. 4
R 52.8% 29.8% 62.1%
G 46.4% 22.0% 53.8%
B 44.0% 20.6% 40.0%
V 52.8% 29.8% 61.8%
Y 49.2% 28.0% 56.4%
I 57.6% 39.9% 54.2%
Q 63.4% 49.6% 54.0%

RGB 49.8% 24.1% 59.1%
YIQ 70.0% 47.4% 78.6%
VIQ 72.0% 55.3% 79.0%

via the sum rule for classification. The results in Table 3.2 indicate that the face recognition

performance can be improved significantly using the data fusion in color spaces. Specif-

ically, the hybrid color space VIQ achieves the best performance among the color spaces

used in this chapter.

Table 3.2 leads to the following conclusions. The individual color components have

a high variability in face recognition performance with varying illumination. For example,

when luminance Y is considered as benchmark, the I and Q components achieve higher

performance in the FERET database while lower performance in the FRGC database, ow-

ing to the different illumination conditions. It is this characteristic that causes a controversy

about the feasibility of color information in face recognition. However, when data fusion

is applied in color spaces, the performance improvement can be expected in most cases,

due to the mutual independence between color components. Therefore, the color-based

methods should use the color spaces instead of the individual color components for face

recognition.
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Table 3.3 Experimental Results Using the LBP Features

Database Color LBPu2
8,1 LBPu2

8,2 LBPu2
8,3 Fusion

V 68.4% 72.0% 71.3% 74.4%
Dup I I 70.1% 71.7% 69.7% 79.9%

FERET Q 61.5% 65.9% 66.1% 70.9%
(Rank-1) V 40.8% 54.4% 58.8% 60.1%

Dup II I 56.1% 61.0% 58.8% 71.1%
Q 55.7% 62.7% 67.5% 71.9%
V 69.4% 70.3% 63.0% 73.5%

FRGC Exp. 4 I 54.8% 61.2% 55.1% 65.8%
(FVR ROCIII) Q 51.9% 57.2% 50.1% 63.8%

Table 3.4 Experimental Results Using the Proposed Method

FERET (Rank-1) FRGC (FVR ROCIII)
Dup I Dup II Exp. 4
87.1% 85.5% 85.6%

3.4.2 Experiments with the Proposed Method

In the proposed method, each component image of VIQ is used to generate the LBP fea-

tures. Specifically, a face image of size 64×64 is divided into 144 (12×12) overlapping

windows of 9×9 pixels (3 pixels overlapping). Then the multiplescale LBP fusion scheme

works on each component image for face recognition. Finally, three similarity scores de-

rived by three component images are fused via the sum rule for the final classification.

Experimental results based on the LBP features and the proposed method are given in

Table 3.3 and Table 3.4, respectively. As can be seen, the LBP features improve the recog-

nition performance not only on V but also on I and Q components. The proposed multi-

plescale LBP fusion scheme is effective for further improving the recognition performance

in comparison with a single LBP operator, and the proposed method can boost the perfor-

mance significantly.
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Table 3.5 Experimental Results Using the LBP Features on the Normalized V Image

FERET FRGC
Method Rank-1 accuracy FVR (ROC III)

Dup I Dup II Exp. 4
LBPu2

8,1 83.7% 83.7% 70.4%
LBPu2

8,2 82.1% 84.6% 71.0%
LBPu2

8,3 74.8% 74.6% 61.6%
Fusion 86.0% 86.4% 74.5%

Table 3.6 Comparison of the Proposed Method with the Others

FERET FRGC
Method Rank-1 accuracy FVR (ROC III)

Dup I Dup II Exp. 4
Yao et al. 2008 87.0% 85.0% N/A
Tan et al. 2007(b) 90.0% 85.0% 83.6%
Su et al. 2007 N/A N/A 85.8%
Shan et al. 2006 92.0% 88.9% N/A
In this chapter 91.0% 91.2% 86.1%

3.4.3 Experiments with the Illumination Normalization on the V Images

The illumination normalization method is applied to the luminance-like component im-

age V for eliminating the effect of illumination variations, and the associated experimental

results using the LBP features are provided in Table 3.5. It is demonstrated that the illu-

mination normalization is helpful for improving the discrimination capabilities of the LBP

features, especially on the FERET database. Finally, the proposed method is compared

with some state-of-the-art methods in Table 3.6. As can be seen, the proposed method can

achieve the competitive performance on two large-scale face databases, the FERET and

FRGC databases.

It is of interest to investigate the feasibility of classifying the test set in one face

database using the training set in another database. As the FRGC training set contain more

complex conditions in image variabilities, it is chosen to train the classifiers in the proposed
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Table 3.7 The Rank-1 Accuracy of the FERET Database Using the FRGC Training Set

Dataset Color LBP FERET rank-1 accuracy
LBPu2

8,1 82.68%
V LBPu2

8,2 83.10% 86.28%
LBPu2

8,3 67.72%
LBPu2

8,1 82.54%
Dup I I LBPu2

8,2 79.91% 83.10% 92.80%
LBPu2

8,3 73.40%
LBPu2

8,1 68.00%
Q LBPu2

8,2 72.29% 75.34%
LBPu2

8,3 64.54%
LBPu2

8,1 73.24%
V LBPu2

8,2 78.94% 82.89%
LBPu2

8,3 62.71%
LBPu2

8,1 68.42%
Dup II I LBPu2

8,2 65.35% 70.17% 90.35%
LBPu2

8,3 59.21%
LBPu2

8,1 60.96%
Q LBPu2

8,2 61.40% 68.42%
LBPu2

8,3 55.70%

method for testing the FERET probe sets. In particular, the parameters used in this set of

experiments are the same as those in the foregoing experiments. Table 3.7 shows the the

rank-1 accuracy on the FERET database, indicating the performance is still pretty high even

though the different training set is used. Note that the V component image is processed

via the illumination normalization. Meanwhile, the experiments imply that the proposed

method could provide a potential solution to the one sample per person problem (Tan et al.

2006), where only one available training sample per person poses grand challenges to the

face recognition performance.
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3.5 Conclusion

A novel method for face recognition has been proposed in this chapter. The large-scale

experiments on the FERET and FRGC databases have shown the strategy “Color + LBP +

LDA" is effective to improve the recognition performance significantly under the difficult

illumination and aging conditions. In particular, the FRGC as training set has been applied

to test the FERET probe sets. The excellent experimental results show that the proposed

method could provide a promising alternative for the one sample per person problem, an

often encountered challenge in practical face recognition.



CHAPTER 4

EXTRACTING MULTIPLE FEATURES FOR FACE RECOGNITION

Face recognition has been intensely studied for more than two decades. Although numerous

methods have been developed, there are still many difficulties in addressing complex image

variabilities caused by illumination, pose, facial expression, aging, etc. As one strives to

prevent these challenges from compromising the performance in some traditional methods

that usually use a single feature, an effective face recognition method may rely on multiple

features. Thus, efficiently exploiting and extracting multiple facial features are crucial for

face recognition. If the multiple features are complementary to each other, the diversity

among misclassifications of the corresponding classifiers could be enhanced (Kittler et al.

1998). As a result, the fusion at the feature level or the decision level can improve the per-

formance of face recognition. The complementarity between feature sets can be achieved

by extracting the holistic and local features (Su et al. 2007) as well as utilizing the multiple

component images in a color space (Liu et al. 2008; Yang et al. 2008).

Color information has been widely used for face detection (Hsu et al. 2002). Re-

cently, some efforts have been put into utilizing color information for improving the accu-

racy in face recognition. For example, the quaternion domain has been applied to the RGB

color space for face recognition (Xie et al. 2005; Jones et al. 2006). Research in (Shih et

al. 2005) reveals that different color spaces transformed from the RGB color space display

different discriminating power for face recognition. Specifically, the YUV and YIQ color

spaces provide better face recognition performance in comparison with other color spaces

(Shih et al. 2005). Besides, the color transformation can be learned by the statistical meth-

ods, such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA),

and Independent Component Analysis (ICA), in order to derive some effective color image

representations for face recognition purpose (Liu 2008; Yang et al. 2008).

The motivation behind this work is to exploit the multiple complementary facial

59
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features in a novel discriminant color space, so as to improve face recognition performance

through fusing the classification outputs of multiple features at the decision level. First, a

novel CID color space is constructed by an iterative discriminant analysis upon the Color

Image Discriminant (CID) model (Yang et al. 2008), aimed at generating the new compo-

nent images D1, D2, and D3 that are optimal with respect to a discriminant criterion. As

three new component images display the different image characteristics and discriminating

capacities, three effective methods are proposed to extract the features on the component

images, respectively. They are (1) the patch-based Gabor image representation for the D1

component image, (2) the multi-resolution LBP feature fusion for the D2 component im-

age, and (3) the DCT-based multiple face encodings for the D3 component image. Second,

the component images of CID are orthogonal to each other and the three types of result-

ing feature sets are complementary. Such properties determine that the sets of face images

misclassified by the different feature sets upon the corresponding component images would

not necessarily overlap. This implies that at the decision level the derived similarity scores

can be fused to enhance discriminating power for face recognition.

4.1 Color Image Discriminant (CID) Model

The CID model (Yang et al. 2008) is developed on the basis of the RGB color space, since

it is a fundamental color space, from which a number of color spaces can be generated. Let

A be a color image with a size of m× n and its three primary color components be R, G,

and B. Without loss of generality, let R, G, and B be column vectors: R,G,B ∈R
N , where

N = m×n. The color image A is then expressed as an N×3 matrix: A = [R,G,B]∈R
N×3.

The CID model seeks a set of optimal coefficients x1, x2, and x3 to linearly combine

the color components, R, G, and B, such that the generated component is an optimal repre-

sentation of the color image A with respect to a discriminant criterion. Specifically, Let c

be the number of pattern classes, Ai j be the j-th color image in class i, where i = 1,2, ...,c,

and j = 1,2, ...,Mi, and Mi denotes the number of training samples in class i. Let Āi be
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the mean image of training samples in class i and Ā be the mean image across all training

samples. By combining the three color components of the color image Ai j = [Ri j,Gi j,Bi j],

a new image is given as

Di j = x1Ri j + x2Gi j + x3Bi j = [Ri j,Gi j,Bi j]X, (4.1)

where X = [x1,x2,x3]
T is a vector of color component combination coefficients.

Let D̄i be the mean vector of combinative component images in class i and D̄ be

the grand mean vector. It is evident that D̄i = ĀiX and D̄ = ĀX. The between-class scat-

ter matrix Sb(X) and the within-class scatter matrix Sw(X) in the D-space are defined as

follows:

Sb(X) =
c

∑
i=1

Pi[(Āi− Ā)XXT (Āi − Ā)T ], (4.2)

Sw(X) =
c

∑
i=1

Pi
1

Mi−1

Mi

∑
j=1

[(Ai j − Āi)XXT (Ai j − Āi)
T ], (4.3)

where Pi is the a priori probability for class i and commonly evaluated as Pi = Mi/M,

M = Σc
i=1Mi.

The general Fisher criterion in the D-space can be defined as follows:

J(P,X) =
|PT Sb(X)P|
|PT Sw(X)P|, (4.4)

where | · | denotes the determinant operator, and P is an N ×d transformation matrix that is

formed by a set of projection basis vectors φ1,φ2, . . . ,φd .

Maximizing the general Fisher criterion is equivalent to solving the problem of twin

generalized eigenvalues as follows (Yang et al. 2008):











Sb(X)φ = λSw(X)φ

Lb(P)X = µLw(P)X,
(4.5)

where Lb(P) and Lw(P) are, respectively, the color-space between-class and within-class
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scatter matrices defined as follows:

Lb(P) =
c

∑
i=1

Pi[(Āi− Ā)T PPT (Āi − Ā)], (4.6)

Lw(P) =
c

∑
i=1

Pi
1

Mi−1

Mi

∑
j=1

[(Ai j − Āi)
T PPT (Ai j − Āi)]. (4.7)

Then the problem in Equation (4.5) can be solved iteratively by the following CID

algorithm:

The CID Algorithm:

1. Set k = 0, and provide an initial value for X : X = X[k].

2. Construct Sb(X) and Sw(X), and calculate their generalized eigenvectors φ1,φ2, . . . ,φd

corresponding to the d largest eigenvalues. Let P = P[k+1] = [φ1,φ2, . . . ,φd].

3. Construct Lb(P) and Lw(P), and calculate their generalized eigenvector X[k+1] cor-

responding to the largest eigenvalue.

4. If |J(P[k+1],X[k+1])− J(P[k],X[k])| < ε , the iteration terminates and let P∗ = P[k+1]

and X∗ = X[k+1]. Otherwise, let X = X[k+1] and go to step 1.

Using the CID algorithm, an optimal color component combination coefficient vec-

tor X1 = X∗ = [x11,x21,x31]
T can be obtained. Actually, the other two color component

combination coefficient vectors, X2 and X3, can be obtained similarly under the Lw(P)-

orthogonal constraint. The CID color space is then defined by the following transforma-

tion:

[D1,D2,D3] = [R,G,B][X1,X2,X3], (4.8)

where D1, D2, and D3 are the three color components of image A = [R,G,B] in the CID

color space.
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Figure 4.1 The color component images R, G, and B (top row), and the new color com-
ponent images D1, D2, and D3 (bottom row) for one subject.

4.2 Extracting Multiple Features in the CID Color Space for Face Recognition

The color component combination coefficients, X1, X2, and X3, can be learned from

the standard training set of the Face Recognition Grand Challenge (FRGC) version 2

database Experiment 4 (Phillips et al. 2005), which contains 12,776 face images of 222

subjects. The three resulting coefficient vectors are X1 = [1.0000,0.0138,−0.2079]T ,

X2 = [−0.8620,0.9622,−0.1003]T , and X3 = [0.0353,−0.9519,0.9165]T , respectively.

Based on these coefficients, the three discriminating color components D1, D2, and D3 can

be obtained for each color image. Figure 4.1 shows an example of the R, G, and B images

and the three new color component images for one subject. Since the new images possess

different discriminating properties and different face representations, it is feasible to apply

different feature extraction methods to the D1, D2, and D3 images, respectively. On the

other hand, multiple feature sets, which potentially offer complementary information about

the face images to be classified, could be utilized to improve the classification performance

by the data fusion at the feature level or the decision level (Kittler et al. 1998). Therefore,

this section proposes three effective image encoding methods to extract the multiple feature

sets on the new color component images.
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Figure 4.2 GIR derived from the convolution of one D1 face image with the Gabor kernels
with five scales and eight orientations.

4.2.1 The Patch-based Gabor Image Representation for the D1 Image

Gabor Image Representation (GIR) of an image is the convolution of image with a family of

Gabor kernels that commonly contain five scales and eight orientations for face recognition

(Daugman 1985):

ψµ,ν(z) =
‖kµ,ν‖2

σ 2 e−
‖kµ ,ν ‖2‖z‖2

2σ2

[

eikµ ,ν z − e−
σ2
2

]

, (4.9)

where µ ∈ {0, ...,7} and ν ∈ {0, ...,4} define the orientation and scale of Gabor kernels,

z = (x,y), and ‖ · ‖ denotes the norm operator. The wave vector kµ,ν is defined as: kµ,ν =

kν eiφµ . Figure 4.2 shows GIR of one D1 face image. Note that the D1 component image

in Figure 4.2 has the fine face region that is helpful for the extraction of the Gabor features

without the face contour information.

The edge of GIR arises from the combination of different spatial frequencies, spa-

tial localities, and orientation selectivities. GIR is thus able to classify faces using rich

information, which can be applied to both local and holistic feature extractions. Figure 4.3

shows the outline of face recognition based on GIR.

For the extraction of local GIR feature, GIR is separated into an ensemble of the

patches along the horizontal direction, with the images in two adjacent scales and all the
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Figure 4.3 The extraction of local and global Gabor features from GIR for face recogni-
tion.
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Figure 4.4 A reshaped sub-GIR patch image with i ∈ {1,2,3,4}, and a subset of frequen-
cies in the DCT domain to encode the sub-GIR patch images.

eight orientations forming one sub-GIR as illustrated in Figure 4.2. The rationale of group-

ing two adjacent scales is due to the assumption that the redundancy in GIR is caused

mainly by the similarities between all of the adjacent Gabor filters. Discrete Cosine Trans-

form (DCT) can thus be used to reduce dimensionality and redundancy for improving com-

putational efficiency and recognition performance. To facilitate the DCT feature extraction,

each sub-GIR patch image is first reshaped to a square as shown in Figure 4.4. After trans-

forming a reshaped sub-GIR patch image to the DCT domain, a frequency set selection

scheme via a square mask is used to select a set of the low frequency features located in

the upper-left corner. Then this feature set undergoes the linear discriminant analysis by an

Enhanced Fisher Model (EFM) (Liu & Wechsler 2000) for face recognition.
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Figure 4.5 The forehead, right cheek and left cheek regions on one D2 image and their
average standard deviations of intensity values of all the D1 and D2 training images.

For the extraction of holistic GIR feature, GIR is considered as a whole for classi-

fication. In particular, each of the Gabor filtered images is processed by the dimensionality

reduction using DCT. The DCT features derived from the 40 Gabor images are then con-

catenated to form an augmented feature vector, which is used for face recognition by EFM.

The similarity score generated in this approach is subsequently fused with the ones from

the four local Gabor feature sets through the sum rule for final classification.

4.2.2 The Multi-resolution LBP Feature Fusion for the D2 Image

The success of Local Binary Patterns (LBP) in face recognition is attributed to its robust-

ness in terms of gray-level monotonic transformation (Ahonen et al. 2006). However, faces

consist of uneven skin surface, which usually leads to nonmonotonic gray-level transforma-

tion as illumination changes. In this case, the performance of LBP degrades significantly,

while Gabor kernel filters display excellent capabilities of resisting the severe image vari-

ations, such as those in the FRGC database. Compared with the D1 component image, the

D2 component image has the characteristic of keeping away from the nonmonotonic gray-

level transformation on face skin surface. To validate this observation, three subregions as

shown in Figure 4.5 are chosen for all the D1 and D2 component images in the FRGC train-

ing set. Then the average standard deviations of intensity values in these subregions are

computed, respectively. The results in Figure 4.5 show that the D2 component image has a

lower average of standard deviations than the D1 component image, hence leading to less

nonmonotonic gray-level transformation. Such a property suggests that the D2 component
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Figure 4.6 The comparison of the LBP histograms in a window on face images. The top
two rows are the target and query D1 component images of one subject. The bottom two
rows are their associated D2 component images.

image is desirable for the extraction of the LBP features. Furthermore, the robustness of

the D2 component image to illumination variations is demonstrated through the comparison

of the LBP histograms. Figure 4.6 illustrates the comparison results, which show clearly

that there is a perfect matching between the target and query LBP histograms of the same

subject for the D2 component image, even though the large illumination variations occur.

Noting that GIR integrates the features corresponding to five different scales for

improving the performance, the multi-resolution information obtained from the different

LBP operators can be combined for face recognition. First, the three LBP operators, LBPu2
8,1,

LBPu2
8,2, and LBPu2

8,3, are used to extract the multi-resolution histogram features from the

D2 component image, respectively. Second, three global histogram features are fused to

form an augmented feature. A straightforward way is to concatenate them. However, this

process leads to the problem of high dimensionality. In this chapter, a multi-resolution LBP
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Figure 4.7 Multi-resolution LBP feature fusion scheme.

feature fusion scheme is adopted as shown in Figure 4.7. For each global LBP histogram,

an EFM is used to extract features and reduce dimensionality. Let Xh1 , Xh2 , and Xh3 be

the reduced features after the EFM analysis. Specifically, they are normalized and then

concatenated into an augmented feature vector, Y= (
Xh1−µ1

δ1
;

Xh2−µ2

δ2
;

Xh3−µ3

δ3
), where µi and

δi are the mean and standard deviation of the feature Xhi . As such, both microstructures

and macrostructures of face images are utilized to extract the discriminating features that

contain more discriminative power than the one a single LBP operator can provide.

4.2.3 The DCT-based Multiple Face Encodings for the D3 Image

The preceding sections propose classifying the D1 and D2 face images by applying the

Gabor and LBP methods, which concentrate primarily on the extraction of local image

features. The main purpose of this chapter is to extract the multiple complementary feature

sets for face representation, such that the diversity of misclassifications can be enhanced.

Based on this, DCT is applied to extract the global features from the D3 component image

for face recognition. DCT transforms images from the spatial domain to the frequency

domain, where an image is decomposed into a combination of various and uncorrelated

frequency components. DCT is thus able to extract the features in the frequency domain

to encode different facial details that are not directly accessible in the spatial domain. Due

to the specific properties, DCT has been successfully applied to face recognition recently

(Hafed et al. 2001; Chen et al. 2006).
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Figure 4.8 DCT-based multiple face encoding scheme for the D3 image.

In the following, a method, called the DCT-based multiple face encodings, is pre-

sented to extract multiple DCT feature sets to classify the D3 face image. The architecture

of method is outlined in Figure 4.8. Similar to the idea of extracting the Gabor features, the

DCT-based method is applied to extract the feature sets in terms of holistic and component

views. For each category, three DCT feature sets, which describe the different facial infor-

mation, represent a multiple face encoding. In the DCT domain, one DCT feature set, Xl×k,

is defined as: Xl×k = ∪F(u,v), ∀u,v, u = 0,1, . . .l − 1, v = 0,1, . . .k− 1, where F(u,v) is

the DCT coefficient of an image f (x,y) at the location (u,v) in the DCT domain.

The different DCT coefficients correspond to the different spatial information. The

upper-left subset in the DCT domain encodes most of the energy in a face image, i.e.,

the low frequency information associated with the profile information in space. When

this subset extends toward right and down (same as the variable mask in Figure 4.4), the

more high frequency information is included, the more facial details are displayed in space.

Based on this observation, the three holistic DCT feature sets, Xh
n1×n1

, Xh
n2×n2

, and Xh
n3×n3

,

with the sizes, n1 × n1, n2 × n2, and n3 × n3, respectively, are used to encode the different

levels of facial details. Since the three DCT feature sets contain the different discriminating
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information for face images, their classification outputs could be complementary to each

other. Thus, after the EFM discriminant analysis, the generated similarity scores can be

fused to improve the performance.

Component-based face recognition methods (Kim et al. 2005) have been shown

effective for combating image variations caused by illumination and pose in component

or patch images, because the variations in these small regions are less than those in the

whole face image. The proposed method only considers a simple separation of the three

facial components as shown in Figure 4.8, i.e., the upper-left component, the upper-right

component, and the bottom-half component. Note that there are overlapping regions that

preserve the adjacency relationships among the neighboring components (Kim et al. 2005).

The three facial components yield the three component DCT feature sets Xl
n4×n4

, Xr
n4×n4

,

and Xb
n4×n3

, with the sizes n4 × n4, n4 × n4, and n4 × n3, respectively. Then these DCT

feature sets can generate three similarity scores by the EFM discriminant analysis. Finally,

the six similarity scores, resulting from both holistic and component categories, are fused

by the sum rule at the decision level to derive a new similarity score for classification.

4.3 Experiments

This section assesses the proposed method using the FRGC version 2 database Experiment

4, the most challenging FRGC experiment (Phillips et al. 2005). Specifically, the training

set contains 12,776 images that are either controlled or uncontrolled. The target set has

16,028 controlled images and the query set has 8,014 uncontrolled images. The image

sizes in experiments are 128×128 for the D1 image to extract the Gabor features, and

64×64 for the D2 and D3 images to extract the LBP and DCT features, respectively. To

evaluate the generalization of the proposed method, experiments also are conducted on the

FERET database (Phillips et al. 2000) at the end of this section.
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Figure 4.9 The performance of the CID color space vs. the number of principal compo-
nents.

4.3.1 Effectiveness of the CID Color Space for Face Recognition

Experiments are first conducted on the individual component images, D1, D2, D3, R, G,

and B, through applying the EFM method and the cosine similarity measure on the FRGC

database. In particular, the face region of all the images is the same as one in Figure 4.1

and the size is 64×64. For comparison purpose, the color component images r, g, b, Y, U,

and V (in YUV) are also included in experiments. Figure 4.9 shows that the performances

of the D1, D2, and D3 images vary, while changing the number of principal components

in EFM. Specifically, the 1,000 principal components achieve the best recognition perfor-

mance for most color component images. To evaluate the effectiveness of color spaces for

face recognition, the classification outputs of different color component images are fused

at the decision level by the sum rule. The Face Verification Rates (FVR) derived from the
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Table 4.1 FVR (ROC III) at 0.1% FAR Using Different Color Images and Spaces

FVR (ROC III) at 0.1% FAR
D1 63.01% R 62.12% Y 56.41%
D2 57.73% G 53.78% U 52.36%
D3 56.97% B 39.93% V 57.20%

CID 77.10% RGB 59.14% YUV 72.25%
D1∗ 64.18% R∗ 64.32% r 34.00%
D2∗ 45.10% G∗ 61.13% g 44.36%
D3∗ 42.41% B∗ 48.39% b 30.28%

CID∗ 62.74% RGB∗ 66.43% rgb 49.42%

ROC III curves at the False Accept Rate (FAR) of 0.1% are listed in Table 4.1.

The results in Table 4.1 show that the new color space, CID, achieves better per-

formance than the others. This is due to that the new color component images D1, D2,

and D3 are derived from an optimization procedure upon the CID model, which not only

represents the effective color combination coefficients but also contains the discriminant

projection basis vectors for image classification (Yang et al. 2008). Moreover, the new

color components are Lw(P)-orthogonal to each other. The fusion at the decision level can

thus boost the performance significantly. It should be noted that the performance of the

commonly used Y image is lower than those of the new color component images. This

implies that Y is not ideally suited for face recognition.

Finally, an illumination normalization procedure described in Chapter 3 is adopted

to alleviate the effect of illumination variations on the component images R, G, and B.

This procedure comprises three steps: (1) the adjustment of DCT coefficients in logarithm

domain (Chen et al. 2006), (2) the Difference of Gaussian (DoG) filtering to preserve

the facial details, and (3) the contrast equalization to transform the intensity values to a

specified range. Then the illumination normalized R, G, and B component images are used

to generate the CID color space. The corresponding experimental results denoted with

asterisks in Table 4.1 show that the illumination normalization can not help the CID model
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Table 4.2 FVR (ROC III) at 0.1% FAR Using Different Gabor Patch Images

FVR (ROC III) at 0.1% FAR
Scale 1: 35.06% Orientation 1: 16.36%
Scale 2: 51.73% Orientation 2: 30.34%
Scale 3: 59.31% Orientation 3: 37.92%
Scale 4: 56.35% Orientation 4: 46.69%
Scale 5: 37.22% Orientation 5: 32.51%

- Orientation 6: 44.78%
- Orientation 7: 37.74%
- Orientation 8: 26.69%

Decision fusion: 73.44% Decision fusion: 72.23%

improve face recognition performance.

4.3.2 Experiments Using the Patch-based GIR for the D1 Image

To generate GIR, the parameters of the Gabor filters are chosen as follows: the spacing

factor between filters in the frequency domain
√

2, the standard deviation 2π , and the max-

imum frequency π/2. The experiments first aim to investigate the roles of scale and ori-

entation of the Gabor filters in face recognition. With that goal, GIR is divided into five

scale patches (containing eight orientations) along the horizontal direction and eight orien-

tation patches (containing five scales) along the vertical direction, respectively. Table 4.2

provides the FVR on the FRGC database using the DCT features obtained from these Ga-

bor patches. It is clear that the scale patches possess more discriminative power than the

orientation patches. Thus, GIR should be processed along the horizontal direction instead

of the vertical direction to extract the local GIR features.

The patch-based GIR method then extracts the DCT features from each of sub-GIR

patches using a DCT mask with size of 64×64. Prior to this operation, each sub-GIR

patch is reshaped into a square array. To assess the feasibility of this idea, experiments are

conducted on the sub-GIR patches before and after the reshaping operation, respectively.

Table 4.3 shows the comparative performances, which indicate that the reshaping opera-
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Table 4.3 FVR (ROC III) at 0.1% FAR Using the Local and Global GIR Features

FVR (ROC III) at 0.1% FAR
Method Original image, Original image, Normalized image,

original sub-GIR reshaped sub-GIR reshaped sub-GIR
Scales 1&2 48.91% 53.87% 67.57%
Scales 2&3 61.67% 65.10% 72.84%
Scales 3&4 67.16% 68.37% 75.10%
Scales 4&5 62.82% 64.16% 70.61%

Fusion I 75.60% 76.94% 83.29%
Whole GIR - 74.12% 81.28%
Fusion II - 78.16% 84.50%
Fusion III - 76.15% 82.39%

Scales 1&3 - 61.96% 72.15%
Scales 2&4 - 67.47% 75.13%
Scales 3&5 - 65.93% 73.17%
Scales 1&5 - 54.41% 67.25%

Fusion I - 75.09% 82.36%

tion indeed helps extract more discriminating DCT features in the GIR method. As far as

the whole GIR is concerned, its dimensionality is reduced by using a DCT domain mask

defined in Figure 4.4 as well. For computation efficiency, each of Gabor convolved images

is reduced to a vector of size 256 (16×16) in the DCT domain. The resulting augmented

vector of size 10,240 is then processed by the EFM method.

The Fusion I in Table 4.3 represents the decision fusion of classification outputs of

the four sub-GIR patches, and the Fusion II is the decision fusion of outputs of the Fusion

I and the whole GIR, both using the sum rule. For comparison purpose, the fusion of

local and global GIR features is considered at the feature level. When concatenating these

feature vectors directly, the length of resulting feature vector is 26,624, which is too high

to be processed during the PCA computation by computers. Thus, EFM is used to reduce

the dimensionality of individual local and global GIR feature sets and then an augmented

feature vector is formed for classification. This idea is similar to that detailed in Figure 4.7

The Fusion III in Table 4.3 generates the classification results using this fusion strategy,

indicating that the performance of data fusion at the feature level is not as good as that at
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Table 4.4 FVR (ROC III) at 0.1% FAR Using LBP for the D1 and D2 Images

FVR (ROC III) at 0.1% FAR
Method D1 D2

χ2 EFM χ2 EFM
LBPu2

8,1 7.34% 65.18% 18.69% 59.50%
LBPu2

8,2 11.15% 65.99% 21.81% 61.75%
LBPu2

8,3 12.01% 56.42% 21.69% 54.38%
Fusion 11.79% 70.82% 25.14% 70.02%

the decision level in the approach.

To extract the local GIR features, the two adjacent GIR scales are grouped into a

sub-GIR patch. This strategy may not be optimum, as there are so many other combinations

of GIR scales into sub-GIR patches. Nevertheless, it is reasonable under the assumption

that the redundancy in GIR is caused mainly by the similarities between the adjacent Gabor

filters. Due to the lack of space, only one of other combinations, i.e., scales 1&3, scales

2&4, scales 3&5, and scales 1&5, is chosen to classify faces for comparison purpose.

The corresponding FVRs in Table 4.3 are lower than those of the combination using the

adjacent scales, implying that more redundancy among sub-GIR patches can be reduced

when applying DCT to the sub-GIR patches consisting of adjacent scales, at least in this

comparison instance. The experimental results derived by the illumination normalized D1

image are listed in Table 4.3 as well.

4.3.3 Experiments Using the LBP Features for the D2 Image

To extract the LBP features, a face image of size 64×64 is divided into 144 (12×12) over-

lapping windows of 9×9 pixels (3 pixels overlapping). The length of the LBP feature

vectors is thus 8,496. This section is first concerned with the face description capability

of the LBP operators on the D1 and D2 images using the non-statistical method, e.g., his-

togram matching. Table 4.4 records the experimental results on the FRGC database using

the Chi square distance measure upon the target and query LBP histograms. As can be
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seen, the D2 image is more suitable than the D1 image for the LBP descriptors with respect

to histogram matching for face analysis. However, due to the large illumination variations,

the performance achieved by histogram matching is not good enough for contribution to the

overall recognition performance. On the other hand, statistical pattern recognition is able

to learn the characteristics of input data distribution for each category and find a proper dis-

criminant function from the training samples. The supervised classification method (e.g.,

LDA) thus can be applied to extract the discriminating features from the LBP histogram

vectors for face recognition.

For each of the three global LBP histograms, an EFM analysis is first used to derive

the discriminating features with lower dimensionality. After feature concatenation, EFM

is applied again to analyze the augmented feature vector to choose the most discriminating

features for classification. Table 4.4 lists the corresponding FVRs, which indicate clearly

that the fusion of multi-resolution LBP features via EFM helps improve the performance

significantly. Specifically, the D1 and D2 images can achieve the comparable performances

using the proposed method.

4.3.4 Experiments Using the DCT Features for the D3 Image

For the extraction of holistic DCT features, the three feature sets are used to encode the dif-

ferent levels of facial details. The largest set, which includes comprehensive frequencies,

has the same size 64×64 (n3 = 64) as the original images to encode the entire facial details.

The smallest set, which includes low frequencies to encode the facial profile information, is

chosen according to the following rule. Because the subject number of the FRGC training

set is 222, the rank of between-class scatter matrix is at most 221. To derive the 221 EFM

features, the input feature vector should reside in a space whose dimensionality is larger

than 221. Thus, 15×15 (n1 = 15) is chosen as the size of the smallest set. The remain-

ing issue is to determine the size of middle set, namely, low frequencies plus intermediate

frequencies. It is hard in practice to explicitly choose the exact boundary between interme-
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diate and high frequencies in the DCT domain. To solve this problem, root-mean-square

error (erms) is used.

To calculate the erms, the reconstructed images using the DCT feature sets are

needed. For example, the reconstructed image, f̂15×15(x,y), of the DCT feature set Xh
15×15

is obtained by conducting the inverse DCT transform upon the DCT domain, where the

upper-left subset of size 15×15 is kept unchanged while the values in the remaining area

are set to zeros. Similarly, for the DCT feature set Xh
64×64, another reconstructed image is

generated, which is actually equivalent to the original image f (x,y). Next, let f̂n2×n2(x,y)

be the reconstructed image of the DCT feature set Xh
n2×n2

. Now, the three erms values,

erms(15), erms(n2), and erms(64) are computed as follows:

erms(15) =

[

1
MN

M−1

∑
x=0

N−1

∑
y=0

[

f̂15×15(x,y)− f (x,y)
]2
]1/2

, (4.10)

erms(n2) =

[

1
MN

M−1

∑
x=0

N−1

∑
y=0

[

f̂n2×n2(x,y)− f (x,y)
]2
]1/2

, (4.11)

where M ×N (M = N = 64) indicates image size, and erms(64) = 0 according to defini-

tion. The size of the DCT feature set Xh
n2×n2

can then be chosen by solving the following

optimization problem:

n∗2 = argmin
n2

|erms(n2)− (erms(15)+ erms(64))/2|. (4.12)

Based on Equation (4.12), n2 = 28 can be estimated from the FRGC training set. 28×28 is

thus chosen as the size of middle feature set.

As for the extraction of component DCT feature sets, the sizes of feature sets are

just set to the same as ones of the facial component images. In particular, the upper-left and

upper-right component images have the same size 39×39, and the bottom-half component
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Table 4.5 FVR (ROC III) at 0.1% FAR Using the DCT Features for the D3 Image

Method FVR (ROC III) at 0.1% FAR
Holistic 15 × 15 DCT features 41.83%
Holistic 28 × 28 DCT features 57.48%
Holistic 64 × 64 DCT features 58.57%

Upper-left component DCT features 35.78%
Upper-right component DCT features 31.43%
Bottom-half component DCT features 24.89%

Decision fusion 61.31%

image has size 39×64. Thus, n4 = 39 is used for the sets Xl
n4×n4

, Xr
n4×n4

and n4 = 39, n3 =

64 for the set Xb
n4×n3

. Table 4.5 lists the FVRs derived from the different DCT feature sets

and their fusion result at the decision level on the FRGC database.

4.3.5 Effectiveness of the Proposed Method

After having generated the three similarity matrices, which correspond to the FVR of 84.5%

for the illumination normalized D1 image (see Table 4.3), the FVR of 70.02% for the D2

image, and the FVR of 61.31% for the D3 image, respectively, they can be fused by means

of the sum rule. Specifically, the method achieves the FVR (ROC III) of 90.4% at the

FAR of 0.1% on the FRGC version 2 Experiment 4. Currently, the significant portion of

computational time is spent in the extraction of the GIR features, taking about 1.9 seconds

to process one image using Matlab on 2.0 GHz P4 PC. The faster speed can be expected

through C++ programming.

The main concern in this chapter is to exploit the multiple complementary feature

sets on face images, so that the fusion of classification outputs at the decision level can

improve the face recognition performance as much as possible. To that end, this chapter

proposes extracting the GIR, LBP, and DCT feature sets appropriate for the component

images in the CID color space. To validate this idea, all the feature extraction methods have

been applied to the three component images for face recognition. The experimental results
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Table 4.6 FVR (ROC III) at 0.1% FAR Using Different Features in the CID Color Space

FVR (ROC III) at 0.1% FAR
Method D1 D2 D3

GIR 78.16% 22.18% 27.02%
LBP 70.82% 70.02% 64.45%
DCT 65.68% 60.19% 61.31%

Table 4.7 Some Experimental Results Using the Different Combinations of Features

GIR LBP DCT FVR
D1 D1 D2 D3 D1 D2 D3 (ROC III)√ √ √

90.4%√ √ √
88.9%√ √ √ √
89.5%√ √ √ √
90.0%√ √ √ √ √ √ √
91.6%

Table 4.8 Comparison of the Proposed Method with the Others on the FRGC Database

Method FVR (ROC III) at 0.1% FAR
Method in (Su et al. 2007) 85.8%

Method in (Kumar et al. 2006) 87.5%
The proposed method 91.6%

on the FRGC database are given in Table 4.6. As can be seen, all the methods are effective

for improving the recognition accuracy on the three component images, except GIR that

fails in working on the D2 and D3 images. Furthermore, the different combinations of

feature sets can lead to the various classification results, some of which are provided in

Table 4.7. In particular, when fusing all the classification outputs of different methods on

the three component images, the proposed method can achieve the FVR of 91.64% at 0.1%

FAR, better than the performances achieved by some state-of-the-art methods as shown in

Table 4.8. Note that the GIR features used in the experiments as indicated in Table 4.7 are

derived from the illumination normalized D1 image.
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Table 4.9 The Rank-1 Recognition Rate on the FERET Database

Rank-1 recognition rate
Method Dup I Dup II

Method in (Zou et al. 2007) 85.0% 79.5%
Method in (Yao et al. 2008) 86.0% 83.0%
The proposed method (1) 88.4% 87.3%
The proposed method (2) 88.8% 86.4%
The proposed method (3) 87.1% 86.8%

To assess the generalization of the proposed method, experiments are implemented

on the color FERET database. Three sets of experiments are designed to investigate the

recognition performance based on the different training sets. They are (1) FRGC for both

the CID model and feature extraction, (2) FRGC for the CID model and FERET for feature

extraction, and (3) FERET for both the CID model and feature extraction. Specifically,

1,000 images comprising of 500 persons (two images fa/fb per person) are randomly se-

lected to construct the FERET training set. This set can derive the other set of the CID

transformation vectors: X1 = [0.7097,0.4294,−1.0]T , X2 = [0.4674,−0.9702,0.5028]T ,

and X3 = [−0.1105,1.4258,−1.3154]T . The two most challenging probe sets, Dup I and

Dup II, which are used for analyzing the effect of aging on the recognition performance, are

evaluated in experiments. For the color FERET database, the image numbers of the gallery,

Dup I, and Dup II probe sets are 967, 722, and 228, respectively. Table 4.9 gives the rank-1

recognition rates, showing that the proposed method can also achieve a good performance

on the color FERET database using the different training sets. The performances achieved

by some other methods using gray images are given in Table 4.9 as well. It should be noted

that one can not establish a direct comparison between the proposed method and the others,

because of the differences between the color and gray FERET databases.
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4.4 Conclusion

This chapter proposes a novel face recognition method that extracts multiple features in the

CID color space, where three new color component images, D1, D2, and D3, are derived

using an iterative algorithm. Three different image encoding methods are also presented

to effectively extract features from the component images in the new CID color space for

enhancing pattern recognition performance. The similarity scores from the three color

component images are fused for the final decision making. Experiments using two large-

scale face databases, namely, the Face Recognition Grand Challenge (FRGC) version 2

database and the FERET database, show the effectiveness of the proposed method.



CHAPTER 5

LEARNING IMAGE REPRESENTATION FOR FACE RECOGNITION

Feature selection and feature extraction are crucial to many pattern classification problems,

e.g., face recognition. The common objective of feature selection and extraction is to map

the original measurements into more effective features, which show significant differences

from one class to another, so that the classifiers can be designed more easily with better

performance. Most existing methods in face recognition scenario mainly focus on extract-

ing features either from image space via techniques such as Gabor kernels (Daugman 1985)

and Local Binary Patterns (LBP) (Ojala et al. 2002), or from transformed spaces via statis-

tical methods such as Principal Component Analysis (PCA) (Turk et al. 1991) and Linear

Discriminant Analysis (LDA) (Belhumeur et al. 1997). Image representation, as the be-

ginning stage of face recognition, actually can be considered as another important feature.

Unfortunately, the role of image representation is often ignored in recent studies. Numer-

ous face recognition methods usually start with image representation that is the directly

linear combination of three primary colors, R, G, and B, i.e., the luminance image Y =

0.299R + 0.58G + 0.114B or the intensity image I = (R + G + B)/3. But more theoretical

evidences and experimental results are in great demand to support that such image repre-

sentations or color transformations are optimal for image classification, especially for face

recognition. Hence, the novel image representation adapted to class separability is highly

desired in order to simplify the classifier design and improve the classification performance

for face recognition.

The contribution to face recognition in this chapter is to generate the novel image

representations and present the corresponding face recognition method. Generally speak-

ing, the hybrid color configurations have less correlation between their components than the

RGB color space. Such a property determines that the hybrid color configurations usually

achieve better performance than the RGB color space in face recognition, as decorrelation

82
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is important for pattern recognition. Thus some hybrid configurations of color components

are selected as source images to generate image representations. Furthermore, the proposed

method obtains the optimal color transformation via a statistical learning algorithm, PCA

plus FLD. PCA seeks a principal subspace of lower dimensionality to maximize the data

reconstruction capability of the features. As a result, features in this subspace can represent

the original data accurately. One can thus apply PCA to derive an optimal color transforma-

tion to generate a new image representation that best represents the data information from

several original color components. But the best representation of data may not perform

well from the classification point of view because the total scatter matrix is made up of

both the within- and between-class variations. To obtain the discrimination of image repre-

sentation for face recognition, one needs to handle the within- and between-class variations

separately. The proposed method further applies FLD to generate the discrimination-driven

image representations to fit face recognition, by following an idea in the Color Image Dis-

criminant (CID) model (Yang et al. 2008). Furthermore, to overcome the effect of illu-

mination variations on face image, a face image is partitioned into several small patches.

Depending on the discriminative power embedded in different facial regions, the proposed

method can then apply the learning algorithm to obtain the different color transformations

via either PCA alone or PCA plus FLD for these patch images. Therefore, a novel im-

age representation based on a patch scheme can be derived for face recognition. Finally,

a multiple feature method, extracting both holistic and local features, is presented for face

recognition using the proposed image representation. The large-scale experiments on the

Face Recognition Grand Challenge (FRGC) version 2 Experiment 4 and the FERET Dup

I and Dup II probe sets have been implemented to show the effectiveness of the proposed

method.
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Table 5.1 Correlation Coefficients between Different Color Components

R G B V Y I Q Cb Cr
R 1.0 0.93 0.87 0.99 0.97 0.78 0.03 -0.77 0.72
G - 1.0 0.94 0.93 0.99 0.55 -0.22 -0.67 0.46
B - - 1.0 0.87 0.93 0.42 -0.06 -0.46 0.37
V - - - 1.0 0.97 0.79 0.04 -0.77 0.73
Y - - - - 1.0 0.64 -0.11 -0.71 0.56
I - - - - - 1.0 0.28 -0.84 0.97
Q - - - - - - 1.0 0.22 0.46
Cb - - - - - - - 1.0 -0.72
Cr - - - - - - - - 1.0

5.1 Hybrid Configurations of Color Components

RGB color space is commonly used in some face recognition methods (Xie et al. 2005;

Jones et al. 2006; Kim et al. 2007; Yang et al. 2008) for color image. However, correlation

among components R, G, and B is so strong that the resultant improvement in performance

is limited when three components are combined for pattern recognition, such as face recog-

nition. Therefore, other color spaces, especially the hybrid color configurations, have been

adopted to perform face recognition in recent studies (Shih et al. 2005; Liu et al. 2008;

Sadeghi et al. 2007).

To construct the hybrid configurations of color components, some candidates of

color components need to be chosen first. Research in (Shih et al. 2005) has revealed that

V in HSV is more effective than the others for face recognition. This is reasonable be-

cause the V color component prefers the maximal value among R, G, and B components

according to the definition V = max(R,G,B). Such a characteristic makes the V color com-

ponent look like brighter than the luminance Y when the large illumination change occurs

on face image. Thus V is chosen on behalf of R, G, and B. Among other commonly used

color spaces for face image analysis are YIQ and YCbCr. By calculating the correlation

coefficients resided between individual color components V, Y, I, Q, Cb, and Cr, some

rational hybrid configurations of color components can be chosen. Table 5.1 records the
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corresponding correlation coefficients calculated from the training database of FRGC. By

preferring the low coefficient magnitude, some color configurations such as VCrQ, YIQ,

and YCrQ are selected as the source color images to generate the new image representa-

tions. It is worthwhile of note that the Q color component has a higher chance to be chosen

in the method due to its decorrelationship with the others.

5.2 Learning Image Representation

In the C1C2C3 color configuration, an image of resolution m× n consists of three color

components C1, C2, and C3. Without loss of generality, let C1, C2, and C3 be column

vectors: C1,C2,C3 ∈ RN , where N = m× n. Each vector C is normalized to have zero

mean and unit variance. A data matrix X ∈ R3×Nl can be formed using all the training

images:

X =












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
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(5.1)

where l is the number of training images. In X, each column is an observation and each

row is a variable. The covariance matrix ΣX may be formulated as ΣX = 1
Nl−1X̃X̃t ∈ R3×3,

where X̃ is the centered data matrix. PCA is used to factorize ΣX into the following form:

ΣX = ΦΛΦ t , where Φ = [Φ 1,Φ 2,Φ 3] ∈ R3×3 is an orthonormal eigenvector matrix and

Λ = diag{λ1,λ2,λ3} ∈ R
3×3 is a diagonal eigenvalue matrix with diagonal elements in

decreasing order (λ1≥λ2≥λ3).

By projecting three color component images C1,C2,C3 of an image onto Φ 1, then

a new image representation U ∈ RN can be obtained, which is associated with the largest

eigenvalue. So one has:
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U = [C1,C2,C3]Φ 1 (5.2)

According to properties of PCA, U is optimal for data representation but not for

data classification. Recently, the CID model (Yang et al. 2008) has been proposed to

derive a more reasonable color transformation for face recognition. Thus, the novel image

representation can be further generated based on U via FLD implemented in CID. Let Ūi

be the mean vector of class ωi and Ū be the grand mean vector. Then the between- and

within-class scatter matrices Sb and Sw are defined as follows:

Sb =
k

∑
i=1

P(ωi)(Ūi− Ū)(Ūi− Ū)t (5.3)

Sw =
k

∑
i=1

P(ωi)E
{

(U− Ūi)(U− Ūi)
t|ωi

}

(5.4)

where P(ωi) is the prior probability of class ωi, and k is the number of classes, and Sb,Sw ∈

RN×N . The general Fisher criterion in the U image space can be defined as follows:

J(P) =
|PtSbP|
|PtSwP| (5.5)

Maximizing this criterion can be solved by deriving the optimal transform matrix

P = [ψ1,ψ2, . . . ,ψd] ∈ RN×d , where ψ1,ψ2, . . . ,ψd are chosen from the generalized eigen-

vectors of SbΨ = λSwΨ corresponding to the d largest eigenvalues.

Let C = [C1,C2,C3] be the original color configuration with the N(0,1) normaliza-

tion. By projecting C onto the matrix P, one can define the general color-space between-

class scatter matrix Lb and within-class scatter matrix Lw as follows (Yang et al. 2008):

Lb =
k

∑
i=1

P(ωi)(C̄i− C̄)tPPt(C̄i − C̄) (5.6)

Lw =
k

∑
i=1

P(ωi)E
{

(C− C̄i)
tPPt(C− C̄i)|ωi

}

(5.7)
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Figure 5.1 The patch-based novel image representation. The left image: the partition
of an original image. The middle image: a novel representation derived from the color
configuration YCrQ based on a patch scheme. The right image: the U-based representation
(gray region) and the D-based representation (dark region).

where C̄i is the mean of class ωi and C̄ is the grand mean, and Lb,Lw ∈ R3×3. By ob-

taining the generalized eigenvectors ξ1,ξ2,ξ3 of LbΞ= λLwΞ, the ξ1 corresponding to

the largest eigenvalue is selected as the optimal color transformation, which can gener-

ate the discriminating image representation suitable for face recognition. Finally, a novel

image representation D ∈ RN can be derived by projecting three color component images

C1,C2,C3 of an image onto ξ1:

D = [C1,C2,C3]ξ1 (5.8)

5.3 Patch-based Novel Image Representation for Face Recognition

Since the illumination variations appear on face image unevenly, the patch-based methods

have become appealing to address this problem and have achieved the improved perfor-

mance in face recognition (Kim et al. 2005; Heisele et al. 2007). To alleviate the effect

of illumination variations and other factors, the face image is partitioned into several small

patches, which will learn their own color transform vectors, respectively, via either PCA or

PCA plus FLD.

Figure 5.1 shows the partition of a 64× 64 face image into nine patches. Because

the experiment Section will show that the best image representation for face recognition

in FRGC can be generated by the YCrQ color configuration, YCrQ is chosen to derive

the optimal color transformation for each patch. In practice, some patches on face cheek
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Table 5.2 The Values of Fisher Criterion Derived by PCA and PCA plus FLD Learning
Algorithm for Nine Patches

Image representation
U-based D-based

Patch 1 0.7180 0.7347
Patch 2 0.6218 0.6540
Patch 3 0.7086 0.7136
Patch 4 0.3938 0.3819
Patch 5 0.4410 0.4450
Patch 6 0.3493 0.3375
Patch 7 0.3553 0.3273
Patch 8 0.3174 0.3837
Patch 9 0.3577 0.3192

area contain too insufficient discriminating information to distinguish face classes well. In

these patches, the D-based representation defined by Equation (5.8) actually achieves lower

performance than the U-based representation defined by Equation (5.2) for face recogni-

tion. To guarantee the obtaining of a better representation for each face patch, the Fisher

criterion in Equation (5.5) is rewritten as follows:

α = argmax
α,P

|PtSb(α)P|
|PtSw(α)P| (5.9)

where α ∈ {Φ 1,ξ1} represents one of color transform vectors used in Equations (5.2) and

(5.8) to generate the U-based or D-based image representation. During the training pro-

cedure, the criterion in Equation (5.9) is used to choose the better one from Φ 1 and ξ1 to

generate the optimal image representation for each face patch.

Table 5.2 records the values of Fisher criterion generated by the training data set

for nine different patches labeled from top to bottom and from left to right in face image.

The U-based image representation, derived by PCA, and the D-based image representation,

derived by PCA plus FLD, generate the different values of Fisher criterion for each patch,

as shown in Table 5.2. The higher the criterion value, the more discriminating information

one patch has. From the classification point of view, some face patches (such as facial
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Figure 5.2 Architecture of face recognition using the patch-based novel image represen-
tation.

component regions) containing the sufficient facial information should be characterized by

the D-based image representation, while the others (such as facial cheek regions) containing

the poor facial information should be characterized by the U-based image representation.

Therefore, by choosing one of two kinds of image representations in favor of a larger Fisher

criterion value for each patch, one can derive a more reasonable face image representation,

that is, a mixture of the U-based and D-based image representations based on a patch

scheme. Following this idea, a novel representation for face image is illustrated by the right

image in Figure 5.1, where the U-based and D-based image representations are symbolized

by gray region and dark region, respectively. The middle image in Figure 5.1 is the actual

representation for the original image using the proposed method.

Furthermore, a method is presented for face recognition using multiple features on

the basis of the patch-based novel image representation. The multiple features, which usu-

ally consist of holistic and local features, have been demonstrated effective in improving

the performance of face recognition, due to the complementary characteristic among fea-

tures. The architecture of the multiple features for face recognition in the proposed method

is illustrated in Figure 5.2. The holistic and local features are extracted respectively from

face image, and their classification outputs are fused at the decision level. On the one

hand, the multiple-scale LBP (Liu et al. 2009) is applied to extract a holistic augmented

feature. Note that although the LBP operators work on sub-images, the LBP features can
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be regarded as holistic one in this chapter because the global histograms are derived from

the whole image. Three LBP operators, LBPu2
8,1, LBPu2

8,2 and LBPu2
8,3 (Ojala et al. 2002),

are first used to extract the multi-resolution global histogram features from the whole face

image, respectively. Then FLD is applied to extract the discriminating feature and reduce

dimensionality for each histogram feature. Finally, three reduced features are concatenated

into an augmented feature, which will undergo the discriminant analysis for face recog-

nition. As such, both the microstructure and the macrostructure described by LBP opera-

tors in face image are utilized to extract the discriminating features, which contain much

more discriminative power than the one a single LBP operator can provide. The foregoing

method is illustrated in Figure 5.3. On the other hand, similar to the derivation of the holis-

tic augmented feature, a local augmented feature obtained from the patch images can be

extracted by concatenating the FLD features as shown in Figure 5.2. At the decision level,

two kinds of classification outputs are first processed by the z-score normalization (Jain et

al. 2005) individually and then are fused by the sum rule (Kittler et al. 1998) for the final

classification.

5.4 Experiments

This section assesses the performance of the proposed method using the Face Recognition

Grand Challenge (FRGC) version 2 Experiment 4, the most challenging FRGC experi-

ment (Phillips et al. 2005), and the another de facto standard face database, the FERET
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database. For the FRGC database, the training set contains 12,776 images that are either

controlled or uncontrolled. The target set has 16,028 controlled images and the query set

has 8,014 uncontrolled images. The FRGC baseline algorithm, which in essence is a PCA

algorithm, reveals that the uncontrolled factors pose grand challenges to the face recogni-

tion performance. The Biometric Experimentation Environment (BEE) system generates

three Receiver Operating Characteristic (ROC) curves (ROC I, ROC II, and ROC III) cor-

responding to the images collected within semesters, within a year, and between semesters,

respectively (Phillips et al. 2005). The FERET database (Phillips et al. 2000) consists

of more than 13,000 facial images corresponding to more than 1,500 subjects. Because

images were acquired during different photo sessions, the illumination conditions and the

size of the face may change. The diversity of the FERET database features across ethnicity,

gender, and age. The images were acquired without any restrictions imposed on facial ex-

pression and with at least two frontal images shot at different times during the same photo

session.

5.4.1 Results of the FRGC Database

Face recognition using different image representations

According to the correlation criterion presented in Section 5.2, some ideal configurations

of color components VCrQ, VCbQ, VIQ, YCrQ, YCbQ, and YIQ are selected, while other

configurations such as RGB, VCbCr, VCbI, VCrI, YCbCr, YCbI, and YCrI are also in-

cluded in experiments for comparison purpose. Then the FRGC training images, whose

size has been rescaled to 32× 32, are used to derive the color transformation vectors Φ 1

and ξ1 by using either PCA or PCA plus FLD learning algorithm.

To evaluate the effectiveness of the novel image representations for face recogni-

tion, a set of experiments on FRGC version 2 Experiment 4 is carried out using FLD and

the cosine similarity measure. For the experiments of face recognition, the size of images

is 64× 64. The experimental results, which includes the Face Verification Rate (FVR)
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Table 5.3 FVR (ROC III) at 0.1% FAR Using Different Image Representations

Color FVR at 0.1% FAR Color FVR at 0.1% FAR
configuration U-based D-based configuration U-based D-based

YCrQ 66.59% 67.35% VCrQ 65.76% 66.74%
VIQ 64.80% 65.23% YIQ 64.95% 64.92%
VCrI 61.31% 63.02% YCrI 61.65% 62.81%

VCbQ 60.22% 62.09% YCbQ 61.17% 61.84%
Method YCrQ RGB Luminance Y 56.41%

in (Yang et al. 2008) 65.29% 63.01% Intensity I 55.14%
V in HSV 61.78%

at 0.1% False Accept Rate (FAR) corresponding to ROC III curve, are provided in Table

5.3. Here, Table 5.3 only lists the color configurations that can generate the novel im-

age representations with FVR over 61.78%, produced by V in the HSV color space. For

the comparison purpose, experimental results derived from the luminance Y and the in-

tensity I are also included in Table 5.3. It is evident that the novel image representations

produced by the proposed method outperform other image representations for face recog-

nition. Specifically, the performance derived from the YCrQ color configuration is beyond

those of conventional gray-scale images (luminance Y and intensity I) by more than 10%.

The proposed learning method is based partially on the CID model (Yang et al.

2008). However, it has its own advantages over CID when the input is hybrid color con-

figuration instead of RGB. Table 5.3 also provides the experiment results using CID upon

the YCrQ and RGB color configurations for comparison. Note that experiments use CID

to generate one component image from three source color components for face recogni-

tion. As can bee seen, the proposed learning method achieves a better performance than

CID when working on the YCrQ color configuration. On the other hand, CID works in an

iterative manner, which spends more computation time during training than the proposed

method. The above merits of the proposed learning method are attributed to the PCA pro-

cedure. As PCA derives an optimal image with respect to data representation from the

source images, the U-based image representation is able to generate a good recognition



93

Figure 5.4 The image representations from the first column to the sixth column: R, G,
and B; Y, I, and Q; V, Cb, and Cr; UYCrQ, UVCrQ, and UVIQ; DYCrQ, DVCrQ, and DVIQ; the
images derived from YCrQ and RGB using CID model (Yang et al. 2008).

performance close to optimal one. This procedure facilitates the subsequent FLD to derive

an optimal color transform vector and the iteration in CID can be skipped.

To visualize the novel image representations, Figure 5.4 displays the images gen-

erated from the color configurations YCrQ, VCrQ, VIQ, and some existing color images

R, G, B, Y, I, Q, V, Cb, Cr, as well as the images derived by the CID algorithm. For

the YCrQ color configuration that achieves the best performance, the color transform co-

efficients produced by the proposed method are [-0.5457;-0.7322;-0.4075] for UYCrQ and

[-0.6568;-0.6924;-0.2988] for DYCrQ, respectively. Also, the color transform coefficients

derived by CID are [-0.6803;-1.0000;-0.1086] and [1.0000;0.0138;-0.2079] for the YCrQ

and RGB color configurations, respectively. In particular, due to correlation in the RGB

color space and that the R component has a leading performance among all color compo-

nents for the FRGC database, the optimal image generated by R, G, and B components

using CID is close to the R component in visualization. Obviously, the novel image repre-

sentations using the hybrid color configurations inherit the image characteristics from other

color components, which help improve the performance of face recognition.
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Table 5.4 FVR (ROC III) at 0.1% FAR of Nine Patch Images

Image representation
U-based D-based

Patch 1 9.66% 21.21%
Patch 2 13.77% 15.33%
Patch 3 17.97% 23.77%
Patch 4 14.46% 5.84%
Patch 5 5.87% 7.69%
Patch 6 20.11% 7.88%
Patch 7 21.19% 4.07%
Patch 8 4.16% 5.59%
Patch 9 11.01% 4.17%

Table 5.5 Experimental Results Using the Patch-Based Representation

FVR (ROC III) at 0.1% FAR
Method Y U-based D-based Proposed one

Decision fusion 46.15% 60.10% 60.85% 63.11%
Image fusion 56.41% 68.29% 69.69% 70.55%
FLD fusion 60.82% 69.47% 70.86% 72.35%

Face recognition using patch-based novel image representation

The next set of experiments aims to evaluating the effectiveness of the proposed patch-

based image representation method for face recognition. Experiments first use the patch

images alone. Table 5.4 provides the FVR at 0.1% FVR for each patch image generated by

both the U-based and D-based image representations. The performances show that the two

image representations prefer some particular patches to others in face region, respectively,

which is consistent with the conclusion reached in Table 5.2. Next, experiments assess

the performance of the patch-based representation for face recognition by combining nine

patch images via three ways: fusion at the decision level, fusion at the image level (i.e.,

the input image in Figure 5.2), and fusion at the FLD feature level (i.e., the augmented

feature in Figure 5.2). Table 5.5 lists the corresponding experiment results, which are

obtained from the luminance Y, the U-based image, the D-based image, and the novel one
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Table 5.6 Experimental Results Using the Multi-Resolution LBP Features

Method FVR (ROC III) at 0.1% FAR
LBPu2

8,1 65.47%
LBPu2

8,2 66.12%
LBPu2

8,3 56.16%
FLD fusion 71.86%

Table 5.7 Experimental Results Using the Multiple Feature Fusion Strategy

FVR (ROC III) at 0.1% FAR
Method Luminance Y Proposed one
Holistic feature 71.16% 71.86%
Local feature 60.82% 72.35%
Decision fusion 76.04% 80.71%

consisting of two different image representations. The analysis of performances in Table

5.5 shows that the patch-based methods augmented by new image representation improve

the performance of face recognition significantly. In particular, when considering the FVR

of 56.41% of the luminance Y as the baseline, one can conclude that the improvement

caused by the patch-based scheme itself is at most 5% (from 56.41% to 60.82%), while the

improvement due to the new image representation is over 10% (from 56.41% to 70.55% or

from 60.82% to 72.35%).

The experiments carried out so far using the FRGC data set assess only the novel

image representations of the proposed face recognition framework, namely, the UYCrQ, the

DYCrQ, and their combination. Now experiments are implemented with the multiple feature

fusion using the patch-based novel image representation. The experimental results derived

from the LBP features are provided in Table 5.6, which indicates that the fusion of multi-

resolution LBP features via FLD indeed helps improve the face recognition performance

due to the complementary characteristic among the LBP features. Finally, the face recog-

nition performance is derived by fusing the classification outputs of the holistic and local

features at the decision level. The FVRs are given in Table 5.7, where the experimental
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Figure 5.5 The ROC curves that are obtained using the proposed method from the clas-
sification outputs of the holistic and local features, as well as their fusion at the decision
level via the sum rule. The curves derived from the FRGC baseline algorithm using the
gray-scale images are also included for comparison.

Table 5.8 Experimental Results Fusing the Proposed New Image and the Y Image

Method FVR (ROC III) at 0.1% FAR
Holistic feature on the Y 71.16%
The proposed method 80.71%
Decision fusion 84.14%

results using the luminance Y are also included for comparison. The corresponding ROC

curves are shown in Figure 5.5. It has been experimentally found that fusing the classifi-

cation outputs of the new image representations and the Y image can further improve the

face recognition performance (Liu & Tao 2009). The results of the proposed method and

the LBP features on the Y image can thus be fused through the sum rule to derive better

performance, as shown in Table 5.8. In particular, the proposed method achieves the FVR

(ROC III) of 84.14% at 0.1% FAR, better than performances of some recent methods such

as 83.6% in (Tan & Triggs 2007b) and 74.33% in (Hwang et al. 2006) using the same

database.
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Table 5.9 Experimental Results Using the New Image Representations on the FERET
Database

Rank-1 accuracy
Training set Image Coefficient Dup I Dup II

FRGC UYCrQ [-0.5457;-0.7322;-0.4075] 78.94% 75.43%
DYCrQ [-0.6568;-0.6924;-0.2988] 80.74% 77.19%
DRGB [ 1.0000; 0.0138;-0.2079] 55.54% 38.15%

Y - 50.13% 28.07%
RERET UYCrQ [-0.2677;-0.7279;-0.6313] 73.68% 73.24%

DYCrQ [-0.2661;-0.8564;-0.4425] 73.40% 73.68%
DRGB [ 0.7097; 0.4294;-1.0000] 60.38% 56.57%

Y - 49.20% 28.00%

5.4.2 Results of the FERET Database

Experiments are carried out on the Dup I and Dup II sets, the two most challenging probe

sets from the FERET database. For the color FERET database, the image numbers of the

gallery, Dup I, and Dup II probe sets are 967, 722, and 228, respectively. The first set of ex-

periments assesses face recognition performance using the learning-based U and D images

from the YCrQ hybrid color space. Besides the parameters derived from the FRGC training

set, another set of parameters is generated using 1000 images from the FERET fa and fb

sets. The rank-1 accuracies based on different parameters and training sets are shown in

Table 5.9 using FLD and the cosine similarity measure. As can be seen, the new image

representations UYCrQ and DYCrQ are capable of improving the performance significantly

when comparing to the traditional Y image. Also, the image generated from the RGB color

space using the CID model (Yang et al. 2008) is included for comparison. In particular,

experimental results based on the FRGC training set demonstrate better classification per-

formance than the FERET training set, because the large FRGC training set can avoid the

small sample size problem that is often encountered during using the FERET training set.

Hereafter, all experiments will be conducted based on the FRGC training set.

The second set of experiments evaluates the overall face recognition framework,
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Table 5.10 Experimental Results Using the Proposed Method on the FERET Database,
and Comparison with Two State-of-the-Art Methods

Rank-1 accuracy
Method Dup I Dup II
Holistic feature on the Y image 78.11% 63.15%
Local feature on the new image 80.05% 75.43%
Holistic feature on the new image 84.34% 79.38%
Decision fusion 91.41% 89.04%
In paper (Yao et al. 2008) 87.00% 85.00%
In paper (Tan et al. 2007(b)) 90.00% 85.00%

which capitalizes on the multiple feature fusion on the patch-based novel image represen-

tation. Table 5.10 shows the experimental results based on the rank-1 face recognition

rate. In particular, when fusing the classification outputs of the proposed method and the

Y image, the overall performances of the Dup I and the Dip II are 91.41% and 89.04%,

respectively, outperforming two state-of-the-art methods, as shown in Table 5.10.

5.5 Conclusion

This chapter introduces a novel method for face recognition. Unlike the conventional gray-

scale image that is directly converted from the RGB color space, the discrimination-driven

image representations can be generated by applying the learning algorithm to derive the

optimal color transform vectors from some other decorrelated color configurations. By

partitioning face image into several patches, the learning algorithm is applied to obtain the

different image representations for different patches, thus generating a patch-based novel

image representation. Finally, an effective method working on the proposed image rep-

resentation is presented for face recognition. The large-scale experiments on the most

challenging FRGC version 2 Experiment 4 and the FERET Dup I and Dup II probe sets

have been carried out to demonstrate the effectiveness of the proposed method.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Face recognition is an important task in computer vision because of its immense applica-

tion potential. In this dissertation, the author has taken the preliminary steps to develop a

methodology to extract multiple features sets in different color spaces for face recognition,

with an attempt to overcome the grand challenge issues, such as the image variabilities in

terms of illumination, facial expression, aging, etc., which are often encountered in tradi-

tional methods based on intensity images. Experiments on two large-scale face databases,

namely, the face recognition grand challenge (FRGC) version 2 database and the FERET

database, have shown that the effectiveness of the proposed methods on addressing the

challenging problems in face recognition. The contributions of this dissertation are listed

below:

1. The author has developed an DFT-based method in the RIQ color space for face

recognition. This method leverages the multiple DFT frequency components in the

different color images, thus defining the complementary representations for face im-

ages to enhance the discriminating capability for face recognition.

2. The author has proposed a multi-resolution LBP feature fusion in the VIQ color

space for face recognition. This method fuses the LBP features in three scales by

Fisher Linear Discriminant analysis, thus extracting more discriminating information

provided by both microstructure and macrostructure of face images than the one a

single LBP operator can provide. Applying such a LBP feature in the VIQ color

space, namely the "Color + LBP + LDA" strategy, further boosts the face recognition

performance.

3. The author has proposed a novel method to extract multiple features in the CID color

space. As different color components in the CID color space display different char-

99
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acteristics, three different image encoding methods using the GIR, LBP, and DCT

features, respectively, are presented for face recognition. To further improve classi-

fication performance, the similarity scores due to the three color component images

are fused for the final decision making.

4. The author has proposed a novel image representation for face recognition. In partic-

ular, the decorrelated color components Y, Cr, and Q instead of the R, G, and B color

components are used. A PCA plus FLD learning framework is presented to derive

the optimal coefficients to combine the Y, Cr, and Q color components to generate a

discriminating image representation for face recognition.

In the past few years, research on face recognition is moving toward recognizing

faces on unconstrained real-world photos. This is largely due to an increasing need for

robust face recognition for consumers to tag digital photos and facilitate their organization

and online sharing. By unconstrained, the author means faces that show a large range of

the variations seen in everyday life. This includes natural variabilities in pose, lighting,

focus, resolution, facial expression, age, gender, race, make-up, and so on (Huang et al.

2007). Although traditional face databases, such as FRGC and FERET, contain a large

image variability, they can be categorized into the moderately controlled database. The

web-based image databases, such as Labeled Faces in the Wild (LFW) (Huang et al. 2007)

that displays much more natural variations in face images, belong to the category of the

uncontrolled environment. The future work will be mainly focused on the following two

aspects:

Applying the color information for face recognition in real world

The proposed methods in this dissertation have shown that color is feasible and effective in

improving face recognition performance on two large-scale databases, FRGC and FERET,

which mainly are related to access control scenarios. Equipped with some advanced local
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image descriptors, such as the learning-based (LE) descriptor (Cao et al. 2010) and the T2-

S2-9 descriptor (Winder & Brown 2007), the color information could improve face match-

ing performance achieved by some state-of-the-art methods (Hua & Akbarzadeh 2009; Cao

et al. 2010) that use intensity images alone.

Applying the novel image representation for other face image analyses, such as face detec-

tion and gender classification in real world

Image-based face analysis, such as face detection and gender classification, has been an ac-

tive research topic in computer vision and pattern recognition. Since some multiclass prob-

lems can be converted into two-class problems, the novel image representation learned for

face recognition can be adapted to face detection and gender classification, by using two-

class learning methods. To that end, the future work will apply some discriminant analysis

methods, such as Asymmetric Principal and Discriminant Analysis (APCDA) (Jiang 2009)

and Subclass Discriminant Analysis (SDA) (Zhu & Martinez 2006), to generate other novel

image representations.
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