28 research outputs found

    Disaster Analysis using Satellite Image Data with Knowledge Transfer and Semi-Supervised Learning Techniques

    Get PDF
    With the increase in frequency of disasters and crisis situations like floods, earthquake and hurricanes, the requirement to handle the situation efficiently through disaster response and humanitarian relief has increased. Disasters are mostly unpredictable in nature with respect to their impact on people and property. Moreover, the dynamic and varied nature of disasters makes it difficult to predict their impact accurately for advanced preparation of responses [104]. It is also notable that the economical loss due to natural disasters has increased in recent years, and it, along with the pure humanitarian need, is one of the reasons to research innovative approaches to the mitigation and management of disaster operations efficiently [1]

    Delineation of Surface Water Features Using RADARSAT-2 Imagery and a TOPAZ Masking Approach over the Prairie Pothole Region in Canada

    Get PDF
    The Prairie Pothole Region (PPR) is one of the most rapidly changing environments in the world. In the PPR of North America, topographic depressions are common, and they are an essential water storage element in the regional hydrological system. The accurate delineation of surface water bodies is important for a variety of reasons, including conservation, environmental management, and better understanding of hydrological and climate modeling. There are numerous surface water bodies across the northern Prairie Region, making it challenging to provide near-real-time monitoring and in situ measurements of the spatial and temporal variation in the surface water area. Satellite remote sensing is the only practical approach to delineating the surface water area of Prairie potholes on an ongoing and cost-effective basis. Optical satellite imagery is able to detect surface water but only under cloud-free conditions, a substantial limitation for operational monitoring of surface water variability. However, as an active sensor, RADARSAT-2 (RS-2) has the ability to provide data for surface water detection that can overcome the limitation of optical sensors. In this research, a threshold-based procedure was developed using Fine Wide (F0W3), Wide (W2) and Standard (S3) modes to delineate the extent of surface water areas in the St. Denis and Smith Creek study basins, Saskatchewan, Canada. RS-2 thresholding results yielded a higher number of apparent water surfaces than were visible in high-resolution optical imagery (SPOT) of comparable resolution acquired at nearly the same time. TOPAZ software was used to determine the maximum possible extent of water ponding on the surface by analyzing high-resolution LiDAR-based DEM data. Removing water bodies outside the depressions mapped by TOPAZ improved the resulting images, which corresponded more closely to the SPOT surface water images. The results demonstrate the potential of TOPAZ masking for RS-2 surface water mapping used for operational purposes

    A Deep Learning Framework in Selected Remote Sensing Applications

    Get PDF
    The main research topic is designing and implementing a deep learning framework applied to remote sensing. Remote sensing techniques and applications play a crucial role in observing the Earth evolution, especially nowadays, where the effects of climate change on our life is more and more evident. A considerable amount of data are daily acquired all over the Earth. Effective exploitation of this information requires the robustness, velocity and accuracy of deep learning. This emerging need inspired the choice of this topic. The conducted studies mainly focus on two European Space Agency (ESA) missions: Sentinel 1 and Sentinel 2. Images provided by the ESA Sentinel-2 mission are rapidly becoming the main source of information for the entire remote sensing community, thanks to their unprecedented combination of spatial, spectral and temporal resolution, as well as their open access policy. The increasing interest gained by these satellites in the research laboratory and applicative scenarios pushed us to utilize them in the considered framework. The combined use of Sentinel 1 and Sentinel 2 is crucial and very prominent in different contexts and different kinds of monitoring when the growing (or changing) dynamics are very rapid. Starting from this general framework, two specific research activities were identified and investigated, leading to the results presented in this dissertation. Both these studies can be placed in the context of data fusion. The first activity deals with a super-resolution framework to improve Sentinel 2 bands supplied at 20 meters up to 10 meters. Increasing the spatial resolution of these bands is of great interest in many remote sensing applications, particularly in monitoring vegetation, rivers, forests, and so on. The second topic of the deep learning framework has been applied to the multispectral Normalized Difference Vegetation Index (NDVI) extraction, and the semantic segmentation obtained fusing Sentinel 1 and S2 data. The S1 SAR data is of great importance for the quantity of information extracted in the context of monitoring wetlands, rivers and forests, and many other contexts. In both cases, the problem was addressed with deep learning techniques, and in both cases, very lean architectures were used, demonstrating that even without the availability of computing power, it is possible to obtain high-level results. The core of this framework is a Convolutional Neural Network (CNN). {CNNs have been successfully applied to many image processing problems, like super-resolution, pansharpening, classification, and others, because of several advantages such as (i) the capability to approximate complex non-linear functions, (ii) the ease of training that allows to avoid time-consuming handcraft filter design, (iii) the parallel computational architecture. Even if a large amount of "labelled" data is required for training, the CNN performances pushed me to this architectural choice.} In our S1 and S2 integration task, we have faced and overcome the problem of manually labelled data with an approach based on integrating these two different sensors. Therefore, apart from the investigation in Sentinel-1 and Sentinel-2 integration, the main contribution in both cases of these works is, in particular, the possibility of designing a CNN-based solution that can be distinguished by its lightness from a computational point of view and consequent substantial saving of time compared to more complex deep learning state-of-the-art solutions

    Deep Learning based data-fusion methods for remote sensing applications

    Get PDF
    In the last years, an increasing number of remote sensing sensors have been launched to orbit around the Earth, with a continuously growing production of massive data, that are useful for a large number of monitoring applications, especially for the monitoring task. Despite modern optical sensors provide rich spectral information about Earth's surface, at very high resolution, they are weather-sensitive. On the other hand, SAR images are always available also in presence of clouds and are almost weather-insensitive, as well as daynight available, but they do not provide a rich spectral information and are severely affected by speckle "noise" that make difficult the information extraction. For the above reasons it is worth and challenging to fuse data provided by different sources and/or acquired at different times, in order to leverage on their diversity and complementarity to retrieve the target information. Motivated by the success of the employment of Deep Learning methods in many image processing tasks, in this thesis it has been faced different typical remote sensing data-fusion problems by means of suitably designed Convolutional Neural Networks

    Quantifying the urban forest environment using dense discrete return LiDAR and aerial color imagery for segmentation and object-level biomass assessment

    Get PDF
    The urban forest is becoming increasingly important in the contexts of urban green space and recreation, carbon sequestration and emission offsets, and socio-economic impacts. In addition to aesthetic value, these green spaces remove airborne pollutants, preserve natural resources, and mitigate adverse climate changes, among other benefits. A great deal of attention recently has been paid to urban forest management. However, the comprehensive monitoring of urban vegetation for carbon sequestration and storage is an under-explored research area. Such an assessment of carbon stores often requires information at the individual tree level, necessitating the proper masking of vegetation from the built environment, as well as delineation of individual tree crowns. As an alternative to expensive and time-consuming manual surveys, remote sensing can be used effectively in characterizing the urban vegetation and man-made objects. Many studies in this field have made use of aerial and multispectral/hyperspectral imagery over cities. The emergence of light detection and ranging (LiDAR) technology, however, has provided new impetus to the effort of extracting objects and characterizing their 3D attributes - LiDAR has been used successfully to model buildings and urban trees. However, challenges remain when using such structural information only, and researchers have investigated the use of fusion-based approaches that combine LiDAR and aerial imagery to extract objects, thereby allowing the complementary characteristics of the two modalities to be utilized. In this study, a fusion-based classification method was implemented between high spatial resolution aerial color (RGB) imagery and co-registered LiDAR point clouds to classify urban vegetation and buildings from other urban classes/cover types. Structural, as well as spectral features, were used in the classification method. These features included height, flatness, and the distribution of normal surface vectors from LiDAR data, along with a non-calibrated LiDAR-based vegetation index, derived from combining LiDAR intensity at 1064 nm with the red channel of the RGB imagery. This novel index was dubbed the LiDAR-infused difference vegetation index (LDVI). Classification results indicated good separation between buildings and vegetation, with an overall accuracy of 92% and a kappa statistic of 0.85. A multi-tiered delineation algorithm subsequently was developed to extract individual tree crowns from the identified tree clusters, followed by the application of species-independent biomass models based on LiDAR-derived tree attributes in regression analysis. These LiDAR-based biomass assessments were conducted for individual trees, as well as for clusters of trees, in cases where proper delineation of individual trees was impossible. The detection accuracy of the tree delineation algorithm was 70%. The LiDAR-derived biomass estimates were validated against allometry-based biomass estimates that were computed from field-measured tree data. It was found out that LiDAR-derived tree volume, area, and different distribution parameters of height (e.g., maximum height, mean of height) are important to model biomass. The best biomass model for the tree clusters and the individual trees showed an adjusted R-Squared value of 0.93 and 0.58, respectively. The results of this study showed that the developed fusion-based classification approach using LiDAR and aerial color (RGB) imagery is capable of producing good object detection accuracy. It was concluded that the LDVI can be used in vegetation detection and can act as a substitute for the normalized difference vegetation index (NDVI), when near-infrared multiband imagery is not available. Furthermore, the utility of LiDAR for characterizing the urban forest and associated biomass was proven. This work could have significant impact on the rapid and accurate assessment of urban green spaces and associated carbon monitoring and management

    An Evolutionary Approach to Adaptive Image Analysis for Retrieving and Long-term Monitoring Historical Land Use from Spatiotemporally Heterogeneous Map Sources

    Get PDF
    Land use changes have become a major contributor to the anthropogenic global change. The ongoing dispersion and concentration of the human species, being at their orders unprecedented, have indisputably altered Earth’s surface and atmosphere. The effects are so salient and irreversible that a new geological epoch, following the interglacial Holocene, has been announced: the Anthropocene. While its onset is by some scholars dated back to the Neolithic revolution, it is commonly referred to the late 18th century. The rapid development since the industrial revolution and its implications gave rise to an increasing awareness of the extensive anthropogenic land change and led to an urgent need for sustainable strategies for land use and land management. By preserving of landscape and settlement patterns at discrete points in time, archival geospatial data sources such as remote sensing imagery and historical geotopographic maps, in particular, could give evidence of the dynamic land use change during this crucial period. In this context, this thesis set out to explore the potentials of retrospective geoinformation for monitoring, communicating, modeling and eventually understanding the complex and gradually evolving processes of land cover and land use change. Currently, large amounts of geospatial data sources such as archival maps are being worldwide made online accessible by libraries and national mapping agencies. Despite their abundance and relevance, the usage of historical land use and land cover information in research is still often hindered by the laborious visual interpretation, limiting the temporal and spatial coverage of studies. Thus, the core of the thesis is dedicated to the computational acquisition of geoinformation from archival map sources by means of digital image analysis. Based on a comprehensive review of literature as well as the data and proposed algorithms, two major challenges for long-term retrospective information acquisition and change detection were identified: first, the diversity of geographical entity representations over space and time, and second, the uncertainty inherent to both the data source itself and its utilization for land change detection. To address the former challenge, image segmentation is considered a global non-linear optimization problem. The segmentation methods and parameters are adjusted using a metaheuristic, evolutionary approach. For preserving adaptability in high level image analysis, a hybrid model- and data-driven strategy, combining a knowledge-based and a neural net classifier, is recommended. To address the second challenge, a probabilistic object- and field-based change detection approach for modeling the positional, thematic, and temporal uncertainty adherent to both data and processing, is developed. Experimental results indicate the suitability of the methodology in support of land change monitoring. In conclusion, potentials of application and directions for further research are given

    A methodology to produce geographical information for land planning using very-high resolution images

    Get PDF
    Actualmente, os municípios são obrigados a produzir, no âmbito da elaboração dos instrumentos de gestão territorial, cartografia homologada pela autoridade nacional. O Plano Director Municipal (PDM) tem um período de vigência de 10 anos. Porém, no que diz respeito à cartografia para estes planos, principalmente em municípios onde a pressão urbanística é elevada, esta periodicidade não é compatível com a dinâmica de alteração de uso do solo. Emerge assim, a necessidade de um processo de produção mais eficaz, que permita a obtenção de uma nova cartografia de base e temática mais frequentemente. Em Portugal recorre-se à fotografia aérea como informação de base para a produção de cartografia de grande escala. Por um lado, embora este suporte de informação resulte em mapas bastante rigorosos e detalhados, a sua produção têm custos muito elevados e consomem muito tempo. As imagens de satélite de muito alta-resolução espacial podem constituir uma alternativa, mas sem substituir as fotografias aéreas na produção de cartografia temática, a grande escala. O tema da tese trata assim da satisfação das necessidades municipais em informação geográfica actualizada. Para melhor conhecer o valor e utilidade desta informação, realizou-se um inquérito aos municípios Portugueses. Este passo foi essencial para avaliar a pertinência e a utilidade da introdução de imagens de satélite de muito alta-resolução espacial na cadeia de procedimentos de actualização de alguns temas, quer na cartografia de base quer na cartografia temática. A abordagem proposta para solução do problema identificado baseia-se no uso de imagens de satélite e outros dados digitais em ambiente de Sistemas de Informação Geográfica. A experimentação teve como objectivo a extracção automática de elementos de interesse municipal a partir de imagens de muito alta-resolução espacial (fotografias aéreas ortorectificadas, imagem QuickBird, e imagem IKONOS), bem como de dados altimétricos (dados LiDAR). Avaliaram-se as potencialidades da informação geográfica extraídas das imagens para fins cartográficos e analíticos. Desenvolveram-se quatro casos de estudo que reflectem diferentes usos para os dados geográficos a nível municipal, e que traduzem aplicações com exigências diferentes. No primeiro caso de estudo, propõe-se uma metodologia para actualização periódica de cartografia a grande escala, que faz uso de fotografias aéreas vi ortorectificadas na área da Alta de Lisboa. Esta é uma aplicação quantitativa onde as qualidades posicionais e geométricas dos elementos extraídos são mais exigentes. No segundo caso de estudo, criou-se um sistema de alarme para áreas potencialmente alteradas, com recurso a uma imagem QuickBird e dados LiDAR, no Bairro da Madre de Deus, com objectivo de auxiliar a actualização de cartografia de grande escala. No terceiro caso de estudo avaliou-se o potencial solar de topos de edifícios nas Avenidas Novas, com recurso a dados LiDAR. No quarto caso de estudo, propõe-se uma série de indicadores municipais de monitorização territorial, obtidos pelo processamento de uma imagem IKONOS que cobre toda a área do concelho de Lisboa. Esta é uma aplicação com fins analíticos onde a qualidade temática da extracção é mais relevante.Currently, the Portuguese municipalities are required to produce homologated cartography, under the Territorial Management Instruments framework. The Municipal Master Plan (PDM) has to be revised every 10 years, as well as the topographic and thematic maps that describe the municipal territory. However, this period is inadequate for representing counties where urban pressure is high, and where the changes in the land use are very dynamic. Consequently, emerges the need for a more efficient mapping process, allowing obtaining recent geographic information more often. Several countries, including Portugal, continue to use aerial photography for large-scale mapping. Although this data enables highly accurate maps, its acquisition and visual interpretation are very costly and time consuming. Very-High Resolution (VHR) satellite imagery can be an alternative data source, without replacing the aerial images, for producing large-scale thematic cartography. The focus of the thesis is the demand for updated geographic information in the land planning process. To better understand the value and usefulness of this information, a survey of all Portuguese municipalities was carried out. This step was essential for assessing the relevance and usefulness of the introduction of VHR satellite imagery in the chain of procedures for updating land information. The proposed methodology is based on the use of VHR satellite imagery, and other digital data, in a Geographic Information Systems (GIS) environment. Different algorithms for feature extraction that take into account the variation in texture, color and shape of objects in the image, were tested. The trials aimed for automatic extraction of features of municipal interest, based on aerial and satellite high-resolution (orthophotos, QuickBird and IKONOS imagery) as well as elevation data (altimetric information and LiDAR data). To evaluate the potential of geographic information extracted from VHR images, two areas of application were identified: mapping and analytical purposes. Four case studies that reflect different uses of geographic data at the municipal level, with different accuracy requirements, were considered. The first case study presents a methodology for periodic updating of large-scale maps based on orthophotos, in the area of Alta de Lisboa. This is a situation where the positional and geometric accuracy of the extracted information are more demanding, since technical mapping standards must be complied. In the second case study, an alarm system that indicates the location of potential changes in building areas, using a QuickBird image and LiDAR data, was developed for the area of Bairro da Madre de Deus. The goal of the system is to assist the updating of large scale mapping, providing a layer that can be used by the municipal technicians as the basis for manual editing. In the third case study, the analysis of the most suitable roof-tops for installing solar systems, using LiDAR data, was performed in the area of Avenidas Novas. A set of urban environment indicators obtained from VHR imagery is presented. The concept is demonstrated for the entire city of Lisbon, through IKONOS imagery processing. In this analytical application, the positional quality issue of extraction is less relevant.GEOSAT – Methodologies to extract large scale GEOgraphical information from very high resolution SATellite images (PTDC/GEO/64826/2006), e-GEO – Centro de Estudos de Geografia e Planeamento Regional, da Faculdade de Ciências Sociais e Humanas, no quadro do Grupo de Investigação Modelação Geográfica, Cidades e Ordenamento do Territóri

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    LIDAR based semi-automatic pattern recognition within an archaeological landscape

    Get PDF
    LIDAR-Daten bieten einen neuartigen Ansatz zur Lokalisierung und Überwachung des kulturellen Erbes in der Landschaft, insbesondere in schwierig zu erreichenden Gebieten, wie im Wald, im unwegsamen Gelände oder in sehr abgelegenen Gebieten. Die manuelle Lokalisation und Kartierung von archäologischen Informationen einer Kulturlandschaft ist in der herkömmlichen Herangehensweise eine sehr zeitaufwändige Aufgabe des Fundstellenmanagements (Cultural Heritage Management). Um die Möglichkeiten in der Erkennung und bei der Verwaltung des kulturellem Erbes zu verbessern und zu ergänzen, können computergestützte Verfahren einige neue Lösungsansätze bieten, die darüber hinaus sogar die Identifizierung von für das menschliche Auge bei visueller Sichtung nicht erkennbaren Details ermöglichen. Aus archäologischer Sicht ist die vorliegende Dissertation dadurch motiviert, dass sie LIDAR-Geländemodelle mit archäologischen Befunden durch automatisierte und semiautomatisierte Methoden zur Identifizierung weiterer archäologischer Muster zu Bodendenkmalen als digitale „LIDAR-Landschaft“ bewertet. Dabei wird auf möglichst einfache und freie verfügbare algorithmische Ansätze (Open Source) aus der Bildmustererkennung und Computer Vision zur Segmentierung und Klassifizierung der LIDAR-Landschaften zur großflächigen Erkennung archäologischer Denkmäler zurückgegriffen. Die Dissertation gibt dabei einen umfassenden Überblick über die archäologische Nutzung und das Potential von LIDAR-Daten und definiert anhand qualitativer und quantitativer Ansätze den Entwicklungsstand der semiautomatisierten Erkennung archäologischer Strukturen im Rahmen archäologischer Prospektion und Fernerkundungen. Darüber hinaus erläutert sie Best Practice-Beispiele und den einhergehenden aktuellen Forschungsstand. Und sie veranschaulicht die Qualität der Erkennung von Bodendenkmälern durch die semiautomatisierte Segmentierung und Klassifizierung visualisierter LIDAR-Daten. Letztlich identifiziert sie das Feld für weitere Anwendungen, wobei durch eigene, algorithmische Template Matching-Verfahren großflächige Untersuchungen zum kulturellen Erbe ermöglicht werden. Resümierend vergleicht sie die analoge und computergestützte Bildmustererkennung zu Bodendenkmalen, und diskutiert abschließend das weitere Potential LIDAR-basierter Mustererkennung in archäologischen Kulturlandschaften
    corecore