
New Jersey Institute of Technology New Jersey Institute of Technology 

Digital Commons @ NJIT Digital Commons @ NJIT 

Dissertations Electronic Theses and Dissertations 

Fall 1-31-2013 

Eye detection using discriminatory features and an efficient Eye detection using discriminatory features and an efficient 

support vector machine support vector machine 

Shuo Chen 
New Jersey Institute of Technology 

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Chen, Shuo, "Eye detection using discriminatory features and an efficient support vector machine" (2013). 
Dissertations. 341. 
https://digitalcommons.njit.edu/dissertations/341 

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital 
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital 
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu. 

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F341&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F341&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/341?utm_source=digitalcommons.njit.edu%2Fdissertations%2F341&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

EYE DETECTION USING DISCRIMINATORY FEATURES AND
AN EFFICIENT SUPPORT VECTOR MACHINE

by
Shuo Chen

Accurate and efficient eye detection has broad applications in computer vision, ma-

chine learning, and pattern recognition. This dissertation presents a number of

accurate and efficient eye detection methods using various discriminatory features

and a new efficient Support Vector Machine (eSVM).

This dissertation first introduces five popular image representation methods —

the gray-scale image representation, the color image representation, the 2D Haar

wavelet image representation, the Histograms of Oriented Gradients (HOG) image

representation, and the Local Binary Patterns (LBP) image representation — and

then applies these methods to derive five types of discriminatory features. Comparative

assessments are then presented to evaluate the performance of these discriminatory

features on the problem of eye detection.

This dissertation further proposes two discriminatory feature extraction (DFE)

methods for eye detection. The first DFE method, discriminant component analysis

(DCA), improves upon the popular principal component analysis (PCA) method.

The PCA method can derive the optimal features for data representation but not for

classification. In contrast, the DCA method, which applies a new criterion vector that

is defined on two novel measure vectors, derives the optimal discriminatory features

in the whitened PCA space for two-class classification problems. The second DFE

method, clustering-based discriminant analysis (CDA), improves upon the popular

Fisher linear discriminant (FLD) method. A major disadvantage of the FLD is

that it may not be able to extract adequate features in order to achieve satisfactory

performance, especially for two-class problems. To address this problem, three CDA



models (CDA-1, -2, and -3) are proposed by taking advantage of the clustering

technique. For every CDA model a new between-cluster scatter matrix is defined. The

CDA method thus can derive adequate features to achieve satisfactory performance

for eye detection. Furthermore, the clustering nature of the three CDAmodels and the

nonparametric nature of the CDA-2 and -3 models can further improve the detection

performance upon the conventional FLD method.

This dissertation finally presents a new efficient Support Vector Machine (eSVM)

for eye detection that improves the computational efficiency of the conventional

Support Vector Machine (SVM). The eSVM first defines a Θ set that consists of

the training samples on the wrong side of their margin derived from the conventional

soft-margin SVM. The Θ set plays an important role in controlling the generalization

performance of the eSVM. The eSVM then introduces only a single slack variable for

all the training samples in the Θ set, and as a result, only a very small number of those

samples in the Θ set become support vectors. The eSVM hence significantly reduces

the number of support vectors and improves the computational efficiency without sac-

rificing the generalization performance. A modified Sequential Minimal Optimization

(SMO) algorithm is then presented to solve the large Quadratic Programming (QP)

problem defined in the optimization of the eSVM.

Three large-scale face databases, the Face Recognition Grand challenge (FRGC)

version 2 database, the BioID database, and the FERET database, are applied

to evaluate the proposed eye detection methods. Experimental results show the

effectiveness of the proposed methods that improve upon some state-of-the-art eye

detection methods.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

Eye detection has broad applications in computer vision, machine learning, and pat-

tern recognition. However, finding an accurate and efficient solution to eye detection is

really challenging. Example challenges include large variations in image illumination,

skin color (white, yellow, and black), facial expression (eyes open, partially open, or

closed), as well as scale and orientation. Additional challenges include eye occlusion

caused by eye glasses or long hair, and the red eye effect due to the photographic

effect. All these challenging factors increase the difficulty of accurate and efficient

eye-center detection.

Eye detection therefore has attracted much attention, and numerous eye detec-

tion methods have been proposed. Current eye detection methods can be classified

into three categories [94]: the template based methods, the feature based methods,

and the appearance based methods. For the template based methods, a sliding win-

dow is moved over the whole image to find the best match with a pre-designed generic

eye template. The eye template is usually built upon either the prior knowledge or a

large eye database. Jorge et. al. [40] applied a deformable eye template to detect eyes.

This template is represented by two distinct geometrical entities: a circumference,

that defines the iris contour; and two parabolas, one concave and other convex, that

define respectively the above and below contours of the eye. The geometry shape

of the eye template is controlled by a set of eleven parameters that allow its change

in scale, position, and orientation. Rurainsky & Eisert [76] presented an adaptive

eye template that is controlled by only four position parameters. This small number

of parameters limits the range of changes and subsequently limits the number of

1
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possible template shapes. Besides these artificial eye templates, Moriyama et. al.

[61] presents natural eye templates taken from real persons. These eye templates

are designed upon a large eye database and thus in various orientations, sizes and

illuminations. A pre-processing step is necessary to align and normalize these eye

templates in order to improve the detection accuracy. Some other template based eye

detection methods can be found in [25], [87], and [43].

The feature based eye detection methods focus on the characteristics of eyes,

such as the shape, the color distribution, and the intensity gradient information

around eye regions. Among these characteristics the circular shape of the iris is a

typical one. Wan Mohd Khairosfaizal and Nor’aini [86] presented an eye detection

method by searching the circular shape over a face image. This method starts with

applying a sharpening filter to enhance edges of objects in an image. The Circle Hough

Transform (CHT) is then applied to search the circular patterns in the edge image.

Feng and Yuan [28], as well as Zhou and Geng [92], presented a number of eye detec-

tion methods using projection functions. These methods are based on the observation

that the eye boundaries have more significant intensity variance than other areas of

a face image. Three projection functions, the Integral Projection Function (IPF),

the Variance Projection Function (VPF), and the Generalized Projection Function

(GPF), are presented in their work. The GPF is finally proved to be optimal for

eye detection under the illumination variations. Chen & Liu [20] presented an eye

detection method using different color channels. This method first roughly locates

the eye boundaries in the YCbCr color space [79], and then further detects the

eye-center in the HSV color space [79]. In addition to above methods, a special

type of illumination, active near-infrared (IR) illumination [94], is widely used in the

feature based eye detection method. The IR illumination is able to produce the dark

or bright pupil effect, which can enhance the characteristics of eyes and hence may

improve the detection performance.
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The appearance based eye detection methods detect eyes based on their photo-

metric appearance. These methods usually need to first train a classifier based on a

training data set, and the detection is then achieved via a two-fold classification

process. Various image representations, other than the simple gray-scale image

representation, are widely used in the appearance based methods. These image

representations may be able to extract discriminatory features that are suitable

for classifier design and improve the classification performance. Kroon et al. [41]

presented a probabilistic eye localization method using the multi-scale Local Binary

Patterns (LBP) image representation. Nguyen et al. [62] proposed an energy-based

framework to jointly perform relevant feature weighting and SVM parameter learning

for facial feature detection. Jin et al. [38] proposed an eye detection algorithm that

integrates the characteristics of single eye and eye-pair images. Campadelli et al.

[12] presented an eye detection method that uses two SVMs trained on properly

selected Haar wavelet coefficients. Everingham and Zisserman [27] investigated three

approaches for eye detection: a regression approach for directly minimizing eye

location error, a Bayesian approach for eye and non-eye modeling, and an AdaBoost

approach for training a discriminative eye detector. Some other state-of-the-art

appearance based eye detection methods can be found in [91], [88], [37], [34], [35],

[22], [5], [6], [63], [13], and [81].

Even though numerous eye detection methods have been proposed, many prob-

lems still exist, especially in detection accuracy and efficiency under challenging image

conditions. This dissertation presents a number of accurate and efficient eye detection

methods using discriminatory features and a new efficient Support Vector Machine

(eSVM).
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1.2 Topics Overview

This dissertation aims to design accurate and efficient eye detection methods using

discriminatory features and a new efficient Support Vector Machine (eSVM). Chapter

2 first introduces five image representation methods that are widely used in pattern

recognition and computer vision. Chapter 3 and Chapter 4 then present respectively

two Discriminatory Feature Extraction (DFE) methods, the Discriminant Component

Analysis (DCA) and the Clustering-based Discriminant Analysis (CDA), to extract

the discriminatory features for eye detection. The DCA method improves upon

the conventional Principal Component Analysis (PCA) method, whereas the CDA

method improves upon the conventional Fisher Linear Discriminant (FLD) method.

Next, Chapter 5 presents a new efficient Support Vector Machine (eSVM) for eye

detection to improve the computational efficiency of the conventional Support Vector

Machine (SVM). Finally, Chapter 6 concludes this dissertation and depicts the future

research directions. An overview of Chapters 2, 3, 4, 5, and 6 is given in the follows.

Chapter 2 introduces five image representation methods: the gray-scale image

representation, the color image representation, the 2D Haar wavelet image repre-

sentation, the Histograms of Oriented Gradients (HOG) image representation, and

the Local Binary Patterns (LBP) image representation. These five image represen-

tations are then applied to derive five types of discriminatory features in Chapter

3. Comparative assessments are presented to evaluate the performance of these

discriminatory features on the problem of eye detection.

Chapter 3 proposes a Discriminant Component Analysis (DCA) method to

extract discriminatory features for eye detection. The DCA method improves upon

the popular Principal Component Analysis (PCA) method. It starts with a PCA

process followed by a whitening transformation. A discriminant analysis is then

performed on the whitened PCA space. A set of DCA basis vectors, based on the

novel definition of the cluster-measure vector and the separation-measure vector, as
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well as a new criterion vector, is defined. The DCA features are then derived in the

subspace spanned by these DCA basis vectors. Experiments on the Face Recognition

Grand Challenge (FRGC) database show that the DCA features significantly enhance

the discriminating power of various image representations and hence improve the eye

detection performance.

Chapter 4 proposes a clustering-based discriminant analysis (CDA) method to

extract discriminatory features for eye detection. The CDA method improves upon

the Fisher Linear Discriminant (FLD) method. One major disadvantage of the FLD

is that it may not be able to extract adequate features in order to achieve satisfactory

performance, especially for two class problems. Three CDA models (CDA-1, -2,

and -3) are proposed by taking advantage of the clustering technique. For every

CDA model a new between-cluster scatter matrix is defined. The CDA method thus

can derive adequate features to achieve satisfactory performance for eye detection.

Furthermore, the clustering nature of the three CDA models and the nonparametric

nature of the CDA-2 and -3 models can further improve the detection performance

upon the conventional FLD method. Experiments on the FRGC and the BioID

database show the feasibility of the proposed three CDA models and the improved

performance over some state-of-the-art eye detection methods.

Chapter 5 proposes a new efficient Support Vector Machine (eSVM) for eye

detection that improves the computational efficiency of the conventional Support

Vector Machine (SVM). The eSVM first defines a Θ set that consists of the training

samples on the wrong side of their margin derived from the conventional soft-margin

SVM. The Θ set plays an important role in controlling the generalization performance

of the eSVM. The eSVM then introduces only a single slack variable for all the

training samples in the Θ set, and as a result, only a very small number of those

samples in the Θ set become support vectors. The eSVM hence significantly reduces

the number of support vectors and improves the computational efficiency without
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sacrificing the generalization performance. The optimization of the eSVM is imple-

mented using a modified Sequential Minimal Optimization (SMO) algorithm to solve

the large Quadratic Programming (QP) problem. Experiments on several diverse

data sets show that the eSVM significantly improves the computational efficiency

upon the conventional SVM while achieving comparable generalization performance

to or higher performance than the SVM. Furthermore, experiments on the FRGC and

the FERET database show that the eSVM based eye detection method can achieve

real-time eye detection speed and better eye detection performance than some recent

eye detection methods.

Chapter 6 summaries the research achievements and contributions of this dis-

sertation and depicts the future research directions.



CHAPTER 2

VARIOUS IMAGE REPRESENTATIONS FOR EYE DETECTION

Since various image representation methods are introduced into computer vision,

it has been shown that these image representations can derive better recognition

performance than the basic gray-scale image representation. This chapter briefly

reviews five popular image representations: the gray-scale image representation, the

color image representation [51, 48, 53, 52], the 2D Haar wavelet image representation

[85], the Histograms of Oriented Gradients (HOG) image representation [23], and

the Local Binary Patterns (LBP) image representation [64, 65]. These five image

representations are then applied in the following chapters to derive five types of

discriminatory features, and comparative assessments are presented to evaluate the

performance of these discriminatory features on the problem of eye detection.

2.1 Gray-scale and Color Image Representations

Gray-scale image is a common image representation method. Each pixel of the image

carries an intensity value varying from black at the weakest intensity to white at the

strongest. A gray-scale vector may be formed by placing all the intensity values in a

column to represent the image for pattern classification.

An alternative to the gray-scale image representation is the color image represen-

tation. Some widely used color image representations include the YCbCr color image

representation, the YIQ color image representation, the HSV color image representa-

tion, and the I1I2I3 color image representation [79]. A number of novel hybrid color

image representations have been proposed recently. Since this dissertation does not

focus on exploring and comparing different color image representations, only YCbCr

color image representation is discussed in this dissertation, which has been shown

7
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Figure 2.1 The RGB image and the gray-scale image in the first row. The red,
green, and blue components of the RGB color image representation in the middle
row. The Y, Cb, and Cr components of the YCbCr color image representation in the
bottom row.

effective for eye detection [19]. The YCbCr color image representation contains three

color components: luminance (Y), chrominance blue (Cb), and chrominance red (Cr).

The YCbCr color image representation is defined as follows:













Y

Cb

Cr













=













16

128

128













+













65.4810 128.5530 24.9660

−37.7745 −74.1592 111.9337

111.9581 −93.7509 −18.2072

























R

G

B













(2.1)

Figure 2.1 shows an example of the RGB image, the gray-scale image, the red,

green, and blue components of the RGB color image representation, and the Y, Cb,

and Cr components of the YCbCr color image representation.
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2.2 Haar Wavelet Image Representation

Haar wavelet image representation has been widely used in objection detection [85].

The 2D Haar wavelet transform is defined as the projection of an image onto the

2D Haar basis functions [11]. The attractive characteristics of the 2D Haar basis

functions enhance local contrast and facilitate feature extraction in many target

detection problems, such as eye detection, where dark pupil is in the center of colored

iris that is surrounded by white sclera. The 2D Haar basis functions can be generated

from the one dimensional Haar scaling and wavelet functions.

The Haar scaling function φ(x) may be defined as follows [11], [71]:

φ(x) =











1 0 ≤ x < 1

0 otherwise
(2.2)

A family of functions can be generated from the basic scaling function by scaling and

translation [11], [71]:

φi,j(x) = 2i/2φ(2ix− j) (2.3)

As a result, the scaling functions φi,j(x) can span the vector spaces V i, which are

nested: V 0 ⊂ V 1 ⊂ V 2 ⊂ · · · [59].

The Haar wavelet function ψ(x) may be defined as follows [11], [71]:

ψ(x) =























1 0 ≤ x < 1/2

−1 1/2 ≤ x < 1

0 otherwise

(2.4)

The Haar wavelets are generated from the mother wavelet by scaling and translation

[11], [71]:

ψi,j(x) = 2i/2ψ(2ix− j) (2.5)
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Figure 2.2 The 64 2D Haar basis functions for V 3. White, black, and gray represent
1, −1, and 0, respectively, and for simplicity the basis functions are not scaled.

The Haar wavelets ψi,j(x) span the vector space W i, which is the orthogonal comple-

ment of V i in V i+1: V i+1 = V i ⊕W i [11], [71].

The 2D Haar basis functions are the tensor product of the one dimensional

scaling and wavelet functions [8]. For example, for V 3, where V 3 = V 0⊕W 0 ⊕W 1 ⊕

W 2, the 2D Haar basis consists of 64 basis functions. Figure 2.2 displays the 64 2D

Haar basis functions for V 3, where white, black, and gray represent 1, −1, and 0,

respectively. Note that for simplicity the basis functions in Figure 2.2 are not scaled.

Figure 2.2 reveals that the 2D Haar basis functions include a set of scaled and shifted

box type functions that encode the differences in average intensities among the regions

in different scales. Specifically, the 2D Haar basis functions contain mainly three types

of representations in the two dimensional space: (i) two horizontal neighboring regions
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Figure 2.3 (a) the gray-scale face image; (b) the gradient norm; (c) cell splitting; (d)
the gradient orientation of the cell marked by the red square in (c); (e) the histogram
(K = 12) of (d).

for computing the difference between the sum of the pixels within each of them, (ii)

two vertical neighboring regions for computing the difference between the sum of

the pixels within each of them, and (iii) four neighboring regions for computing the

difference between the diagonal pairs of the regions. Note that the first basis function

is for computing the average of the whole image.

One advantage of the 2D Haar wavelet image representation is that the pro-

jection of an image onto the 2D Haar basis functions, which really is inner products

of an image vector with the Haar basis functions, can be efficiently computed by

just several integer additions and subtractions instead of the time-consuming floating

point multiplications [85].
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Algorithm 1 Overview of the HOG image representation method.

Step1: Compute the horizontal and vertical gradient of the input image by

convolving it with a derivative mask.

Step2: Compute both norm and orientation of the gradient. Let Gh and Gv denote

the horizontal and vertical gradient, respectively. The norm NG and orientation OG

at the point (x, y) are computed as follows:

NG(x, y) =
√

Gh(x, y)2 +Gv(x, y)2 (see Figure 2.3(b)),

OG(x, y) = arctanGh(x,y)
Gv(x,y)

(see Figure 2.3(d)).

Step3: Split the image into cells (see Figure 2.3(c)). Compute the histogram for

each cell (see Figure 2.3(e)). Suppose the histogram is divided into K bins based on

the orientation, the value of the i-th bin Vi for cell C is computed as follow:

Vi =
∑

(x,y)∈C

{NG(x, y), OG(x, y) ∈ Bini}.

Step4: Normalize all histograms within a block of cells.

Step5: Concatenate all normalized histograms to form the HOG feature vector.

2.3 Histograms of Oriented Gradients

The Histograms of Oriented Gradients (HOG) image representation, which is inher-

ited from the Scale Invariant Feature Transform (SIFT) [58], is originally applied

to human detection [23]. The basis idea of HOG rests on the observation that

the local object appearance and shape can often be characterized rather well by

the distribution of local intensity gradients or edge directions. The HOG image

representation is derived based on a series of well-normalized local histograms of image

gradient orientations in a dense grid [23]. In particular, the image is firstly divided

into a number of small cells. For each cell, a local histogram of gradient directions or

edge orientations is accumulated over the pixels of the cell. All histograms within a

block of cells are then normalized to reduce the effect of the illumination variation.
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The blocks can be overlapped with each other for performance improvement. The

final HOG image representation is formed by concatenating all normalized histograms

into a single vector. Algrithm 1 shows the details of the HOG method.

2.4 Local Binary Patterns

In recent years, Local Binary Patterns (LBP) has been applied to many pattern

recognition problems, such as face detection and recognition, scene and image texture

classification [64, 65]. The gray-scale invariant property of the LBP image represen-

tation makes it a powerful tool for text description. The basic LBP labels the pixels

of a gray-scale image by thresholding the 3 × 3 neighborhood of each pixel with the

center value and considering the result as an 8-bit-code binary number. Specifically,

given the central pixel (xc, yc) and its surrounding pixels (xs, ys), s = 0, 1, · · · , 7, the

labeled image can be defined as follows:

LBP (xc, yc) =
7

∑

s=0

2sf(I(xc, yc)− I(xs, ys)) (2.6)

where I(·) denotes the intensity value and f(·) is defined as follows:

f(u) =















1, when u ≥ 0

0, otherwise

(2.7)

Figure 2.4 shows some examples of the gray-scale images and their corresponding

LBP images. The LBP description usually is the histogram of these LBP images.

Two extensions of the basic LBP image representation are further developed

[2], [1]. The first extension allows LBP to define on the neighborhood of any size by

using circular neighborhood and bilinear interpolation of the pixel values. The second

extension defines a concept of uniform patterns. An LBP operator, when viewed as a
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Figure 2.4 Examples of the gray-scale images in the top row and their corresponding
LBP image representations in the bottom row.

circular bit string, is considered uniform if there are at most one transmission from 0

to 1 and one from 1 to 0. Based on these two extensions, LBP is commonly described

as: LBP u2
P,R, where u2 means using only uniform patterns and (P,R) denotes P

sampling points on a circle of radius R.

In order to enhance the performance of the LBP image representation, one

usually first divides an image into a number of regions and applies the LBP operator

to each region. The regions can have different sizes and overlap with each other. The

enhanced LBP image representation is then derived by concatenating the histograms

from all the regions.



CHAPTER 3

DISCRIMINANT COMPONENT ANALYSIS

One drawback of image representations is that they usually reside in a high dimen-

sional space. However, low dimensionality is especially important for learning, as

the number of training samples required for attaining a given level of performance

grows exponentially with the dimensionality of the vector space. The Principal

Component Analysis (PCA) [30] is an optimal feature extraction and dimensional

reduction method for signal or image representation in the sense of mean square error.

However, it does not extract the optimal discriminatory features for classification [49].

In contrast to the case of pattern classification, where one need to decide between

a relatively small number of classes, the detection problem requires to differentiate

between the object class and the rest of the world. As a result, the extracted features

for object detection must have discriminating power to handle the cluttered scenes

that the object is presented within.

This chapter proposes a Discriminant Component Analysis (DCA) method,

which improves upon the PCA method, to extract discriminatory features for eye

detection. The DCA method starts with a PCA procedure followed by a whitening

transformation. A discriminant analysis is then performed on the whitened PCA

space. A set of DCA basis vectors, based on the novel definition of the cluster-measure

vector and the separation-measure vector, as well as a new criterion vector, is defined.

The DCA features are then derived in the subspace spanned by these DCA basis

vectors. Experiments on the Face Recognition Grand Challenge (FRGC) database

show that the DCA features significantly enhance the discriminating power of various

image representations and hence improve the eye detection performance.

15
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3.1 Principal Component Analysis

The PCA [30] is an optimal feature extraction and dimensional reduction method

for signal or image representation in the sense of mean square error. Specifically, let

X ∈ R
N be an image representation pattern vector in an N dimensional space, and

S ∈ R
N×N be the covariance matrix of X . The covariance matrix S can be defined

as follows:

S = ε{[X − ε(X )][X − ε(X )]t} (3.1)

where ε(·) is the expectation operator. The covariance matrix can be factorized into

the following form according to [30]:

S = ΦΛΦ (3.2)

where Φ = [φ1, φ2, · · · , φN ] is an orthogonal eigenvector matrix and Λ = diag{λ1, λ2, · · · , λN}

is a diagonal eigenvalue matrix with diagonal elements in decreasing order: λ1 ≥ λ2 ≥

· · · ≥ λN . The PCA features Y are then extracted:

Y = P tX (3.3)

where P = [φ1, φ2, · · · , φm], m < N , and P ∈ R
N×m.

The PCA method takes the mean-square error as its criterion to extract features.

That is, the PCA is to search an optimal projection matrix (i.e., P ) which generates a

set of PCA features with minimum mean-square error. The mean-square error, even

though, can preserve the optimal representation of the original features, it can not

preserve any information of the class separation. Figure 3.1 gives an example, which

shows two distributions with two variables X = (x1, x2) from two independent classes.

These two variables are highly correlated with each other as shown in Figure 3.1. In

terms of PCA, the principle component φ1 with larger eigenvalue produces a smaller
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Figure 3.1 An example of PCA based feature extraction for the two-fold classi-
fication. The distributions of both classes follow an ellipse shape. The yellow area
represents one class while the blue area represents another. The gray area represents
the overlap of these two classes.

mean-square error than the principal component φ2. As a result, the selection of y1

is a better vector than y2 to represent the vectors of these distributions. However, as

shown in Figure 3.1, if the two distributions are projected onto φ1, the two classes are

heavily overlapped (the gray area), which indicates that they are hard to be separated.

In contrast, if they are projected on to φ2, the two classes are well separated with little

overlap. Therefore, for classification purpose, y2 is a better feature than y1. Above

observation reveals that PCA may not be able to extract the optimal discriminating

features for classification.

3.2 Discriminant Component Analysis

This section presents a Discriminant Component Analysis (DCA) method for two-

class problems, which improves upon the PCA method, to extract discriminatory

features for classification. The DCA method starts with a PCA procedure followed

by a whitening transformation. A discriminant analysis is then performed on the

whitened PCA space. A set of DCA basis vectors, based on the novel definition

of the cluster-measure vector and the separation-measure vector, as well as a new
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criterion vector, is defined through this analysis. The DCA features are then derived

in the subspace spanned by these DCA basis vectors.

In particular, the DCA method first applies a whitening transformation to

sphere the covariance matrix of the PCA features Y . The whitening transformation

matrix is defined as follows:

W = P∆−1/2 (3.4)

where ∆ = diag(λ1, λ2, · · · , λm), W = [W1,W2, · · · ,Wm], and W ∈ R
N×m. The

whitening transformation not only eliminates the correlation between variables but

also normalizes the deviation of each variable.

The DCA method next defines two measure vectors, the cluster-measure vector

and the separation-measure vector, as well as a criterion vector, in order to select

the most discriminatory projection vectors from W defined in Equation 3.4. These

selected vectors then form the DCA subspace, in which the DCA features reside.

Towards that end, the cluster-measure vector, α ∈ R
m, and the separation-measure

vector, β ∈ R
m, are defined as follows:

α = P1

n1
∑

i=1

s(W tx
(1)
i −W tM1) + P2

n2
∑

i=1

s(W tx
(2)
i −W tM2) (3.5)

β = P1s(W
tM1 −W tM) + P2s(W

tM2 −W tM) (3.6)

where P1 and P2 are the prior probabilities, n1 and n2 are the number of samples, and

x
(1)
i and x

(2)
i are the pattern vectors of the first and the second classes, respectively.

M1, M2, and M are the mean vectors of the two classes, and the grand mean,

respectively. The s(·) function defines the absolute value of the elements of the input

vector. The significance of these new measure vectors is that the cluster-measure
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vector, α ∈ R
m, measures the clustering capability of the projection vectors in W ,

whereas the separation-measure vector, β ∈ R
m, measures the separating capability

of the vectors in W .

In order to choose the most discriminatory projection vectors, a new criterion

vector γ ∈ R
m is defined as follows:

γ = β./α (3.7)

where ./ is element-wise division. The value of the elements in γ indicates the

discriminatory power of their corresponding projection vectors in W : the larger the

value is, the more discriminatory power the corresponding vector in W possesses.

The DCA method therefore chooses the top p projection vectors, Wi1,Wi2, · · · ,Wip,

in W corresponding to the p largest values in γ to form the DCA basis vectors T :

T = [Wi1,Wi2, · · · ,Wip] (3.8)

where T ∈ R
N×p and p < m. The DCA features thus reside in the feature space

spanned by these DCA basis vectors. The DCA features are defined as follows:

Z = T tX (3.9)

The DCA method therefore captures the most discriminatory features of the original

image representation pattern vectors in a low dimensional space.

3.3 Experiments

This section evaluates the effectiveness of the DCA method over the PCA method on

the problem of eye detection. Five types of DCA (PCA) features are derived from the

five types of image representations discussed in Chapter 2. Comparative assessments
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Figure 3.2 System architecture of the DCA-based eye detection method.

among these features are also presented in this section to evaluate their performance

on eye detection.

3.3.1 Overview of the DCA-based Eye Detection method

Figure 3.2 shows the architecture of the DCA-based eye detection method. First,

the Bayesian Discriminating Features(BDF) method [47] is applied to detect a face

from an image and normalizes the detected face to a predefined size. Second, some

geometric constraints are applied to extract an eye strip from the upper portion

of the detected face. Illumination variations are then attenuated by means of an

illumination normalization procedure that consists of Gamma correction, difference

of Gaussian filtering, and contrast equalization as applied in [55] and [54]. Third, the

image representations are derived from the eye strip image and then the DCA method

is applied to extract the DCA features. Finally, the nearest neighbor classifier with

different similarity measures are applied for classification to detect eyes. Three kinds

of similarity measures are used to fully evaluate the performance of the DCA features.

They are L1 similarity measure δL1 , L2 similarity measure δL2, and cosine similarity

measure δcos, which can be defined as follows:

δL1(X,Y) =
∑

i

|Xi −Yi| (3.10)
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Figure 3.3 Example eye strip images from the FRGC version 2 database with the
spatial resolution of 55 × 128.The top three rows show the colored image, whereas
the bottom three rows show the corresponding gray-scale image after illumination
normalization.

δL2(X,Y) = (X−Y)t(X−Y) (3.11)

δcos(X,Y) =
−XtY

||X|| ||Y||
(3.12)

where || · || denotes the norm operator. Usually there are multiple detections around

the pupil center. The average of these multiple detections is eventually chosen as the

eye location.

3.3.2 Database

The experiments run on 12,776 Face Recognition Grand Challenge (FRGC) images

from the FRGC version 2 database [56], [48]. Note that the FRGC images possess

challenge properties, such as large variations in illumination, in skin color (white,
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Figure 3.4 Example eye (the top row) and non-eye (the bottom row) training
images that are normalized to 20× 40. The images are preprocessed by illumination
normalization.

yellow, and black), in facial expression (eyes open, partially open, or closed), as well

as in scale and orientation. Additional challenges include eye occlusion caused by eye

glasses or long hair, and the red eye effect due to the photographic effect. All these

challenge factors increase the difficulty of accurate eye detection. Figure 3.3 shows

some example eye strip images from the FRGC database with the spatial resolution

of 55× 128.

The training data collected from various sources contains 3,000 pairs of eyes and

12,000 non-eye patches in the experiments. The size of the eye and non-eye training

images is normalized to 20 × 40. Figure 3.4 shows some example eye and non-eye

training images after illumination normalization.

3.3.3 Effectiveness Evaluation of the DCA Method

The DCA method, different from the PCA method that defines the basis vectors as

the eigenvectors corresponding to the largest eigenvalues, defines the basis vectors as

the whitened eigenvectors corresponding to the largest values in the criterion vector

γ in Equation 3.7. Given the 2D Haar wavelet image representation as the original

image representation pattern vector, Figure 3.5 shows an example of the different

selections of the basis vectors for the PCA method and the DCA method, respectively.

Note that the 2D Haar basis functions for V 5 are used in this experiment. As V 5 =

V 0 ⊕W 0 ⊕W 1 ⊕W 2 ⊕W 3 ⊕W 4, the length of the original 2D Haar pattern vector

is 1, 024.
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Figure 3.5 Different selection of the basis vectors for the PCA method and the
DCA method, respectively.

Figure 3.5 reveals that the basis vectors for the PCA method always correspond

to the lowest indexed eigenvectors as they correspond to the largest eigenvalues. The

basis vectors for the DCA method, on the other hand, do not depend on such a

natural order, as they are chosen based on the value of the elements in the criterion

vector γ.

As discussed in Section 3.2, the DCA features preserve better discriminating

capability than the PCA features. If only the most two significant basis vectors are
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Figure 3.6 The distribution of the eye and non-eye training images using two most
significant PCA features (a) and two most significant DCA features (b), respectively.

taken into consideration, the distribution of the eye and non-eye training images

can be visualized in the 2D space spanned by these two basis vectors so as to give an

intuitive view of the discriminatory power of the PCA features and the DCA features.

Figure 3.6(a) and Figure 3.6(b) show the distributions of the eye and non-eye training

images using the most tow significant PCA features and the most two significant DCA

features, respectively. Figure 3.6(a) reveals that the two classes (eye and non-eye) are
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Table 3.1 Parameter Settings and the Feature Size of the PCA and the DCA
Features

image feature size
comments

representation original PCA DCA

gray-scale 800 80 80 The intensity values of the gray-scale

image are used.

YCbCr color 2,400 120 120 The three color component images

Y, Cb, and Cr are used.

Haar 1,024 80 80 32 × 32 2D Haar wavelets at four

scales are used.

HOG 1,296 80 80 1-D centered derivative [−1, 0, 1] is

used to compute the gradients. The

size of each cell is 4 × 4 pixels

and the histogram is evenly divided

into 6 bins over 0◦ − 180◦. Each

block contains 3× 3 cells and blocks

are overlapped with each other by

two-thirds in a sliding fashion. L2

normalization is used for block nor-

malization scheme.

LBP 472 80 80 The detection window (or training

image) is evenly divided into four

non-overlapped regions. LBP u2
8,1 is

applied to each region.

highly overlapped with each other when the PCA method are used, whereas Figure

3.6(b) reveals that the two classes are only slightly overlapped with each other when

the DCA method are used. The distributions of the eye and non-eye training images
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in Figure 3.6(a) and Figure 3.6(b) thus indicate that the DCA method derives more

discriminatory features than the PCA method.

3.3.4 Comparative Assessment of the PCA and DCA Features

This subsection comparatively assesses the detection performance of the five types of

PCA and DCA features derived from the five image representations: the gray-scale

image representation, the YCbCr color image representation, the 2D Haar wavelet

image representation, the HOG image representation, and the LBP image represen-

tation. The detection performance is evaluated using the normalized eye detection

error [37], which is defined as the detection pixel error normalized by the interocular

distance. For fair comparison, the size of DCA features are set equal to that of PCA

features. The parameter settings and the size of the five types of PCA and DCA

features are shown in Table 3.1.

Figure 3.7 — Figure 3.11 show the eye detection performance of these five types

of PCA and DCA features, respectively. The top figures show the eye detection rate

versus the normalized eye detection error. The bottom figures show the distribution

of the eye detection pixel errors when the optimal similarity measure is applied to

the PCA and the DCA methods. Note that in the bottom figures the more eye

detections with small pixel errors, the more accurate the corresponding eye detection

method is. For example, the top figure in Figure 3.9 shows that DCA Haar features

derive better eye detection rate than that of the PCA Haar features regardless of the

similarity measures used; the bottom figure in Figure 3.7 shows that the PCA Haar

features derive the best eye detection results using the L1 similarity measure, whereas

the DCA Haar features derive the best eye detection results using the L2 similarity

measure. Furthermore, the bottom figure also shows that the DCA Haar features

generate more detections than the PCA Haar features with small pixel errors, which
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Figure 3.7 Eye detection performance of the PCA and the DCA gray-scale features,
respectively.

indicates that the DCA Haar features achieves better detection accuracy than the

PCA Haar features.

Specifically, Table 3.2 lists the average pixel errors and the eye detection rate for

these five types of the PCA features and the DCA features, respectively. The mean

and the standard deviation of the absolute errors in the X and the Y coordinates as
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Figure 3.8 Eye detection performance of the PCA and the DCA YCbCr color
features, respectively.

well as the mean of the errors in the Euclidean distance are listed in the table. Note

that the detection rate shown in Table 3.2 represents the percentage of the correct

detections within five pixels of the ground truth.

Figure 3.7 — Figure 3.11, and Table 3.2 reveal that the performance of the DCA

features is consistently better than that of the PCA features regardless of the image



29

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Error

E
ye

 D
et

ec
tio

n 
R

at
e

 

 

PCA+L1
PCA+L2
PCA+cosine
DCA+L1
DCA+L2
DCA+cosine

0 5 10 15 20 25 30 35
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

Pixel Error

N
um

be
r 

of
 D

et
ec

tio
ns

 

 
PCA+L1
DCA+L2

Figure 3.9 Eye detection performance of the PCA and the DCA Haar features,
respectively.

representations and similarity measures used. For the gray-scale features, the YCbCr

color features, the HOG features, and the LBP features, the DCA method just slightly

improves the eye detection performance, since the performance by the PCA method

already reaches a very high level. However, for the Haar features, the DCA method

significantly improves the eye performance upon the PCA method. Take the Haar
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Figure 3.10 Eye detection performance of the PCA and the DCA HOG features,
respectively.

features for an example. The DCA Haar features, as indicated in Table 3.2, improve

the detection rate of the PCA Haar features by 7.59% using the L1 measure, 28.08%

using the L2 measure, and 15.08% using the cosine measure, respectively. Regarding

the eye detection accuracy, the DCA Haar features reduce the average eye detection
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Figure 3.11 Eye detection performance of the PCA and the DCA LBP features,
respectively.

error of the PCA Haar features by 1.1 pixels using the L1 measure, 5.13 pixels using

the L2 measure, and 2.46 pixels using the cosine measure, respectively.

Figure 3.7, Figure 3.8, Figure 3.9, Figure 3.10, Figure 3.11, and Table 3.2 further

reveal that the DCA HOG features achieve the best eye detection performance,
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Table 3.2 Performance Comparison under Different Similarity Measures (ED
Stands for the Euclidean Distance and DR Stands for the Detection Rate)

Features Method mean(x) std(x) mean(y) std(y) mean(ED) DR

gray-scale

PCA+L1 3.22 4.89 2.64 5.89 4.87 84.08%

PCA+L2 2.47 2.69 2.94 6.17 4.58 85.00%

PCA+cosine 2.62 3.17 2.95 6.16 4.71 84.25%

DCA+L1 2.68 3.51 2.05 5.11 4.02 88.00%

DCA+L2 2.64 3.50 1.98 4.90 3.91 88.33%

DCA+cosine 2.50 2.74 2.58 5.86 4.30 86.67%

color

PCA+L1 2.56 3.05 1.44 3.51 3.42 89.33%

PCA+L2 2.26 2.31 2.11 5.03 3.68 90.08%

PCA+cosine 2.27 2.27 2.13 5.07 3.71 89.83%

DCA+L1 2.37 2.43 1.39 3.42 3.19 92.00%

DCA+L2 2.41 2.68 1.15 2.83 3.06 91.75%

DCA+cosine 2.24 2.24 1.65 4.20 3.29 92.25%

Haar

PCA+L1 3.09 3.77 2.83 5.56 4.94 80.33%

PCA+L2 3.57 4.50 6.71 8.81 8.65 63.17%

PCA+cosine 3.04 3.66 4.46 7.40 6.31 74.50%

DCA+L1 2.67 3.33 1.85 4.70 3.84 87.92%

DCA+L2 2.48 3.23 1.67 4.34 3.52 91.25%

DCA+cosine 2.71 3.90 1.92 4.74 3.85 89.58%

HOG

PCA+L1 2.68 3.34 1.99 4.90 3.91 89.58%

PCA+L2 2.58 3.29 1.93 4.81 3.79 90.08%

PCA+cosine 2.69 3.58 2.02 4.87 3.93 89.42%

DCA+L1 2.51 2.98 1.52 3.92 3.43 91.42%

DCA+L2 2.37 2.70 1.36 3.75 3.19 92.75%

DCA+cosine 2.45 2.88 1.41 3.88 3.29 92.25%

LBP

PCA+L1 4.51 5.29 3.75 5.59 6.83 69.08%

PCA+L2 3.87 4.68 3.06 4.58 5.58 79.58%

PCA+cosine 4.11 5.02 3.29 5.20 6.12 74.33%

DCA+L1 3.83 4.60 3.16 4.68 5.62 78.92%

DCA+L2 3.83 4.78 2.55 4.36 5.25 80.58%

DCA+cosine 4.06 5.03 2.53 4.32 5.43 79.50%

followed in order by the DCA YCbCr color features, the DCA Haar features, the

DCA gray-scale features, and the DCA LBP features.
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3.4 Conclusion

This chapter presents a Discriminant Component Analysis (DCA) method, which

improves upon the popular Principal Component Analysis (PCA) method, to extract

discriminatory features for eye detection. The DCA method starts with a PCA

followed by a whitening transformation. A discriminant analysis is then performed on

the whitened PCA space. A set of DCA basis vectors, based on the novel definition of

the cluster-measure vector and the separation-measure vector, as well as a new crite-

rion vector, is defined through this analysis. This chapter then apply the DCA method

to derive five types of the DCA features from five different image representations

introduced in Chapter 2. Experiments on the FRGC version 2 database show that

the DCA method is able to improve the discriminatory power of the PCA method and

hence improves the eye detection performance. Furthermore, the experimental results

also reveal that the DCA HOG features achieve the best eye detection performance,

followed in order by the DCA YCbCr color features, the DCA Haar features, the

DCA gray-scale features, and the DCA LBP features.



CHAPTER 4

CLUSTERING-BASED DISCRIMINANT ANALYSIS

Fisher linear discriminant (FLD) [30] [29] is a popular tool of discriminant analysis for

feature extraction and classification. Since it was introduced, a number of its variants

have been proposed and widely used in numerous fields of pattern recognition [49] [50]

[78] [7] [57] [80] [90] [17] [93] [89]. However, the FLD and most of its variants shares a

major disadvantage that they may not be able to extract adequate features in order

to achieve satisfactory performance, especially for two class problems. This is caused

by the property that the between-class scatter matrices Sb of the FLD and its variants

are generally not full rank. For any L class problem, the FLD can only derive at most

L− 1 valid features. Thus, for two-class problems, the FLD can only derive a single

valid feature, which is significantly inadequate for achieving satisfactory performance.

To address this problem, this chapter proposes three clustering-based discrim-

inant analysis (CDA) models. The first CDA model, CDA-1, divides each class into

a number of clusters by means of the k-means clustering technique. In this way, a

new within-cluster scatter matrix Sc
w and a new between-cluster scatter matrix Sc

b are

defined. The rank of the Sc
b increases as the number of clusters increases, and therefore

the CDA-1 can derive adequate features for achieving satisfactory performance. The

CDA-1 works well especially when inherent multi-models are presented in each class

and the k-means clustering technique can properly identify the clusters. Take the

task of eye detection as an example. It requires to differentiate between the eye class

and the non-eye class, i.e. “the rest of the world”. On one hand, the non-eye class

indeed involves multi-models to represent different objects and scenes in “the rest of

the world”; on the other hand, the eye class may contains multi-models as well, to

represent different kinds of eyes such as open eyes, closed eyes, eyes with glasses, etc.

34
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Motivated by the work of nonparametric discriminant analysis (NDA) in [31],

this chapter further proposes another two CDA models, CDA-2 and CDA-3. The

fundamental of the CDA-2 and CDA-3 is a clustering-based nonparametric form of

the between-cluster scatter matrices N -Sc
b . These between-cluster scatter matrices

N -Sc
b are full rank, and consequently both CDA-2 and CDA-3 can derive adequate

features for classification. Furthermore, the nonparametric nature of the between-

cluster scatter matrices inherently leads to the derived features that preserve the

structure important for classification. The difference between CDA-2 and CDA-3 is

that the former computes the between-cluster matrix N -Sc
b on a local basis whereas

the latter computes the between-cluster matrix N -Sc
b on a global basis.

This chapter then evaluates these three CDA models on the problem of eye

detection. Experiments on the Face Recognition Grand Challenge (FRGC) database

and on the BioID face database [37] show the feasibility of the proposed three CDA

models and the improved performance over some state-of-the-art eye detection meth-

ods.

4.1 Background

The principle of discriminant analysis is to find an optimal linear projection that is

effective for reducing the feature dimensionality and preserving the class separability.

Fisher linear discriminant (FLD) [30] [29] is a popular tool of discriminant analysis.

The FLD uses the within-class and between-class scatter matrix to formulate a criteria

of the class separability. The FLD projection is then defined to maximize the criteria.

Let X denote the feature vector and L denote the number of classes. Let

ωi, i = 1, 2, · · · , L and Ni, i = 1, 2, · · · , L denote the classes and the number of feature

vectors within each class, respectively. Let Mi, i = 1, 2, · · · , L and M0 be the means

of the classes and the grand mean. The within-class scatter matrix shows the scatter
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of feature vectors around their respective class mean vectors, which can be defined as

follow:

Sw =

L
∑

i=1

P (ωi)E{(X−Mi)(X−Mi)
t|ωi} (4.1)

where P (ωi) is a prior probability. The between-class scatter matrix shows the scatter

of the class mean vectors around the grand mean, which can be defined as follow:

Sb =

L
∑

i=1

P (ωi)(Mi −M0)(Mi −M0)
t (4.2)

The FLD projection W is then defined to maximize the criteria as follow:

J(W ) =
|W tSbW |

|W tSwW |
(4.3)

and, mathematically, this criteria is maximized when W consists of the leading

eigenvectors of S−1
w Sb. Usually, to avoid the singularity of Sw, the principal component

analysis (PCA) is applied before the FLD to reduce the high dimensional feature

vector into a low dimensional one.

A major disadvantage of the FLD is that it may not be able to extract adequate

features in order to achieve satisfactory performance, especially for two class problems.

This is caused by the property that the between-class scatter matrix Sb of the FLD

is generally not full rank. As indicated in Equation 4.2, the rank of Sb is at most

L−1 for any L class problem, and consequently the rank of S−1
w Sb is at most L−1 as

well. Therefore, there are at most L−1 valid eigenvectors of S−1
w Sb, which means the

FLD can only derive at most L − 1 valid features for any L class problem. For two

class problems, the FLD can only derive a single valid feature, which is significantly

inadequate for achieving satisfactory performance.
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Figure 4.1 The between-cluster matrices of CDA-1, -2, and -3, respectively. The
figure shows a three-class problem and each class is further divided into three clusters.
M0 represents the grand mean, whereasM

(p)
q , p, q = 1, 2, 3, represents the mean vector

of the qth cluster from class ωp. X
(2)
j , j = 1, 2, · · · , 6, represents six data samples

from class ω2. (a) The between-cluster scatter matrix of CDA-1 measures the scatter
of the mean vector from each cluster with respect to the grand mean. (b) The
between-cluster scatter matrix of CDA-2 measures the scatter of each feature vector
from one class with respect to the mean vector of its nearest cluster from otherwise
classes. (c) The between-cluster scatter matrix of CDA-3 measures each feature vector
from one class with respect to mean vectors of all the clusters from otherwise classes.

Fukunaga [31] initiated the study on nonparametric discriminant analysis (NDA)

to address this problem. The NDA maintains the within-class scatter matrix Sw the

same with that of the FLD, but defines a nonparametric form of the between-class

scatter matrix Sb using the nearest neighbor techniques. Since the NDA was intro-

duced, a number of its variants have been proposed [44] [9] [45] [72] [32] [73]. All

of these variants consistently follow the idea of the nearest neighbors to define their

NDAs.

4.2 Clustering-based Discriminant Analysis

This section presents three clustering-based discriminant analysis (CDA) models,

CDA-1, CDA-2, and CDA-3, to address the problem of inadequate features derived

from the FLD.
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4.2.1 CDA-1 Model

The CDA-1 model divides each class into a number of clusters by means of the k-means

clustering technique. In this way, a new within-cluster scatter matrix Sc
w and a new

between-cluster scatter matrix Sc
b are defined. The rank of the Sc

b increases as the

number of clusters increases, and therefore the CDA-1 can derive sufficient valid

features for achieving satisfactory performance.

Formally, the CDA-1 first uses the k-means clustering technique to divide the

feature vectors from each class into k clusters so as to minimize the within-cluster

sum of squares. The algorithm of the k-means clustering applying to the feature

vectors within each class is described in Algrithm 2 in detail.

After the mean vector of each cluster from every class is derived, the new

formulation of the within-class scatter matrix SC
w is defined as follow:

Sc
w =

L
∑

p=1

{P (ωp)

k
∑

j=1

|C
(p)
j |

Np
E{(X−M

(p)
j )(X−M

(p)
j )t|ωp}} (4.4)

and the new formulation of the between-class scatter matrix SC
b (Figure 4.1(a)) is

defined as follow:

Sc
b =

L
∑

p=1

{P (ωp)

k
∑

j=1

|C
(p)
j |

Np
(M

(p)
j −M0)(M

(p)
j −M0)

t} (4.5)

where |C
(p)
j | denotes the number of feature vectors in the jth cluster of the class ωp,

and M
(p)
j denotes the mean vector of the jth cluster of the class ωp. Note that as k

decreased to one, M
(p)
j converges to Mi. Thus, Equation 4.4 and Equation 4.5 is a

generalization of Equation 4.1 and Equation 4.2, respectively.

There are two advantages of the CDA-1 model. First, the rank of the Sc
b is

increased compared with Sb. Recall that the rank of the Sb of the FLD is upper bound



39

Algorithm 2 The k-means clustering algorithm applying to the feature vectors within
each class.

Input: the feature vectors X
(i)
j , which denotes the jth feature vector in class ωi,

where i = 1, 2, · · · , L, and j = 1, 2, · · · , Ni.

Output: the mean vectors M
(i)
p , which denotes the mean vector of pth cluster in

class ωi, where i = 1, 2, · · · , L, and p = 1, 2, · · · , k.

FOR i = 1, 2, · · · , L

• t = 0.

• Let C
(i)
p,t , p = 1, 2, · · · , k, denotes the set of feature vectors from the pth cluster

in class ωi in the tth iteration. First, randomly assign each feature X
(i)
j to a

set C
(i)
p,t .

• Initialization: M
(i)
p,t =

1

|C
(i)
p,t|

∑

X
(i)
j ∈C

(i)
p,t

X
(i)
j .

• REPEAT

– Reassignment Step: reassign each feature vector to the cluster with the
closest mean as follow:

C
(i)
p,t+1 = {X

(i)
j : ||X

(i)
j −M

(i)
p,t || ≤

||X
(i)
j −M

(i)
p∗,t|| for all p

∗ = 1, 2, · · · , k.}

– Update Step: calculate the new means to be the centroids of the feature
vectors in the clusters as follow:

M
(i)
p,t+1 =

1

|C
(i)
p,t+1|

∑

X
(i)
j ∈C

(i)
p,t+1

X
(i)
j .

– t = t+ 1

• UNTIL the algorithm converges when M
(i)
p,t is unchanged.

• M
(i)
p =M

(i)
p,t .

END FOR
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by L − 1 for any L class problem and thus at most L − 1 features can be derived.

In comparison, the rank of the Sc
b is upper bound by k × L − 1. The Sc

b can even

be full rank when enough large k is set. Therefore, more features can be derived for

classification and the performance will be improved. Second, the clustering algorithm

can find inherent multi-models in each class and further improve the performance.

Take the task of eye detection as an example. It requires to differentiate between

the eye class and the non-eye class, i.e. “the rest of the world”. On one hand, the

non-eye class indeed involves multi-models to represent different objects and scenes

in “the rest of the world”; on the other hand, the eye class may contains multi-models

as well, to represent different kinds of eyes such as open eyes, closed eyes, eyes with

glasses, etc. The CDA-1 features are able to preserve the class separability among

these multi-models and thus achieve better performance as indicated in Section 4.3.

After computing Sc
w and Sc

b , the CDA-1 project matrix is the leading eigen-

vectors of (Sc
w)

−1Sc
b . To avoid the singularity problem, PCA is first applied before

the CDA-1. Furthermore, inspired by the enhanced Fisher linear discriminant model

(EFM) in [49], the CDA-1 procedure is decomposed intoa simultaneous diagonal-

ization of the two within-cluster and between-cluster scatter matrices to improve

the generalization performance of the CDA-1. The simultaneous diagonalization is

stepwise equivalent to two operations as pointed out by Fukunaga [30]: whitening

the within-cluster scatter matrix and applying PCA to the between-cluster scatter

matrix using the transformed data. The CDA-1 should preserve a proper balance,

during the stepwise process, between the need that the selected eigenvalues account

for most of the spectral energy of the raw data (for representational adequacy), and

the requirement that the eigenvalues of the within-class scatter matrix (in the reduced

PCA space) are not too small (for better generalization performance) [49].

Finally, the detailed algorithm of the CDA-1 is given as follows:
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1. Compute the PCA features as: P = ΦtX, where Φ is the leading eigenvectors

of the mixture scatter matrix of X.

2. In the feature space P, follow the Algrithm 2 to divide each classes into k

clusters and compute the mean vector of each cluster.

3. In the feature space P, compute the Sc
w as indicated by Equation 4.4.

4. Whiten the Sc
w as follows:

Sc
wΨ = ΨΛ and ΨtΨ = I

Λ−1/2ΨtSc
wΨΛ−1/2 = I

(4.6)

where Ψ and Λ are the eigenvectors and the diagonal eigenvalue matrices of SC
w ,

respectively. Then compute the whitening transformed features Y with respect

to Sc
w as follow:

Y = Λ−1/2ΨtP (4.7)

5. In the feature space Y , compute the Sc
b as indicated by Equation 4.5.

6. Diagonalize the Sc
b as follows:

Sc
bΘ = ΘΓ and ΘtΘ = I (4.8)

where Θ and Γ are the eigenvectors and the diagonal eigenvalue matrices of Sc
b ,

respectively. Then the CDA-1 features Z are now defined as follows:

Z = ΘtY (4.9)

Finally, the overall transformation matrix of the CDA-1 can be defined as:

T = ΦΨΛ−1/2Θ (4.10)
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4.2.2 CDA-2 Model

The CDA-1 model significantly increases the number of the derived features, but the

number is still upper bound by k×L− 1. Even though the Sc
b can be full rank when

enough large k is set, it takes the risk of impairing the inherent multi-models in each

class. Motivated by the work of nonparametric discriminant analysis (NDA) in [31],

this subsection further proposes the CDA-2 model. The fundamental of the CDA-2

model is a clustering-based nonparametric form of the between-cluster scatter matrix

N -Sc
b . The N -Sc

b is full rank, and consequently CDA-2 can derive adequate features

for classification. Furthermore, the nonparametric nature of the between class scatter

matrix inherently leads to the derived features that preserve the structure important

for classification.

Specifically, the between-class scatter matrix N -Sc
b of the CDA-2 is given on

a local basis, which measures the scatter of each feature vector from one class with

respect to the mean vector of its nearest cluster from otherwise classes (Figure 4.1(b)).

The N -Sc
b is defined as:

N -Sc
b =

∑L
i=1

P (ωi)
Ni

∑L
p=1
p 6=i

∑Ni

j=1w
(p)(X

(i)
j )(X

(i)
j −M (p)(X

(i)
j ))(X

(i)
j −M (p)(X

(i)
j ))t

(4.11)

where M (p)(X
(i)
j ) denotes the mean vector of the nearest cluster from the class ωp to

the feature vector X
(i)
j , and w(p)(X

(i)
j ) is a weighting function, which can be defined

as:

w(p)(X
(i)
j ) =

min{dα(X
(i)
j ,M

(i)(X
(i)
j )), dα(X

(i)
j ,M

(p)(X
(i)
j ))}

dα(X
(i)
j ,M

(i)(X
(i)
j )) + dα(X

(i)
j ,M

(p)(X
(i)
j ))

(4.12)

where α is a control parameter between zero and infinity, and d(X
(i)
j ,M

(i)(X
(i)
j )) and

d(X
(i)
j ,M

(p)(X
(i)
j )) denote the Euclidean distance from a feature vector X

(i)
j to the

mean vector of its nearest cluster from itself class ωi and from the otherwise class
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ωp, respectively. The value of the weighting function is close to 0.5 when the feature

vector is near the class boundary and drops off to 0.0 as feature vector moves away

from the boundary. This property allows the feature vectors near the class boundary,

which preserve the classification structure, to contribute more to the between-class

scatter matrix N -Sc
b . Note that α is set to 2 in the experiments for the CDA-2 model.

From Equation 4.11, following findings are observed. First, due to the appli-

cation of the clustering technique, the CDA-2, as CDA-1 does, is capable of finding

the inherent multi-models in each class and improve the performance for those case

where the multi-models are indeed present.

Second, the CDA-2 can derive more features than the CDA-1. The CDA-2

makes use of all the feature vectors, in stead of only the cluster centroids, in the

definition of the N -Sc
b . Thus, the N -Sc

b is full rank. More features can be derived

for the classification, and the performance may be improved as more information is

included.

Third, the CDA-2 is capable of effectively preserving the classification structure.

Either the FLD or the CDA-1 defines the between-class(cluster) scatter matrix only

based on the mean vectors of the classes(clusters). It fails to involve the feature vectors

on the class boundary which preserve the classification structure. In comparison, the

CDA-2 takes account of all the feature vectors, including those on the class boundary,

to define the between-cluster scatter matrix. More importantly, considering that the

feature vectors far from the class boundary may distort the classification structure,

the CDA-2 introduces a weighting function to emphasize the effect of those feature

vectors near to the class boundary but to de-emphasize the effect of those far from the

class boundary. As indicated in Figure 4.1(b), the data samples X
(2)
1 ,X

(2)
2 , · · · ,X

(2)
5

fall on the class boundary and are given a bigger weight to emphasize their effect,

whereas the data sample X
(2)
6 is far away from the boundary and is given a smaller
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weight to de-emphasize its effect. In this way, the CDA-2 effectively preserves the

classification structure.

Please note that the CDA-2 has two major difference from the nearest neighbor

based nonparametric discriminant analysis (NDA) in [31]. First, the NDA only works

on the two class problems, whereas the CDA-2 works on multi-class (equal to or bigger

than two) problems. Second, the between-class scatter matrix of the NDA measures

the scatter of feature vectors with respect to the mean vectors of their k nearest

neighbors. This kind of measurement takes the risk of suboptimal performance, since

only the local scatters with a very small amount of feature vectors are utilized and

much information is lost in the learning procedure. By contrast, the CDA-2 takes

advantage of the inherent multi-models in each class. The between-cluster scatter

matrix of the CDA-2 measures the scatter of feature vectors with respect to the mean

vectors of their nearest clusters from otherwise classes. The CDA-2 serves as a better

representation of the scatter of the feature vectors with respect to the otherwise

clusters(classes).

Finally, the detailed algorithm of the CDA-2 is given as follows:

1. Compute the PCA features as: P = ΦtX, where Φ is the leading eigenvectors

of the mixture scatter matrix of X.

2. In the feature space P, follow the Algrithm 2 to divide each classes into k

clusters and compute the mean vector M of each cluster.

3. In the feature space P, compute the Sc
w as indicated by Equation 4.4.

4. Whiten the PCA features and the mean vector of each cluster with respect to

Sc
w as: Y = Λ−1/2ΨtP andM ′ = Λ−1/2ΨtM , where Λ and Ψ are the eigenvalues

and eigenvectors of Sc
w.
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5. In the feature space Y , find the nearest cluster to each feature vector from the

otherwise classes. Compute the w(p)(X
(i)
j ) as indicated by Equation 4.12.

6. In the feature space Y , compute N -Sc
b as indicated by Equation 4.11.

7. The CDA-2 features are then defined as: Z = ΘtY, where Θ are the eigenvectors

of the N -Sc
b .

4.2.3 CDA-3 Model

The between-cluster scatter matrix N -Sc
b of the CDA-2 is defined on a local basis,

which measures the scatter of each feature vector from one class with respect to

the mean vector of its nearest cluster from otherwise classes. One limitation of this

definition is that the N -Sc
b of the CDA-2 just takes account of the nearest cluster

to each feature vector but ignores the contributions of other clusters. However, the

fact is that the different clusters may contribute differently when one measures the

scatter of each feature vector. Therefore, if all clusters are taken into account when

one measures the scatter of each feature vector, the between-cluster scatter matrix

may preserve the classification structure from different points of view, and hence may

improve the classification performance.

Inspired by this idea, the CDA-3 model is proposed based on a new formulation

of the between-cluster scatter matrix N -Sc
b . The N -Sc

b of the CDA-3 is defined on a

global basis, which measures the scatter of each feature vector from one class with

respect to the mean vectors of all the clusters from otherwise classes (Figure 4.1(c)).

The N -Sc
b of the CDA-3 is defined as follows:

N -Sc
b =

L
∑

i=1

P (ωi)
Ni

L
∑

p=1
p 6=i

k
∑

q=1

Ni
∑

j=1

w
(p)
q (X

(i)
j )(X

(i)
j −M

(p)
q )(X

(i)
j −M

(p)
q )t (4.13)



46

whereM
(p)
q denotes the mean vector of the qth cluster from the class ωp, and w

(p)
q (X

(i)
j )

is a weighting function, which can be defined as:

w(p)
q (X

(i)
j ) =

min{dα(X
(i)
j ,M

(i)
q ), dα(X

(i)
j ,M

(p)
q )}

dα(X
(i)
j ,M

(i)
q ) + dα(X

(i)
j ,M

(p)
q )

(4.14)

where d(X
(i)
j ,M

(i)
q ) and d(X

(i)
j ,M

(p)
q ) denote the Euclidean distance from a feature

vector X
(i)
j to the mean vector of the qth cluster from itself class ωi and from the

otherwise class ωp, respectively. Note that α is set to 2 in the experiments for the

CDA-3 model.

The CDA-3 possesses all the advantages of the CDA-2. It is capable of finding

the inherent multi-models in each class. The between-cluster scatter matrix is full

rank and thus can derive sufficient features for satisfactory performance. And it can

effectively preserve the classification structure due to the introduction of the weighting

function.

The algorithm to derive the CDA-3 features is similar with that of the CDA-2.

It is not explicitly presented here.

4.3 Experiments

The CDA method is then applied to the problem of eye detection and the effectiveness

of the three CDA models is fully evaluated in this section. Figure 4.2 shows the

architecture of the CDA-based eye detection method, which is similar with the DCA-

based eye detection method introduced in Section 3.3.1. This method integrates

the 2D Haar wavelets for image representation, the CDA for discriminatory feature

extraction, and the nearest neighbor rule with similarity measures for classification.

Note that considering both the accuracy and efficiency performance, only 2D Haar

wavelet image representation is used in this method. The training and testing data

sets are the same as those introduced in Section 3.3.2.
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Figure 4.2 System architecture of the CDA-based eye detection method.

There are two key parameters involved in the CDA method: the size of extracted

features (m) and the number of clusters (k). This section first evaluates the effect

of these two parameters on the three CDA models. The evaluation of the best eye

detection performance with the optimal parameters comes after the parameter evalu-

ation. The comparison is made with the FLD and the NDA methods in order to show

the performance improvement of the CDA method. Please note that when tuning the

parameters only 600 FRGC images are used, but the final eye detection performance

with the optimal parameters are given based on the whole FRGC database.

4.3.1 Evaluation of the Size of Extracted Features

The size of the original 2D Haar wavelet patten vectors in the experiments is 1,024.

There are two points involving the size determination of the features in the process

of the CDA: the size of the intermediate PCA features (m1) and the size of the final

CDA features (m2). It is hard to exhaustively evaluate all the possible combinations

of m1 and m2. Considering the aspect of the efficiency, m1 is only evaluated in the

range of 50 and 300. For simplicity, the maximum size of the final CDA features

(m2) that can be derived as the size of the PCA features varies is always chosen.

Specifically, for CDA-1, m2 is set equal to 2× k− 1; for CDA-2 and CDA-3, m2 is set

equal to m1. Please note that the number of clusters (k) is temporarily set to m1/2



48

0 50 100 150 200 250 300
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

number of features

tr
ue

 p
os

iti
ve

 r
at

e

 

 

L1
L2
cosine

Figure 4.3 The detection performance of the CDA-1 as the size of features varies.
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Figure 4.4 The detection performance of the CDA-2 as the size of features varies.

when evaluating the effect of the size of features on CDA. The complete evaluation of

the effect of the number of clusters (k) on CDA will be given in the next subsection.
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Figure 4.5 The detection performance of the CDA-3 as the size of features varies.

Figure 4.3 – Figure 4.5 show the performance comparison of the CDA-1, CDA-2,

and CDA-3, respectively, as the m1 and m2 varies. Specifically, Figure 4.3 – Figure

4.5 show the true positive rate of the CDA-1, CDA-2, and CDA-3, respectively, at

the false accept rate of 0.1 for the detection normalized error e ≤ 0.07. Note that the

normalized error of 0.07 is a significantly strict criteria, which can be considered that

the detected eye center is inside the eye pupil.

Figure 4.3 – Figure 4.5 reveal that the detection performance is affected by the

size of the derived features. The CDA-1 reaches the best performance by using 170

features and L1 similarity measure, while both the CDA-2 and the CDA-3 reach the

best performance by using 180 features and cosine similarity measure.

4.3.2 Evaluation of the Number of Clusters

The number of clusters (k) is evaluated between a small value (k = 5) and the

half value of the size of PCA features (k = m1/2). There are two reasons to just

evaluate the number of clusters in above range: (i) the clusters inherently represent
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Figure 4.6 The detection performance of the CDA-1 as the number of clusters
varies.
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Figure 4.7 The detection performance of the CDA-2 as the number of clusters
varies.

the multi-models of each class, and the number of the multi-models of each class

should be neither too small nor too large; and (ii) for a two class problem, the
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Figure 4.8 The detection performance of the CDA-3 as the number of clusters
varies.

within-cluster matrix of CDA-1 is upper bound by m1 in terms of Equation 4.4,

whereas the between-cluster matrix is upper bound by the smaller value of m1 and

2 ∗ k − 1 in terms of Equation 4.5; both the within-cluster and the between-cluster

matrices of CDA-2 and CDA-3 are upper bound by m1 in terms of Equations 4.4,

4.11, and 4.13. Therefore, even if more clusters (k > m1/2) are built up, there are

still at most m1 features derived from the CDA, which means that only the first

significant m1/2 clusters of each class contribute to the process of the CDA.

Figure 4.6 - Figure 4.8 show the performance comparisons of the CDA-1, CDA-2,

and CDA-3, respectively, as the number of clusters (k) varies. For simplicity, the

effect of the clusters is only evaluated based on the size of features that gives the

best performance as discussed in the previous subsection. Specifically, the CDA-1

evaluates the effect of the clusters using 169 (m1 = 170, m2 = 169) features for L1

similarity measures and 119 (m1 = 120, m2 = 119) features for both L2 and cosine

similarity measures, respectively; the CDA-2 evaluates the effect of the clusters using

200 (m1 = 200, m2 = 200) features for L1 similarity measure and 180 (m1 = 180, m2 =



52

Table 4.1 Parameter Settings of the FLD-, NDA-, and CDA-based Eye Detection
Methods

Method #PCA

Features

#Discriminatory

Features

#Nearest

Neighbors

#Clusters Similarity

Measure

FLD 150 1 - - L1

NDA 150 150 5 - L2

CDA-1 170 169 - 85 L1

CDA-2 180 180 - 90 cosine

CDA-3 180 180 - 90 cosine

180) features for both L2 and cosine similarity measures, respectively; and the CDA-3

evaluates the effect of the clusters using 170 (m1 = 170, m2 = 170) features for L1

similarity measure and 180 (m1 = 180, m2 = 180) features for both L2 and cosine

similarity measures, respectively. In addition, note that Figure 4.6 - Figure 4.8, as

Figure 4.3 – Figure 4.5 do, show the true positive rate of the CDA-1, CDA-2, and

CDA-3, respectively, at the false accept rate of 0.1 for the detection normalized error

e ≤ 0.07, as the number of clusters (k) varies.

Figure 4.6 - Figure 4.8 reveal that the performance of all three CDA models is

enhanced as the number of clusters increases and approaches to m1/2. Specifically,

the CDA-1 reaches the best performance by using 85 clusters of each class and L1

similarity measure, while both the CDA-2 and the CDA-3 reach the best performance

by using 90 clusters of each class and cosine similarity measure.

4.3.3 Evaluation of the CDA-based Eye Detection Method

This subsection evaluates the eye detection performance of the CDA-based method

in comparison with the FLD- and NDA-based methods. Note that the experiments

are carried on the 12,776 FRGC images. For the best performance, the parameter

settings are shown in Table 4.1.
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Figure 4.9 The ROC curves of the FLD-, NDA-, and CDA-based eye detection
methods.

Table 4.2 Comparison of the True Positive Rate (TPR) of the FLD-, NDA-, and
CDA-based Eye Detection Methods at the False Positive Rate (FPR) of 0.1

Method TPR at FPR of

0.1

FLD 63.35%

NDA 71.27%

CDA-1 87.76%

CDA-2 91.35%

CDA-3 91.87%

Figure 4.9 shows the Receiver Operating Characteristic (ROC) curves of the

FLD-, NDA-, and CDA-based eye detection methods. Note that the ROC curves

are drawn for the detection normalized error e ≤ 0.07. Figure 4.9 reveals that

the CDA-based methods (CDA-1, CDA-2, and CDA-3) significantly improve the eye

detection performance in comparison with the FLD- and NDA-based methods. The
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Figure 4.10 The detection rate of the FLD-, NDA-, and CDA-based eye detection
methods over different normalized errors.

CDA-3 gives the best performance, followed in order by the CDA-2, the CDA-1, the

NDA, and the FLD. Table 4.2 shows the true positive rate (TPR) of these methods

at the false positive rate (FPR) of 0.1. It reveals that the CDA-3, which gives

the best performance, improves the TPR of the FLD by 28.52% and the NDA by

20.60%, respectively. Even the CDA-1, which gives the lowest TPR among the three

CDA models, improves the TPR of the FLD by 24.41% and the NDA by 16.49%,

respectively.

If the detected eye location is eventually chosen as the average of the multiple

detection around the pupil center (usually there are multiple detections around each

pupil center), Figure 4.10 show the detection rate over the different normalized

detection errors (e). In Figure 4.10, the horizontal axis represents the normalized

detection error, and the vertical axis represents the corresponding detection rate.

Figure 4.10 reveals that the CDA-based methods consistently outperform the FLD-

and the NDA-based methods in terms of the detection rate. The three CDA mod-
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Table 4.3 The detection Rate and Detection Accuracy of the FLD-, NDA-, and
CDA-based Methods. The Detection Rate is for the Normalized Error e ≤ 0.07. The
mean(·) and std(·) Represent the Mean and the Deviation of the Detection Pixel
Error with respect to the Direction Specified by the Parameter, Respectively (DR
Stands for the Detection Rate)

Method mean(x) std(x) mean(y) std(y) mean(
√

x2 + y2) DR

FLD 2.70 3.68 2.66 5.86 4.49 85.90%

NDA 2.47 3.24 1.32 3.44 3.24 91.89%

CDA-1 2.27 2.46 1.05 2.49 2.84 94.20%

CDA-2 2.30 2.62 0.97 2.19 2.80 94.27%

CDA-3 2.27 2.56 0.94 2.10 2.75 94.58%

els, CDA-1, CDA-2, and CDA-3, have comparable detection rates, and the CDA-3

performs slightly better than CDA-2 and subsequently the CDA-2 performs slightly

better than the CDA-1.

In order to further show the superiority of the CDA-based methods, Table

4.3 explicitly shows the detection rate (for the normalized error e ≤ 0.07) and the

detection accuracy (i.e., the average detection pixel errors in the Euclidean distance)

of these eye detection methods. For complete assessment, the detection accuracy on

both the horizontal (x) and the vertical (y) directions are shown as well in Table 4.3.

Table 4.3 show the improvement of the CDA-based methods on both the detection

rate and the detection accuracy over the nonCDA-based methods. If one focuses on

that more eyes are detected within a criteria (e.g., e ≤ 0.07), the CDA-3 gives the

best detection rate, which is 94.58%; if one focuses on the minimum average detection

pixel error, the CDA-3 still the best detection accuracy, which is 2.75.

4.3.4 Comparison with State-of-the-art Methods

In order to show the robustness of the proposed CDA-based eye detection method

and to compare it with the state-of-the-art eye detection methods, experiments on
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Table 4.4 Comparison of the Eye Detection Performance with State-of-the-Art
Methods (e Stands for the Normalized Error)

method database e ≤ 0.05 e ≤ 0.10 e ≤ 0.25

Jesorsky (2001) [37] BioID 40.00% 79.00% 91.80%

Hamouz (2004) [34] BioID 50.00% 66.00% 70.00%

Hamouz (2005) [35] BioID 59.00% 77.00% 93.00%

Cristinacce (2004) [22] BioID 56.00% 96.00% 98.00%

Asteriadis (2006) [5] BioID 74.00% 81.70% 97.40%

Bai (2006) [6] BioID 37.00% 64.00% 96.00%

Niu (2006) [63] BioID 78.00% 93.00% 95.00%

Campadelli (2006) [12] BioID 62.00% 85.20% 96.10%

Campadelli (2009) [13] BioID 80.70% 93.20% 95.30%

Valenti (2008) [81] BioID 84.10% 90.85% 98.49%

CDA-3 BioID 87.25% 94.87% 99.21%

CDA-3 FRGC 87.79% 95.81% 99.17%

the BioID face database [37] are also implemented. The BioID database consists of

1521 frontal face images of 23 subjects.

The methods that are compared with include those used by Jesorsky et al. [37],

Hamouz et al. [34], [35], Cristinacce et al. [22], Asteriadis et al. [5], Bai et al. [6],

Niu et al. [63], Campadelli et al. [12], [13], and Valenti et al. [81]. All above methods

reported the performance on the BioID database and applied the same normalized

error criterion to evaluate the performance.

Table 4.4 shows the performance comparison between the CDA-based method

and the other methods mentioned above for the normalized error of 0.05, 0.10, and

0.25, respectively. Note that only the CDA-3 model is used in this comparison,

which gives the slightly better detection performance than the CDA-1 and the CDA-

2 models. The results derived from the CDA-based method and the best results

reported by other methods are highlighted in bold text. Note that for the performance
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which is in-explicitly reported by the authors, the results are estimated from the

graphs in the literature.

Table 4.4 reveals that for the normalized error of 0.05 and 0.25, the proposed

CDA-based method outperforms all other state-of-the-art methods listed in Table 4.4.

For the normalized error of 0.10, the CDA-based method has comparable performance

to the best results. Table 5.8 also shows the detection performance of the CDA-based

method on the FRGC database. The performance on the BioID and FRGC database

is very close to each other, which indicates the robustness of the CDA-based method.

4.4 Conclusion

This chapter presents a clustering-based discriminant analysis (CDA) method, which

improves upon the Fisher Linear Discriminant (FLD) method, to extract discrimina-

tory features for eye detection. Three CDA models (CDA-1, -2, and -3) are proposed

by taking advantage of the clustering technique. For every CDAmodel a new between-

cluster scatter matrix is defined. The CDA method thus can derive adequate features

to achieve satisfactory performance for eye detection. Furthermore, the clustering

nature of the three CDA models and the nonparametric nature of the CDA-2 and -3

models can further improve the detection performance upon the conventional FLD

method. Experiments on the FRGC and the BioID face database show that (i) the

CDA method significantly improves the performance of the conventional discriminant

analysis methods, and (ii) the proposed CDA-based eye detection method achieves

good eye detection performance and outperforms some state-of-the-art eye detection

methods. In particular, the CDA-3 based eye detection method gives the detection

rate of 94.58% and the detection accuracy of 2.75 pixel error in average.



CHAPTER 5

EFFICIENT SUPPORT VECTOR MACHINE

This chapter proposes a new efficient Support Vector Machine (eSVM) for eye detec-

tion that improves the computational efficiency of the conventional Support Vector

Machine (SVM). The eSVM first defines a Θ set that consists of the training samples

on the wrong side of their margin derived from the conventional soft-margin SVM.

The Θ set plays an important role in controlling the generalization performance of

the eSVM. The eSVM then introduces only a single slack variable for all the training

samples in the Θ set, and as a result, only a very small number of those samples

in the Θ set become support vectors. The eSVM hence significantly reduces the

number of support vectors and improves the computational efficiency without sacri-

ficing the generalization performance. The optimization of the eSVM is implemented

using a modified Sequential Minimal Optimization (SMO) algorithm to solve the

large Quadratic Programming (QP) problem. Experiments on several diverse data

sets show that the eSVM significantly improves the computational efficiency upon

the conventional SVM while achieving comparable generalization performance to or

higher performance than the SVM.

An accurate and efficient eye detection method is then presented based on the

eSVM method. This eSVM-based eye detection method consists of the eye candidate

selection stage and the eye candidate validation stage. The selection stage selects

the eye candidates in an image through a process of eye color distribution analysis

in the YCbCr color space. The validation stage applies first 2D Haar wavelets for

multi-scale image representation, the PCA for dimensionality reduction, and finally

the eSVM for classification. Experiments on the FRGC and the FERET database

58
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show that the eSVM-based eye detection method can reach real-time eye detection

speed and better eye detection accuracy than some state-of-the-art methods.

5.1 Background

Support Vector Machine (SVM) [82], [83] has gained a great deal of attention due to

its generalization performance. Since it was introduced, SVM has become a popular

method in machine learning, object detection and recognition, as well as in various

prediction and regression problems [62], [36], [24], [26], [39], [74], [14], [33]. However,

when the recognition or regression problem becomes complex, the number of support

vectors tends to increase, which leads to increasing the model complex. As a result,

the SVM becomes less efficient due to the expensive computation cost of its decision

function, which involves an inner product of all the support vectors for the linear

SVM and a kernel computation of all the support vectors for the kernel SVM.

A number of simplified SVMs have been proposed to address the inefficiency

problem (i.e., the large number of support vectors) of the conventional SVM. Burges

[10] proposed a method, which computes an approximation to the decision function

using a reduced set of support vectors, to reduce the computation complexity of the

decision function by a factor of ten. This method was then applied to handwritten

digits recognition [77] and face detection [75]. The authors in [42], [46] presented a new

Reduced Support Vector Machine (RSVM) as an alternative to the standard SVM for

improving computational efficiency [42], [46]. The RSVM generates a nonlinear kernel

based on a separating surface (decision function) by solving a smaller optimization

problem using a subset of training samples. The RSVM successfully reduces the

model complexity. Other new SVM models include the υ-SVM [18], the simplified

SVM [66], and the mirror classifier based SVM [16]. One drawback of these new SVMs

is that they tend to reduce classification accuracy when improving the computational

efficiency.
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5.2 Support Vector Machine

This section briefly reviews the conventional SVM method, followed by the analysis of

the factors causing the inefficiency problem (i.e., the large number of support vectors)

of the conventional SVM.

Let the training set be {(x1, y1), (x2, y2), · · · , (xl, yl)}, where xi ∈ R
n, yi ∈

{−1, 1} indicate the two different classes, and l is the number of the training samples.

When the training samples are linearly separable, the conventional SVM defines an

optimal separating hyperplane, wtx+ b = 0, by minimizing the following functional:

min
w,b

1
2
wtw,

subject to yi(w
txi + b) ≥ 1, i = 1, 2, · · · , l.

(5.1)

When the training samples are not linearly separable, the conventional soft-margin

SVM determines the soft-margin optimal hyperplane by minimizing the following

functional:

min
w,b,ξi

1
2
wtw + C

l
∑

i=1

ξi ,

subject to yi(w
txi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, · · · , l.

(5.2)

where ξi ≥ 0 are slack variables and C > 0 is a regularization parameter.

The Lagrangian theory and the Kuhn-Tucker theory are then applied to opti-

mize the functional in Equation 5.2 with inequality constraints [84]. The optimization

process leads to the following quadratic convex programming problem:

max
α

l
∑

i=1

αi −
1
2

l
∑

i,j=1

αiαjyiyjxixj

subject to
l
∑

i=1

yiαi = 0, 0 ≤ αi ≤ C, i = 1, 2, ...l

(5.3)
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Figure 5.1 Illustration of the Conventional soft-margin SVM in the two dimensional
space, where the two classes are presented by the solid and open circles, respectively.
All five samples on the wrong side of their margin are pulled onto their boundaries
to become support vectors.

From the Lagrangian theory and the Kuhn-Tucker theory, we also have:

w =

l
∑

i=1

yiαixi =
∑

i∈SV

yiαixi (5.4)

where SV is the set of Support Vectors (SVs), which are the training samples with

nonzero coefficients αi. The decision function of the SVM is therefore derived as

follows:

f(x) = sign(wx+ b) = sign(
∑

i∈SV

yiαixix+ b) (5.5)

Equation 5.5 reveals that the computation of the decision function involves an

inner product of all the support vectors. (Note that the computation of the decision

function for the kernel SVM involves a kernel computation of all the support vec-

tors.) Therefore, the computation cost of the decision function is proportional to the

number of the support vectors. When the number of the support vectors is large, the

computation cost of the inner product will become expensive and the computational
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efficiency of the conventional soft-margin SVM will be compromised. According to the

Kuhn-Tucker theory, we have the following conditions for the conventional soft-margin

SVM:

αi[yi(w
txi + b)− 1 + ξi] = 0, i = 1, 2, · · · , l. (5.6)

Equation 5.6 shows that if αi 6= 0, then yi(w
txi+b)−1+ξi = 0. Therefore, the training

samples that satisfy yi(w
txi+ b)−1+ ξi = 0 are support vectors for the conventional

soft-margin SVM. The intuitive interpretation of the support vectors is that they are

the training samples that lie on their boundaries or the samples pulled onto their

boundaries by the slack variables ξi as shown in Figure 5.1. In fact, Figure 5.1 shows

that all the training samples on the wrong side of their margin become support vectors

because of the slack variables, which pull the training samples onto their boundaries

to make them support vectors. As a complex pattern classification problem often has

a large number of the training samples on the wrong side of their margin, the number

of support vectors becomes quite large, which leads to the inefficiency problem of the

conventional soft-margin SVM.

5.3 Efficient Support Vector Machine

To address the inefficiency problem of the conventional soft-margin SVM, this section

presents a new SVM, the efficient SVM (eSVM). As discussed above, the conventional

soft-margin SVM usually derives a large number of support vectors for the non-

separable case, because all the training samples on the wrong side of their margin

become support vectors as the slack variables pull these samples to their boundaries.

The eSVM, however, reduces the number of support vectors significantly, because only

a small number (can be as few as one) of the training samples on the wrong side of

their margin are pulled to their boundaries to become support vectors. The eSVM first

defines a Θ set that consists of the training samples on the wrong side of their margin



63

derived from the conventional soft-margin SVM. The Θ set plays an important role in

controlling the generalization performance of the eSVM. The eSVM then introduces

only a single slack variable for all the training samples in the Θ set, and as a result,

only a very small number of those samples in the Θ set are pulled to their boundaries

and become support vectors. As the number of support vectors reduced, the eSVM

improve the computational efficiency upon the conventional soft-margin SVM.

Specifically, the eSVM optimizes the following functional:

min
w,b,ξ

1
2
wtw + Cξ ,

subject to yi(w
txi + b) ≥ 1 , i ∈ Ω−Θ

yi(w
txi + b) ≥ 1− ξ , i ∈ Θ , ξ ≥ 0

(5.7)

where Θ is the set of the training samples on the wrong side of their margin derived

from the conventional soft-margin SVM, and Ω is the set of all the training samples.

Compared with the conventional soft-margin SVM that defines the slack variables

with different values, the eSVM specifies a fixed value for all the slack variables. The

first inequality constraint in Equation 5.7 ensures that the training samples on the

right side of their margin in the conventional soft-margin SVM are still on the right

side in the eSVM. The second inequality constraint in Equation 5.7 ensures that only

a small number of training samples in the Θ set becomes support vectors due to the

introduction of the single slack variable that pulls most of the training samples in the

Θ set beyond their margin to the right side and thus become non-support vectors.

The significance of the eSVM is to simulate the maximal margin separating boundary

of the conventional SVM by using much fewer support vectors.

Further analysis on the first inequality constraint in Equation 5.7 reveals that

this constraint makes the eSVM to maintain a similar maximal margin separating

boundary with that of the conventional SVM. The definition of the separating bound-

ary wtx+b = 0 is associated with the definition of the maximal margin wtx+b = ±1.



64

Given the separating boundary wtx+b = 0, the maximal margin is fixed to wtx+b =

±1, and vice versa. The first inequality constraint in Equation 5.7 ensures that the

training samples on the right side of their margin in the conventional soft-margin SVM

are still on the right side in the eSVM. If the eSVM derives a separating boundary that

is significantly different from the one derived by the conventional SVM, this constraint

will not be satisfied. As the eSVM derives a similar separating boundary with the

conventional SVM, the maximal margin of the eSVM is thus similar with that of the

conventional SVM as well – neither degrade nor upgrade much from that of the SVM.

Consequently, the eSVM inherits the advantage of generalization performance of the

conventional SVM, and has comparable classification performance with the SVM.

The second inequality constraint in Equation 5.7 plays the significant role

of reducing the number of support vectors. This constraint ensures that only a

small number of training samples in the Θ set becomes support vectors due to the

introduction of the single slack variable that pulls most of the training samples in the

Θ set beyond their margin to the right side and thus become non-support vectors.

It is possible that support vectors falling on the margin of the eSVM are a little

bit more than those of the SVM. However, majority of support vectors for the SVM

come from the samples on the wrong side of their margin. The samples on the margin

only contribute to a small portion of support vectors for the SVM, since the chance

that samples happen to fall on the margin is significantly lower than the chance that

samples fall onto the right side or wrong side of the margin. Therefore, even though

the number of support vectors falling on the margin may increase a little bit for the

eSVM, the number of support vectors on the wrong side of the margin significantly

decreases compared with the SVM, and consequently, the total number of support

vectors for the eSVM is still significantly less than that of the conventional SVM.

As the optimization problem of the eSVM defined in Equation 5.7 is different

from that of the conventional SVM, its corresponding dual mathematical problem
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after applying the Lagrangian theory and the Kuhn-Tucker theory is also differ-

ent from the one derived in the conventional soft-margin SVM. In particular, let

α1, α2, · · · , αl ≥ 0 and µ ≥ 0 be the Lagrange multipliers, the primal Lagrange

functional is defined as follows:

F(w, b, ξ, αi, µ) =
1
2
wtw + Cξ −

∑

i∈Ω−Θ

αi[yi(w
txi − b)− 1]

−
∑

i∈Θ

αi[yi(w
txi − b) + ξ − 1]− µξ

= 1
2
wtw + (C −

∑

i∈Θ

αi − µ)ξ −
∑

i∈Ω

αi[yi(w
txi − b)− 1]

(5.8)

Next, we maximize the primal Lagrange functional F(w, b, ξ, αi, µ) with respect to

w, b, and ξ as follows:

∂F

∂w
= w −

∑

i∈Ω

αiyixi = 0 ⇒ w =
∑

i∈Ω

αiyixi (5.9)

∂F

∂b
=

∑

i∈Ω

αiyi = 0 (5.10)

∂F

∂ξ
= C −

∑

i∈Θ

αi − µ = 0 (5.11)

Then, we derive a convex quadratic programming model by substituting Equations

5.9, 5.10, and 5.11 into Equation 5.8 as follows:

max
α

∑

i∈Ω

αi −
1
2

∑

i,j∈Ω

αiαjyiyjxixj

subject to
∑

i∈Ω

yiαi = 0,

(

∑

i∈Θ

αi

)

≤ C, αi ≥ 0, i ∈ Ω
(5.12)
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Figure 5.2 Illustration of the eSVM in the two dimensional space, where the two
classes are presented by the solid and open circles, respectively. Only one of the five
samples on the wrong side of their margin is pulled onto its boundary to become a
support vector.

Furthermore, we have the following constraints from the Kuhn-Tucker theory:

αi[yi(w
tx+ b)− 1] = 0, i ∈ Ω−Θ

αi[yi(w
tx+ b)− 1 + ξ] = 0, i ∈ Θ

(5.13)

Equation 5.13 shows that if αi 6= 0, then either yi(w
tx + b) − 1 = 0, i ∈ Ω−Θ or

yi(w
tx+b)−1+ξ = 0, i ∈ Θ. The training samples that satisfy either yi(w

tx+b)−1 =

0, i ∈ Ω−Θ or yi(w
tx + b) − 1 + ξ = 0, i ∈ Θ are support vectors for the eSVM.

Therefore, the intuitive interpretation of the support vectors is the training samples

that lie on their boundaries or the samples pulled onto their boundaries by the slack

variable ξ as shown in Figure 5.2. As all the slack variables in the eSVM have the

same value, Figure 5.2 also reveals that only a small number (can be as few as one)

of the training samples on the wrong side of their margin (i.e., samples in the Θ

set) are pulled onto their boundaries to become support vectors. As a matter of

fact, Figure 5.2 shows that only one training sample that is farthest away from their
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boundaries are pulled back to become support vector, while the others are not support

vectors because they are pulled to the right side of their margin but they do not fall

onto the boundaries.

5.4 Modified Sequential Minimal Optimization Algorithm

Training a SVM requires a solution to a very large Quadratic Programming (QP)

optimization problem. The Sequential Minimal Optimization (SMO) algorithm [70]

is a popular and efficient tool to solve the large QP problem defined in the SVM.

The SMO algorithm breaks a large QP problem into a series of the smallest possible

optimization problems, which can be solved analytically without resorting to a time-

consuming iterative process [70]. As the QP problem of the eSVM defined in Equation

5.12 is different from that of the conventional soft margin SVM, this section presents

a modified SMO algorithm for training the eSVM.

The modified SMO algorithm, as the SMO does, consists of two major steps:

an analytical solution to the smallest QP problem with two Lagrange multipliers, and

a heuristic approach for choosing which two multipliers to optimize. The next two

subsections present these two steps in details, respectively.

5.4.1 An Analytic Solution to the Smallest QP Problem

Let αs and αt, for one of the smallest quadratic programming problems, be the two

Lagrange multipliers to be optimized while the other αi’s are fixed. First, the SMO

algorithm derives the unconstrained maximum value for αs and αt:

αnew
t = αold

t +
yt(golds −goldt )

η

αnew
s = γ −∆αnew

t

(5.14)
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where ∆ = ysyt, γ = αold
s +∆αold

t , η = 2xsxt − xsxs − xtxt, g
old
s = ys − xt

sw
old, and

goldt = ys − xt
tw

old. Note that for the initialization step, αold can be set to 0.

Then, the two Lagrange multipliers αnew
s and αnew

t should be checked if they

satisfy the inequality constraints defined in Equation 5.12:

αi ≥ 0, i ∈ Ω,

(

∑

i∈Θ

αi

)

≤ C

If the two Lagrange multipliers αnew
s and αnew

t in Equation 5.14 do not satisfy the

above inequality constraints, their values need to be adjusted. Depending on the

values of αnew
s , αnew

t , and ∆, there are several cases to consider:

1. If ∆ = 1, then αnew
s + αnew

t = γ

(a) If αnew
s (αnew

t ) < 0, then αnew
s (αnew

t ) = 0, αnew
t (αnew

s ) = γ;

(b) If s ∈ MV , t /∈ MV , and αnew
s > C −

∑

i∈MV ,i 6=s α
old
i , then αnew

s =

C −
∑

i∈MV ,i 6=s α
old
i , αnew

t = γ − αnew
s ;

(c) If s /∈ MV , t ∈ MV , and αnew
t > C −

∑

i∈MV ,i 6=t α
old
i , then αnew

t = C −
∑

i∈MV ,i 6=t α
old
i , αnew

s = γ − αnew
t ;

(d) If s ∈MV and t ∈ MV , since αnew
s + αnew

t = αold
s + αold

t , there is no effect

on
∑

i∈MV αi. So α
new
s and αnew

t don’t need to adjust;

(e) If s /∈ MV and t /∈ MV , since both αnew
s and αnew

t would not affect
∑

i∈MV αi, they don’t need to adjust.

2. If ∆ = −1, then αnew
s − αnew

t = γ

(a) If αnew
s < 0, then αnew

s = 0, αnew
t = −γ;

(b) If αnew
t < 0, then αnew

t = 0, αnew
s = γ;

(c) If s ∈ MV , t /∈ MV , and αnew
s > C −

∑

i∈MV ,i 6=s α
old
i , then αnew

s =

C −
∑

i∈MV ,i 6=s α
old
i , αnew

t = αnew
s − γ;

(d) If s /∈ MV , t ∈ MV , and αnew
t > C −

∑

i∈MV ,i 6=t α
old
i , then αnew

t = C −
∑

i∈MV ,i 6=t α
old
i , αnew

s = αnew
t + γ;
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(e) If s ∈ MV , t ∈ MV , and αnew
s + αnew

t > C −
∑

i∈MV ,i 6=s,t α
old
i , then

αnew
s = 1

2
(C −

∑

i∈MV ,i 6=s,t α
old
i + γ), αnew

t = 1
2
(C −

∑

i∈MV ,i 6=s,t α
old
i − γ);

(f) If s /∈MV and t /∈MV , they don’t need to adjust.

5.4.2 A Heuristic Approach for Choosing Multipliers

The conventional SMO algorithm [70] applies some independent heuristics to choose

which two Lagrange multipliers to optimize jointly at every step. This heuristic

process is implemented by means of two loops: the outer loop selects the first αi that

violates the Kuhn-Tucker conditions, while the inner loop selects the second αi that

maximizes |E2 − E1|, where Ei is the prediction error on the ith training sample.

Complexity analysis reveals that the conventional SMO algorithm, at every step

of the heuristic process, takes O(l2) to choose the Lagrange multipliers, where l is

the number of the training samples. This process is time-consuming if the number

of the training samples is very large. This subsection presents an improved heuristic

process that chooses the two αi’s simultaneously: each time the two αi’s that violate

the Kuhn-Tucker conditions most seriously are chosen. The new heuristic process

thus takes O(l) to choose the Lagrange multipliers at every step.

In order to determine the pair of αi’s that violate the Kuhn-Tucker conditions

most seriously, the Kuhn-Tucker conditions of the eSVM should be further analyzed.

From Equation 5.13, the Kuhn-Tucker conditions of the eSVM can be decomposed

as follows:

1. When i ∈ V −MV

(a) If αi > 0 and yi = 1, then b = yi − ωtφ(xi);

(b) If αi > 0 and yi = −1, then b = yi − ωtφ(xi);

(c) If αi = 0 and yi = 1, then b ≥ yi − ωtφ(xi);

(d) If αi = 0 and yi = −1, then b ≤ yi − ωtφ(xi).

2. When i ∈MV
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(a) If αi > 0 and yi = 1, then b ≤ yi − ωtφ(xi);

(b) If αi > 0 and yi = −1, then b ≥ yi − ωtφ(xi);

(c) If
∑

j∈MV αj < C and yi = 1, then b ≥ yi − ωtφ(xi);

(d) If
∑

j∈MV αj < C and yi = −1, then b ≤ yi − ωtφ(xi).

As a result, the pair of αi’s that violate the Kuhn-Tucker conditions most

seriously can be determined as follows:

s = argmax(

{yi −wtxi|αi ≥ 0, yi = 1, i ∈ Ω−Θ}, {yi −wtxi|αi > 0, yi = −1, i ∈ Ω−Θ},

{yi −wtxi|
∑

j∈Θ αj < C, yi = 1, i ∈ Θ}, {yi −wtxi|αi > 0, yi = −1, i ∈ Θ}.

)

t = argmin(

{yi −wtxi|αi > 0, yi = 1, i ∈ Ω−Θ}, {yi −wtxi|αi ≥ 0, yi = −1, i ∈ Ω−Θ},

{yi −wtxi|
∑

j∈Θ αj < C, yi = −1, i ∈ Θ}, {yi −wtxi|αi > 0, yi = 1, i ∈ Θ}.

)

(5.15)

5.5 Accurate and Efficient Eye Detection Using eSVM

This section presents an accurate and efficient eye detection method by applying the

eSVM together with color information and 2D Haar wavelets. Figure 5.3 shows the

architecture of the proposed eye detection method. First, the Bayesian Discriminating

Features(BDF) method [47] is applied to detect a face from an image and normalize

the detected face to a predefined size (128 × 128 in the experiments). Second, some

geometric constraints are used to extract an eye strip from the upper portion of the

detected face (the size of the eye strip is 55×128 in the experiments). Third, a new eye

detection method is applied that consists of two stages: the eye candidate selection

stage and the eye candidate validation stage. Specifically, the selection stage rejects

99% of the pixels through an eye color distribution analysis in the YCbCr color space
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Figure 5.3 System architecture of the eSVM-based eye detection method.

[79], while the remaining 1% of the pixels are further processed by the validation stage.

The validation stage applies illumination normalization through Gamma correction,

Difference of Gaussian (DoG) filtering, and contrast equalization, 2D Haar wavelets

for multi-scale image representation, PCA for dimensionality reduction, and the

eSVM for classification to detect the center of the eye. The next two subsections

present in details the eye candidate selection and validation stages, respectively.

5.5.1 The Eye Candidate Selection Stage

The conventional sliding window based eye detection methods exhaustively classify all

the pixels in an image from left to right, top to bottom to locate the eyes. The exces-

sive number of the pixels over an image significantly slows down the classifier-based

eye detection methods. A novel eye candidate selection stage is therefore proposed in

this subsection to first dramatically reduce the number of eye candidates, which will

be further validated by the classifier-based methods.

Specifically, the eye candidates are chosen through an eye color distribution

analysis in the YCbCr color space [79]. In the YCbCr color space, as indicated by
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Figure 5.4 The eye-tone distribution in the YCbCr color space. The skin pixels
are represented in red, the eye region pixels are in blue, and the pupil-center pixels
are in green.

Equation 2.1, the RGB components are separated into luminance (Y), chrominance

blue (Cb), and chrominance red (Cr) [79]. It is observed that in the eye region,

especially around the pupil center, pixels are more likely to have higher values in

chrominance blue (Cb) and lower values in chrominance red (Cr) when compared

with those pixels in the skin region. It is also observed that the luminance (Y) of the

pixels in the eye region is much darker than those in the skin region. To illustrate these

findings, a mount of pixels are collected from random skin patches, eye regions, as

well as pupil centers from 600 face images. The number of pixels randomly collected

from the skin patches and the eye regions are 4,078,800 and 145,200, respectively.

And the number of pixels corresponding to the pupil centers is 1,200 as there are two

eyes in each face image. Figure 5.4 shows the eye-tone distribution in the YCbCr

color space, where the skin pixels are represented in red, the eye region pixels are in

blue, and the pupil-center pixels are in green. Figure 5.4 reveals that the eye-centers,

which are represented by green, are clustered in the corner with higher Cb values but

lower Cr and Y values. Figure 5.5 shows some eye strip examples in the YCbCr color
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Figure 5.5 Example eye strip images in the YCbCr color space, where Y is
represented in red, Cb in green, and Cr in blue.

space, where Y is represented in red, Cb in green, and Cr in blue. One can see from

Figure 5.5 that the eye regions tend to have high green values and low blue values.

Motivated by these findings, a new method for eye candidate selection is pre-

sented. The idea of the eye candidate selection method is to define a weight for each

pixel based on its Y, Cb, and Cr values and rank the pixels according to their weights.

In particular, the weight of pixel (i, j) is defined as follows:

weight(i, j) =
i+2,j+2
∑

i−2,j−2

[Cb(i, j) + (255− Cr(i, j)) + (255− Y (i, j))] (5.16)

The first K pixels with maximum weights are therefore considered as the eye candi-

dates. Figure 5.6 evaluates the performance of the proposed eye candidate selection

method by randomly selecting 2,000 eye strip images from the FRGC database. The

horizontal axis represents the number of selected eye candidates (i.e., K), and the

vertical axis the percentage of the real eye representations. Please note that the real

eye is considered represented if any of those eye candidates is within five pixels from

the ground truth. Figure 5.6 shows that only 60 (K = 60) candidates per image

through the eye color distribution analysis, which account for just 0.85% of the pixels

over an image, can represent over 99% of the real eye locations on average. As a result,



74

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of eye candidates

P
er

ce
nt

ag
e 

of
 r

ea
l e

ye
 r

ep
re

se
nt

at
io

ns

Figure 5.6 The percentage of the real eye representations as the number of the
selected eye candidates varies.

the significance of the eye candidate selection stage is that more than 99% (1-0.85%)

of the pixels over an image are rejected in this stage whereas only the remaining

1% of the pixels are further processed by the classifier-based validation stage. In

comparison with the conventional sliding window method, the candidate selection

stage dramatically reduces the number of eye candidates that will be validated by

the classifier-based methods and hence significantly improves the efficiency of the eye

detection system. Figure 5.7 shows some examples of good and bad eye candidate

selection results on the FRGC database. Please note that the result is considered

bad if there is no pixel within five pixel distance from the ground truth chosen by the

candidate selection method.

Another advantage of the eye candidate selection stage is that it can further

improve the efficiency and accuracy of the eye localization system by considering

the left and right eye candidates in pair to address the problem of scaling and

rotation. Although all the training eye images are rotated upright and normalized to
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(a) Good eye candidate selection examples

(b) Bad eye candidate selection examples

Figure 5.7 Examples of good (a) and bad (b) eye candidate selection results.

Figure 5.8 Example of the eye pair selection scheme.

a fixed size, the testing images may vary in terms of size and orientation. Even

though the traditional methods try to overcome these difficulties by searching a

number of predefined scales and orientations, they are either time consuming or the

incremental steps too large to cover the continuous scaling and rotation values well.

The eye candidate selection method solves the eye scaling and orientation problem by

introducing an eye pair selection schema that considers the eye candidates in pairs. In

particular, all the eye candidates are divided into the left and the right eye candidates

according to their relative positions in the eye strip. The left and right eye candidates

are then formed in pairs, and the distance and angle of the binocular line of each eye

pair is used to normalize and rotate the eye candidates to the predefined size and

the upright orientation, respectively. Figure 5.8 shows an example of the eye pair

selection scheme. The eye pair marked by the dark blue rectangles is considered the

most suitable scale and orientation. Note that some eye pairs can be removed if the

binocular distance is too small or too large, or the angle is too large.
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5.5.2 The Eye Candidate Validation Stage

So far, the eye candidate selection stage selects a small number of eye candidates

from each image. The next stage will validate these eye candidates to find the real

eyes from them. As shown in Figure 5.3, the eye candidate validation stage applies

illumination normalization, 2D Haar wavelets for multi-scale image representation,

PCA for dimensionality reduction, and the eSVM for detection of the center of the

eye. Note that when eSVM is used for classification, the sign of its decision function

only determines the class membership of the samples. It is reasonable that a number

of candidates around the eye center will be classified into the eye category. In order to

determine the final eye center location, the eSVM decision values, instead of the signs

of the decision function, are used to first select Q eye candidates with bigger decision

values. After the Q candidates are selected, following steps are introduced: first, for

each eye candidate, consider an n× n square centered at this eye candidate; second,

compute the summation of the eSVM decision values of all the eye candidates within

this n× n square, and assign this summation to the eye candidate; finally, select the

eye candidate with the highest summation as the center of the eye. Note that Q is

determined empirically, and the next section will discuss the choice of Q and its effect

on the performance of the eSVM classifier.

5.6 Experiments

This section evaluates the proposed eSVM method as well as its application to

accurate and efficient eye detection. In particular, this section first fully evaluates the

eSVM method on a number of data sets that are from different classification problems

and widely used by other SVM researchers. The first experiment runs on a synthetic

data set [95], [66], [15] to give an intuitive view in the two dimensional space of the

eSVM in comparison with the SVM. The second experiment runs on 17 data sets from

the UCI Adult benchmark collection and the Web Classification collection [96], [97],
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[69] to evaluate the performance of the eSVM over the SVM. The third experiment

runs on 6 large-scale data sets [96] to compare the eSVM with other simplified SVM

methods, such as the Reduced SVM (RSVM) [46]. The experimental results show that

the eSVM method performs better than the conventional soft-margin SVM and the

RSVM methods in terms of classification accuracy and computation efficiency. This

section then evaluates the eSVM-based eye detection method on the Face Recognition

Grand Challenge (FRGC) version 2 database [67] and the FERET database [68].

The experimental results show that the proposed eye localization method achieves

real-time eye detection speed and better eye detection performance than some recent

eye detection methods.

5.6.1 Evaluation of the eSVM Method

This subsection first evaluates the performance of the eSVM on a synthetic data set

[95], the Ripley data set, which is also used in [66] and [15]. The advantage of applying

this data set comes from the intuitive visualization of the experimental results in the

two dimensional space where the data resides, as the data has only two attributes.

The Ripley data set defines a two-class non-separable problem, and the number of

training and testing samples is 250 and 1,000, respectively. In the experiments, two

runs are performed with different kernels and parameter settings – one run applies a

linear kernel with the regularizing parameter C = 100, while the other run applies

an RBF kernel K(xi, xj) = e−r‖xi−xj |
2
with the regularizing parameter C = 100 and

power r = 1. Note that the parameter settings are the same as those in [66] and [15].

Figure 5.9 plots the training samples, the support vectors, and the separating

boundaries of the conventional SVM and the eSVM with the linear and RBF kernels,

respectively. In particular, Figure 5.9 shows that the proposed eSVM has similar

separating boundaries to the conventional SVM using either linear or RBF kernels.

The significance of this finding reveals that both eSVM and the conventional SVM
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(d) eSVM with the RBF kernel

Figure 5.9 The support vectors and the separating boundaries of the conventional
SVM and the eSVM with the linear and RBF kernels on the Ripley data set,
respectively. The dashed lines/curves depict the ±1 margins around the separating
boundary.

have similar generalization performance. Another finding reveals that the number of

support vectors for the eSVM is much smaller than that for the conventional SVM

as shown in Figure 5.9. Specifically, Figure 5.9(a) and Figure 5.9(c) show that the

support vectors for the conventional SVM, which are represented by red crosses, are

the samples that are on the wrong side of their margin. The number of support

vectors thus is large due to the fact that many training samples are on the wrong

side of their margin for the non-separable problem. In contrast, for the eSVM, only

a small number of the training samples on the wrong side of their margin, as shown
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Table 5.1 Result Comparisons between the Conventional SVM and the eSVM with
the Linear and RBF Kernels .

method #SV slope y-intercept rate performance time (ms)

SVM – linear 89 −0.152 0.491 89.7 (897/1000) 14.29

eSVM – linear 10 −0.149 0.496 89.7 (897/1000) 6.42

SVM – RBF 78 - - 89.7 (897/1000) 37.41

eSVM – RBF 19 - - 90.2 (902/1000) 11.52

in Figure 5.9(b) and Figure 5.9(d), become support vectors. The number of support

vectors for the eSVM is thus much smaller than that for the conventional SVM.

Table 5.1 shows the comparison of the SVM and the eSVM on the number

of the support vectors, the slope and the y-intercept of the separating boundaries

using the linear kernel, as well as the classification rate and running time for the

testing data set. In particular, the eSVM reduces the number of support vectors

by 88.76% and 75.64%, when compared with the conventional SVM using the linear

and RBF kernels, respectively. Consequently, the running time of the eSVM is also

reduced compared with the SVM when same kernel is applied. The similar slope

and the y-intercept values of the separating boundaries between the eSVM and the

conventional SVM using a linear kernel indicate that they define similar separating

boundaries, and hence have comparable generalization performance. Specifically, the

classification rate of the eSVM on the testing data set is the same with that of the

SVM using the linear kernel, but the classification rate of the eSVM is 0.5% higher

than that of the SVM when using the RBF kernel.

This subsection then compares the performance of the eSVM and the SVM for

accuracy and efficiency using 17 publicly available data sets – 9 from the UCI Adult

benchmark collection and 8 from the Web Classification Collection [96], [97], [69].

The UCI Adult benchmark collection, also known as “Census Income” data set, is

designed to predict whether a household has an income greater than $50,000. Each
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record in the UCI Adult collection contains 123 features. The Web Classification

collection is used for text categorization problem. It collects the keywords from the

web page as the attributes and classifies whether a web page belongs to a category

or not. Each record in the Web collection contains 300 features extracted from a web

page.

The parameters of the conventional SVM are set the same as those in [69], which

are chosen to optimize accuracy on a validation set as done in [69]. Specifically,

only the RBF kernel K(xi, xj) = e−r‖xi−xj |
2
is used. For the Adult data sets, the

regularizing parameter C is set to 1 and the power r of the RBF kernel is set to

0.005. For the Web data sets, the regularizing parameter C is set to 5 and the power

r of the RBF kernel is set to 0.005. For fair comparisons, the parameters of the eSVM

are set the same as those of the conventional SVM.

Table 5.2 shows the experimental results of the SVM and the eSVM on the 17

data sets in terms of the number of support vectors (#SV), the classification running

time, and the classification rate. Table 5.2 first reveals that the number of support

vectors of the eSVM is significantly less than that of the SVM, and consequently

the classification speed of the eSVM is much faster than that of the SVM. High

computational efficiency is the primary contribution of the eSVM over the SVM. As

discussed in Section 5.3, the computational efficiency of the SVM depends on the

number of support vectors. Given a classification problem, the larger the number

of support vector is, the lower the computational efficiency becomes. The eSVM

improves the computational efficiency of the SVM by reducing the number of support

vectors. Table 5.2 shows that the number of support vectors of the SVM, as the

number of training samples increases, varies in a large range from 785 to 12,165 for

the Adult data sets and from 231 to 2,547 for the Web data sets, respectively. This is

consistent with the analysis in Section 5.3 that the number of support vectors increases

dramatically as the problem becomes more complex, as all the training samples on
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Table 5.2 Performance Assessment of the SVM and the eSVM

data set
#training #testing #SV time (s) rate (%)

samples samples SVM eSVM SVM eSVM SVM eSVM

Adult1a 1,605 30,956 785 63 17.09 1.90 82.66 82.65

Adult2a 2,205 30,296 1,105 72 27.56 2.38 83.46 83.41

Adult3a 3,185 29,376 1,451 87 33.99 2.62 83.55 83.53

Adult4a 4,781 27,780 2,091 97 51.44 2.91 83.74 83.86

Adult5a 6,414 26,147 2,741 111 56.77 2.90 84.06 84.10

Adult6a 11,221 21,341 4,480 156 76.36 3.11 84.06 84.10

Adult7a 16,101 16,461 6,324 184 85.53 2.78 84.43 84.48

Adult8a 22,697 9,865 8,728 225 69.83 2.10 84.89 84.87

Adult9a 32,562 16,281 12,165 265 156.15 3.72 84.89 84.81

Web1a 2,477 47,272 231 65 6.65 2.69 97.33 97.38

Web2a 3,470 46,279 300 65 8.20 2.72 97.36 97.39

Web3a 4,912 44,837 361 95 9.36 3.38 97.44 97.49

Web4a 7,366 42,383 510 116 11.97 3.60 97.73 97.85

Web5a 9,888 39,861 629 120 14.09 3.54 97.80 97.84

Web6a 17,188 32,561 1,079 136 18.40 3.30 98.15 98.17

Web7a 24,692 25,057 1,444 164 18.67 2.84 98.28 98.34

Web8a 49,749 14,951 2,547 289 19.80 2.83 98.44 98.53

the wrong side of their margin become support vectors due to the introduction of the

slack variables for the conventional soft-margin SVM method. However, the number

of support vectors of the eSVM, as the number of training samples increases, varies

in a smaller range from 63 to 265 for the Adult data sets and from 65 to 289 for

the Web data sets, respectively. Consequently, the classification speed of the eSVM

is much faster than that of the SVM. Take the A9a from the Adult data sets for

an example. The number of support vectors of the SVM is 12,165 and the running

time is 156.15 seconds. In comparison, the number of support vectors of the eSVM is

only 265, which is 97% less than that of the SVM, and the running time is only 3.72

seconds, which is 41 times faster than that of the SVM.
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Table 5.3 Data Set Description and Parameter Settings

data set
#training #testing

#class #features
(C, r)

samples samples SVM RSVM eSVM

dna 2,000 1,186 3 180 24, 2−6 22, 2−6 24, 2−6

satimage 4,435 2,000 6 36 24, 20 23, 20 24, 20

letter 15,000 5,000 26 16 24, 22 25, 21 24, 22

shuttle 43,500 14,500 7 9 211, 23 211, 23 211, 23

ijcnn1 49,990 91,701 2 22 21, 21 20, 20 21, 21

protein 17,766 6,621 3 357 21, 2−3 21, 2−3 21, 2−3

Table 5.2 also reveals that the eSVM has comparable classification performance

to — sometimes a little bit lower and sometimes a little bit higher than — that of the

conventional SVM. As discussed in Section 5.3, the eSVM improves the computational

efficiency upon the SVM without sacrificing its generalization performance. The

eSVM achieves this by simulating the maximal margin separating boundary of the

conventional SVM using fewer support vectors. Therefore, the eSVM maintains

a similar separating boundary with the SVM, and subsequently has comparable

classification performance with the SVM. Table 5.2 shows that the eSVM has a little

bit higher classification rate than that of the SVM for 12 out of the 17 data sets (e.g.,

A4a and W8a), and a little bit lower rate than that of the SVM for the remaining 5

data sets (e.g., A1a and A9a). The difference on the classification rate between the

SVM and the eSVM is in the range of -0.08% (for A9a) and +0.12% (for W4a).

This subsection finally compares the eSVM method with other simplified SVM

methods, such as the Reduced SVM (RSVM) [46]. 6 publicly available large-scale

data sets [96] are used as done in [46]: dna, satimage, letter, and shuttle, ijcnn1, and

protein. The first four data sets are from the Statlog collection, the fifth data set

is from the 2001 IJCNN challenge competition, and the last one is from the UCI

collection. The feature values of the samples in the data sets are normalized to [-1, 1]
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Table 5.4 Performance Assessment of the SVM, the RSVM, and the eSVM (T
Stands for Time in Seconds)

data set
SVM RSVM eSVM

#SV rate T #SV rate T #SV rate T

dna 973 95.45 2.39 372 92.33 1.52 503 95.86 1.03

satimage 1,611 91.3 2.50 1,826 90 11.4 299 91.7 0.58

letter 8,931 97.78 28.93 13,928 95.9 149.77 522 97.98 1.73

shuttle 280 99.92 1.65 4,982 99.81 74.82 96 99.95 0.81

ijcnn1 5,200 96.14 227.68 200 96.77 6.36 82 97.02 4.60

protein 17,424 68.51 589.58 596 66.24 35 2,866 69.15 99.38

as done in [46]. Only the RBF kernel K(xi, xj) = e−r‖xi−xj |2 is applied as done in [46].

The regularizing parameter C and the power r of the RBF kernel are set the same

as those in [46] for the conventional soft-margin SVM and the RSVM, respectively.

For fair comparisons, the parameters of the eSVM are set the same as those of the

conventional soft-margin SVM. Table 5.3 shows the number of training samples, the

number of testing samples, the number of classes, and the number of features for each

data set, as well as the parameter settings for the SVM, the RSVM, and the eSVM,

respectively.

Table 5.4 shows the experimental results of the SVM, the RSVM, and the eSVM

on the 6 data sets in terms of the number of support vectors (#SV), the classification

accuracy (rate), and the running time (T). Note that the results for the RSVM are

from the best reported results in [46].

Table 5.4 first reveals that the number of support vectors for the eSVM is

much smaller than that for the SVM and the RSVM on average. Although the

eSVM generates a little bit more support vectors than the RSVM for the dna and

protein data sets, it outperforms the RSVM in the other four data sets. Take the

letter data set for an example, the eSVM generates 522 support vectors, while the

conventional soft-margin SVM and the RSVM generate 8,931 and 13,928 support
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vectors, respectively, in comparison. On the average, the eSVM reduces the number

of support vectors by 87.31% and 80.06%, respectively, when compared with the

conventional soft-margin SVM and the RSVM methods. As a result, the eSVM

method displays higher computational efficiency than both the conventional soft-

margin SVM and the RSVM methods. On the average, the eSVM is 7.9 times faster

than the SVM. Note that the running time for the RSVM listed in Table 5.4 is from

the paper [46], where the RSVM may be implemented and run on different system

environment, hence, the detailed comparisons on running time between the RSVM

and the eSVM are not made.

Table 5.4 also reveals that the eSVM achieves better classification accuracy than

both the conventional soft-margin SVM and the RSVM methods. Note that four

different implementations of the RSVM method are reported in [46] with different

classification results, and the best results are selected to show in Table 5.4. The

experimental results on the 6 data sets demonstrate that the RSVM method reduces

the number of support vectors at the expense of accuracy to some extent. The

classification accuracy for the RSVM method, on the average, is 1.34% lower than

that for the conventional soft-margin SVM. The eSVM, on the other hand, not only

significantly reduces the number of support vectors but also improves the classification

accuracy. In particular, Table 5.4 shows that the average classification rate of the

eSVM is 0.43% higher than that of the SVM method and 1.77% higher than that of

the RSVM method, respectively.

5.6.2 Evaluation of the eSVM-based Eye Detection Method

This subsection evaluates the effectiveness and the efficiency of the eSVM-based eye

detection method on the FRGC database. The training and testing data sets are the

same as those introduced in Section 3.3.2. The detection performance are evaluated

in terms of recall and precision. Recall, which is also known as the true positive rate,
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Table 5.5 Efficiency Comparison between the SVM and the eSVM

method #SV detection time (s) detection time per image (s)

Haar-SVM 9,615 38,072 2.98

Haar-eSVM 267 1,916 0.15

is defined as the number of the true positives divided by the sum of the true positives

and false negatives. Precision is defined as the number of the true positives divided by

the sum of the true positives and false positives. A robust detection system normally

possesses the property of both high recall and precision.

The parameters of the eye localization system are optimized on a validation set

by considering both accuracy and efficiency. Specifically, 60 candidates are chosen

through the eye candidate selection stage. 2D Haar basis functions for V 5 are used to

derive the 2D Haar wavelet features. As V 5 = V 0⊕W 0⊕W 1⊕W 2⊕W 3⊕W 4, the size

of the 2D Haar wavelet features is 1,024. 80 eigenvectors out of 1,024 Haar features

are derived using the PCA approach. Only the RBF kernel K(xi, xj) = e−r‖xi−xj |
2
is

used. The parameter r is set to 0.0125. The regularizing parameter C is set to 1.

As discussed in Section 5.3, the main advantage of the eSVM over the SVM is the

computational efficiency. Therefore, this subsection first evaluates the computational

efficiency of the eSVM in comparison with the SVM. Table 5.5 shows the comparison

of the computational efficiency between the SVM and the eSVM using the FRGC

database. Actually, Table 5.5 reveals that the eSVM significantly reduces the number

of support vectors and as a result increases the detection speed. In particular, the

number of support vectors of the eSVM is 97.23% less that that of the SVM. As the

number of support vectors decreases, the detection time is reduced. The SVM takes

2.98 seconds (0.33 images per second) on average to process each image. The eSVM,

in comparison, significantly improves the computational efficiency to real-time eye
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Figure 5.10 Recall and precision of the SVM- and the eSVM-based methods as Q
varies.

detection. Specifically, the eSVM, which takes 0.15 seconds (6.67 images per second)

on average to process each image, is 20 times faster than the SVM.



87

This subsection then evaluates the classification performance under the dif-

ference choice of Q between the SVM and the eSVM classifiers. As discussed in

the end of Section 5.5.2, the first Q left and right eye candidates with the largest

decision values of the SVM (or eSVM) classifier are treated as the detected eyes.

Figure 5.10 shows the comparison of eye detection performance of the SVM and

the eSVM in terms of recall and precision using the FRGC database, respectively.

The performance is evaluated as the Q varies from 1 to 5. When Q > 5, although

recall can further increase, precision decreases dramatically. The horizontal axis

represents the localization pixel errors, and the vertical axis denotes the accumulated

distribution, which means recall (or precision) of eyes with smaller pixel error than

the corresponding horizontal value. Please note that when Q = 1, the recall is equal

to the precision according to their definition.

Figure 5.10 shows that the performance of the eSVM tends to be better than

that of the SVM. In terms of recall, the performance of the eSVM is higher than SVM

on average by 1.28% when Q = 1. As Q increases, the difference of the performance

between SVM and eSVM becomes smaller. When Q = 5, the performance of the

eSVM is only 0.42% higher than that of the SVM on average. In terms of precision,

the difference in performance between SVM and eSVM is more significant. When

Q = 1, the performance of the eSVM is 1.28% higher than the SVM on average. The

difference increases as Q increases. When Q = 5, the performance of the eSVM is

5.25% higher than SVM on average.

Figure 5.10 reveals as well the relationship between the value of Q and the

eye detection performance. In particular, Figure 5.10 shows that as the value of Q

becomes larger, recall increases and precision decreases. As a matter of fact, if the

value of Q is further increased, recall of detections within five pixels of the ground

truth can be more than 99%. Precision, however, decreases dramatically to as low as

65%.
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Table 5.6 Performance of the SVM and the eSVM within Five Pixel Localization
Error

methods
Recall Precision

Q=1 Q=2 Q=3 Q=4 Q=5 Q=1 Q=2 Q=3 Q=4 Q=5

SVM 91.16 93.94 95.40 96.48 97.21 91.16 87.67 83.36 77.65 71.19

eSVM 93.24 96.02 97.14 97.94 98.39 93.24 91.05 88.27 84.68 79.88

Table 5.7 Performance of Final Eye Detection within Five Pixel Localization Error
under Different Q

method Q=1 Q=2 Q=3 Q=4 Q=5

Haar-eSVM 93.24 95.03 95.21 94.89 94.09

If the eyes are considered correctly detected when the Euclidean distance be-

tween the detected eye center and the ground truth is within five pixels, Table 5.6

lists the specific recall and precision for the SVM and the eSVM using the FRGC

database. Table 5.6 only lists the performance for Q <= 5, since precision will

dramatically decrease when Q > 5. First, Table 5.6 shows that the performance of the

eSVM is better than that of the SVM. Second, Table 5.6 demonstrates the promising

performance of the eye detection method: for the Haar-eSVM, for an example, recall

is 96.02% whereas precision is 91.05%, when Q = 2.

This subsection next evaluates the final eye-center localization performance

using the FRGC database following the steps introduced at the end of Section 5.5.2. In

particular, the Haar-eSVM is applied, which yields better eye detection performance

as shown in Figure 5.10 and Table 5.6. Only the recall criterion (i.e., detection rate)

is applied, since precision is equal to recall in the case of the single detection for

each eye. There are two parameters in the final eye localization: one is the size of

the square (i.e., n) and the other is the value of Q, which means how many multiple

detections are allowed to choose the final eye center location. Based on the size of

the pupil of the normalized training eye sampled, n is set to five. For Q, the optimal
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Figure 5.11 (a) Performance comparison of the final eye localization under different
Q. (b) Distribution of eye localization pixel errors for final eye localization when
Q = 3.

choice is searched between one and five, since precision will dramatically decrease

if Q is greater than five. Figure 5.11(a), which shows the final detection rate as
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Q varies from one to five, indicates that the eye detection performance peaks when

Q = 3. Table 5.7 shows specific final eye detection rate for each Q value if the eye is

considered to be detected correctly when the Euclidean distance between the detected

eye center and the ground truth is within five pixels. The eye detection performance

when Q = 3 is 95.21%.

Therefore, three left and right eye candidates are used, respectively, to determine

the final eye location. Figure 5.11(b) shows the distribution of the Euclidean distance

of detected eyes compared with the ground truth. The average Euclidean distance

between the detected eyes and the ground truth is about 2.61 pixels. Figure 5.12

shows some examples of the eye detection results using the eSVM-based method.

5.6.3 Comparison with Recent Methods

In order to assess the robustness of the proposed eSVM based eye detection method

and compare with some recent eye detection methods, experiments on another color

face database, the FERET database [68], are implemented. The FERET database

contains over 3,300 frontal color face images of nearly 1,000 subjects.

The methods that are compare with include the HOG descriptor based method

by Monzo et al. [60], the hybrid classifier method by Jin et al. [38], the general-

to-specific method by Campadelli et al. [12], and a facial identification software —

Verilook [98], [60]. All the above methods applied the normalized error to evaluate

Figure 5.12 Examples of the eye detection results using the eSVM based eye
detection method.
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Table 5.8 Comparisons of the Eye Detection Performance for Different Methods on
the FERET Database (e Stands for the Normalized Error)

method e ≤ 0.05 e ≤ 0.10 e ≤ 0.25

Monzo [60] 78.00% 96.20% 99.60%

Jin [38] 55.10% 93.00% 99.80%

Campadelli [12] 67.70% 89.50% 96.40%

Verilook [98] 74.60% 96.80% 99.90%

the eSVM based method 82.22% 94.25% 98.82%

the performance, which is defined as the detection pixel error normalized by the

interocular distance.

Table 5.8 shows the performance comparison between the eSVM based method

and the methods mentioned above for the normalized error of 0.05, 0.10, and 0.25,

respectively. Table 5.8 reveals that for the normalized error of 0.05, the detection

accuracy of the proposed eSVM based method is 4.22% higher than the best result

reported by the other methods; for the normalized errors of 0.10 and 0.25, the detec-

tion accuracy of the proposed eSVM based method is 2.55% and 1.08% lower than

the best results reported by other methods, respectively. Note that the normalized

errors of 0.10 and 0.25 are considered loose criteria which may not be appropriate for

evaluating the precise eye detection methods. As a matter of fact, the normalized error

of 0.05 is a strict criterion and appropriate for evaluating the precise eye detection

methods.

Regarding the efficiency, not many papers report the execution time of their

methods. As a matter of fact, speed is an important factor in the real-word application

of an eye localization method. Campadelli [12] presented an SVM based eye local-

ization method and reported the execution time of 12 seconds per image (Java code

running on a Pentium 4 with 3.2GHz). In comparison, the average execution time

of the proposed method is only 0.15 seconds per image due to the application of the

eSVM (MATLAB code running on a Pentium 3 with 3.0GHz). In fact, the execution
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time can be further significantly reduced if some faster programming languages (like

Java or C/C++) and multi-thread techniques are applied.

5.7 Conclusion

This chapter first proposes an efficient Support Vector Machine (eSVM) to address

the inefficiency problem of the conventional SVM. The eSVM, which introduces a

single value for all the slack variables corresponding to the training samples on

the wrong side of their margin, defines a much smaller set of support vectors and

hence improves the computational efficiency without sacrificing the generalization

performance. A modified Sequential Minimal Optimization (SMO) algorithm is then

presented to solve the large Quadratic Programming (QP) problem defined in the

eSVM. This chapter then presents an accurate and efficient eye detection method

using the eSVM method. This eye detection method consists of the eye candidate

selection stage and the eye candidate validation stage. The selection stage selects

the eye candidates in an image through a process of eye color distribution analysis

in the YCbCr color space. The validation stage applies first 2D Haar wavelets for

multi-scale image representation, the PCA for dimensionality reduction, and finally

the eSVM for classification. Experiments on several diverse data sets show that the

eSVM significantly improves the computational efficiency upon the conventional SVM

while achieving comparable generalization performance to or higher performance than

the SVM. Furthermore, experimental results on the FRGC and the FERET database

reveal that the proposed eye detection method achieves real-time eye detection speed

and better eye detection performance than some recent eye detection methods.



CHAPTER 6

CONCLUSION AND FUTURE WORK

This dissertation focuses on eye detection using various discriminatory features and

a new efficient Support Vector Machine (eSVM). The main contributions of this

dissertation are listed below:

• A new Discriminant Component Analysis (DCA) method, which improves upon

the popular Principal Component Analysis (PCA) method, is proposed to ex-

tract discriminatory features for eye detection. The PCA method can derive

the optimal features for data representation but not for classification. The DCA

method, in contrast, can derive the discriminatory features in the whitened PCA

space for two-class classification problems. The DCA features thus are capable

of improving the discriminating power of the PCA features and enhancing the

eye detection performance.

• A clustering-based Discriminant Analysis (CDA) method, which improves upon

the Fisher Linear Discriminant (FLD) method, is proposed to extract discrim-

inatory features for eye detection. One major disadvantage of the FLD is that

it may not be able to extract adequate features in order to achieve satisfactory

performance, especially for two class problems. Three CDA models, CDA-1,

CDA-2, and CDA-3, are proposed, which take the full advantage of the k-means

clustering technique. For every CDA model a new between-cluster scatter

matrix is defined. The CDA method thus can derive adequate features to

achieve satisfactory performance for eye detection. Furthermore, the clustering

nature of the three CDAmodels and the nonparametric nature of the CDA-2 and

-3 models can further improve the detection performance upon the conventional

FLD method.
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• Comparative assessment of five types of discriminatory features derived from

five popular image representations is presented for the problem of eye detection.

• A new efficient Support Vector Machine (eSVM) is proposed for eye detection

that improves the computational efficiency of the conventional SVM without

sacrificing the generalization performance. A modified Sequential Minimal

Optimization (SMO) algorithm is then presented to solve the large Quadratic

Programming (QP) problem defined in the eSVM. The eSVM is then applied

to the problem of eye detection and achieves real-time eye detection speed and

better eye detection performance than some recent methods.

The future work lies in the following two aspects:

• Regarding the clustering-based Discriminant Analysis (CDA) method, there are

two further concerns. First, this dissertation simply uses the same number of

clusters for each class when defining the within-class and between-class scatter

matrices. However, the real world applications may contain unbalanced data for

each class (e.g., 200 training samples for one class whereas 20,000 for another)

and unbalanced inherent multi-models for each class (e.g., 10 inherent multi-

models for one class whereas 200 for another). Therefore, the CDA method may

be further improved if some advanced clustering techniques can be applied to

automatically build up the unbalanced clusters for each class separately. Second,

for the CDA-2 and CDA-3, even though the between-class scatter matrices

follow the nonparametric nature, the within-class scatter matrices still follow the

parametric nature. It is worthwhile to explore the effect of the nonparametric

form of the within-class scatter matrix on the performance of the CDA.

• Regarding the efficient Support Vector Machine (eSVM), one direction of the

future work focuses on exploring the relationship between different kernel func-

tions and the performance of the eSVM. This dissertation mainly uses the RBF
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kernel to evaluate the performance as recommended in [83]. However, it is

shown that different kernel functions often lead to different classification results.

Currently, kernel selection has become a very popular research area and much

work has been carried out [3] [21] [4]. The future work concentrates on how

the different kernels affect the performance of the eSVM and what kernel is the

optimal one for the eSVM.
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[9] M. Bressan and J. Vitrià. Nonparametric discriminant analysis and nearest neighbor
classification. Pattern Recognition Letters, 24(15):2743–2749, 2003.

[10] C.J.C. Burges. Simplified support vector decision rule. In Proceedings of the
Thirteenth International Conference on Machine Learning (ICML ’96), Bari,
Italy, July 3-6, 1996.

[11] C.S. Burrus, R.A. Gopinath, and H. Guo. Introduction to wavelets and wavelet
transforms: A Primer. Prentice-Hall, 1998.

[12] P. Campadelli, R. Lanzarotti, and G. Lipori. Precise eye localization through a
general-to-specific model definition. In 2006 British Machine Vision Conference
(BMVC’06), Edinburgh, UK, September 4-7, 2006.

96



97

[13] P. Campadelli, R. Lanzarotti, and G. Lipori. Precise eye and mouth localiza-
tion. International Journal of Pattern Recognition and Aritificial Intelligence,
23(3):359–377, 2009.

[14] L. Cao. Support vector machines experts for time series forecasting. Neurocomputing,
51:321–339, 2003.

[15] J.H. Chen and C.S. Chen. Reducing svm classification time using multiple mirror
classifiers. IEEE Transactions on Systems, Man, and Cybernetics, Part B,
34(2):1173–1183, 2004.

[16] J. Chen and C. Chen. Reducing svm classification time using multiple mirror clas-
sifers. IEEE Transcations on Systems, Man, and Cybernetics, 34(2):1173–1183,
April 2004.

[17] L. Chen, H. Chang, and T. Liu. Local discriminant embedding and its variants. In
IEEE International Conference on Computer Vision and Pattern Recognition,
San Diego, CA, USA, June 20-26, 2005.

[18] P.H. Chen, C.J. Lin, and B. Scholkopf. A tutorial on υ-support vector machines.
Applied Stochastic Models in Business and Industry, 21:111–136, 2005.

[19] S. Chen and C.J. Liu. Eye detection using color information and a new efficient
svm. In IEEE International Conference on Biometrics: Theory, Applications
and Systems (BTAS’10), Washington DC, USA, September 27-29, 2010.

[20] S. Chen and C. Liu. Fast eye detection using different color spaces. In 2011
IEEE International Conference on Systems, Man, and Cybernetics (SMC’11),
Anchorage, Alaska, October 9-12, 2010.

[21] C. Cortes. Invited talk: Can learning kernels help performance? In 26th ACM
International Conference on Machine Learning (ICML’09), Montreal, Quebec,
Canada, June 14-18, 2009.

[22] D. Cristinacce, T. Cootes, and I. Scott. A multi-stage approach to facial feature
detection. In 15th British Machine Vision Conference (BMVC’04), London,
England, September 7-9, 2004.

[23] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
IEEE International Conference on Computer Vision and Pattern Recognition,
San Diego, CA, June 20-26, 2005.

[24] M. A. Davenport, R. G. Baraniuk, and C. Scott. Tuning support vector machines
for minimax and neyman-pearson classification. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(10):1888–1898, 2010.

[25] J.Y. Deng and F.P. Lai. Region-based template deformation and masking for eye-
feature extraction and description. Pattern Recognition, 30(3):403–419, March
1997.



98

[26] M. Eckhardt, I. Fasel, and J. Movellan. Towards practical facial feature detec-
tion. Internatioanl Journal of Pattern Recognition and Artificial Intelligence,
23(3):379–400, 2009.

[27] M. Everingham and A. Zisserman. Regression and classification approaches to
eye localization in face images. In Seventh IEEE International Conference on
Automatic Face and Gesture Recognition (FG’06), Southampton, UK, April
10-12, 2006.

[28] G.C. Feng and P.C. Yuan. Various projection function and its application to eye
detection for human face recognition. Pattern Recognition Letters, 19(9):899–906,
1998.

[29] R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7:179–188, 1936.

[30] K. Fukunaga. Introduction to statistical pattern recognition, 1990. Academic Press.

[31] K. Fukunaga and J.M. Mantock. Nonparametric discriminant analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 5(6):671–678, 1983.

[32] Z. Gu, J. Yang, and L. Zhang. Push-pull marginal discriminant analysis for feature
extraction. Pattern Recognition Letters, 31(15):2345–2352, 2010.

[33] B. Haasdonk. Feature space interpretation of svms with indefinite kernels. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(4):482–492, 2005.

[34] M. Hamouz, J. Kittler, J.-K. Kamarainen, P. Paalanen, and H. Kälviäinen. Affine-
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