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1 Introduction

With the increase in frequency of disasters and crisis situations like floods,

earthquake and hurricanes, the requirement to handle the situation efficiently

through disaster response and humanitarian relief has increased. Disasters are

mostly unpredictable in nature with respect to their impact on people and

property. Moreover, the dynamic and varied nature of disasters makes it difficult

to predict their impact accurately for advanced preparation of responses [104]. It

is also notable that the economical loss due to natural disasters has increased in

recent years, and it, along with the pure humanitarian need, is one of the reasons

to research innovative approaches to the mitigation and management of disaster

operations efficiently [1].

For many years, satellite images have been used for several earth observation

(EO) applications such as crop monitoring, land coverage mapping, oceanography,

water bodies mapping, and so forth. Indeed, satellite data processing has a natural

application to disaster analysis in cases such as flood monitoring, building damage

estimation, volcano monitoring and more. In such cases, satellite data is not only

useful in providing initial alerts, but also in the continuous management and

review of a situation.

With the rapid increase in the number and availability of satellite platform

such as Sentinel, Landsat, Worldview, MODIS, a tremendous increase in EO data

has been seen in recent years. This data is available in huge volume and high

velocity. But along with the increase in the number of sensors, the variety of data

has increased in terms of spectral properties, spatial resolution, temporal and

radar information availability and so forth. Spectral information from different

satellites typically varies from 4-16 bands, while spatial resolution varies from

31cm-30m, and temporal information from daily to 10 day updates. In addition

to optical satellite, data is also available from synthetic aperture radar which is
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useful in terrain, landforms, flood and volcano mapping. Although many of these

varied data sources and types are used in isolation, it is highly advantageous to

fuse different data sources to provide high-quality input for disaster analysis.

Given the high volumes and varieties of available data, it is not feasible to

analyse disaster situation manually. Given this, the research community has moved

to utilise artificial intelligence in almost all EO application for timely and accurate

analysis. Labelled data for satellite imaging is however still scarce, especially in

disaster analysis. Fortunately in the past few years many competitions were held,

which in turn lead to the release of several earth observation datasets that have

been investigated using methods from machine learning (ML). Some of these

datasets are EuroSat [40], BigEarthNet [93], Sen12MS [87] for scene classification,

xView2 [35] for building damage analysis, MediaEval [6] for flood detection, and

so on. These datasets focus on particular satellite sensors and specific tasks only,

thus they cannot be directly used to create a generalised model for a wide range

of satellite data inputs and disaster situations. This fact motivates the main

theme of our research work towards generalising methods in the EO domain

through recent advances in domain adaptive learning techniques, especially for

disaster analysis from satellite images.

One of the most important methods for domain adaptation in the ML com-

munity is knowledge transfer within deep learning frameworks. This method has

already been shown to be highly advantageous for EO applications [41], [68],

but most application utilises existing transfer learning models from ImageNet

[21], MS coco [66] etc and do not consider the specifics of the EO domain. The

problem with existing pre-trained models is they utilise only three channels, i.e.

Red, Green, Blue or RGB, so any application to datasets that do not contain Red,

Green and Blue tri-band data is problematic. This challenge suggests the solution

of having pre-trained models trained specifically on EO data with multi-spectral,
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multi-resolution or Radar images. However, to have such pre-trained models

traditionally requires a large amount of labelled data across spectral bands,

spatial resolutions, and even different sensor types, for example optical or radar,

which is difficult to obtain.

Given these challenges, we argue that in order to have useful pre-trained

models for the EO domain, techniques which can learn representations from

unlabelled or only partially labelled data will be required. For this, we may

take advantage of recent advances in semi-supervised techniques which have

been shown to allow researchers to generalised models across particular domain

[54], [101], [106], [8]. Semi-Supervised learning lies between supervised and un-

supervised learning with small labelled datasets being used to bootstrap the

learning process. Also, recent advancement in self-supervised learning have also

shown greater potential to generalised models across particular domains [13],

[33], [16]. Primarily self-supervised learning can be divided into pretext tasks

and contrastive learning, which learns the intrinsic invariant representations of

the data. Pretext tasks are based on augmenting the images in specific manners

such as rotation, cropping, colourisation, jigsaw puzzle etc. [27], [108], [32], as

part of a training process. In this type of learning, focus remains on how to

learn the representation rather than on the final prediction. These approaches

are based on the assumption that augmentation of images does not change their

labels. Similarly, recently a major focus has been placed on contrastive learning.

Contrastive learning is based on the same broad assumptions but tries to bring

similar images (positive pairs) closer whereas dissimilar images (negative pairs)

are repulsed [13].

While the potential of these families of methods is clear, it is far from clear

how in practice we can apply these methods efficiently and effectively. Indeed, the

specifics of the EO domain where multi-spectral and even multi-modal data are



Confirmation Report 7

a given can offer us both challenges and opportunities. Given this we hypothesis

that by merging one or two sources of satellite data across multi-spectral, multi-

resolution images through semi-supervised and self-supervised learning techniques,

we can provide a generalised learning model for the purpose of knowledge transfer

that can in fact be applied to further data sources within the EO domain.

With this basic goal set out, the rest of this report is structured as follows:

Section 2, provides a literature review focusing on the previous work done in the

area of EO centered disaster analysis across different modalities using artificial

intelligence. Building on that, I state my research question in Section 3. Following

the research question, the report showcase the work done to date in Section 4,

and my plans for future work for the next step of the PhD programme in Section

5. I summarise my research progress and present my achievements in Section 6.

2 Literature Review

With the rise in satellite technology, data is now available in a multitude of

different formats. This has led to a tremendous amount of research to date on

information retrieval tasks [104]. Disaster or crisis situation is one task wherein

the use of satellite imaging has produced significant amounts of data across

multi-spectral, multi-resolution, multi-temporal and multi-modal dimensions.

This data has been used widely to quickly assess a situation and even for helping

rescue teams analyse a situation in more depth, or to perform retrospective

analysis.

2.1 Satellite Images and Disaster Analysis

Satellite imaging has huge application to tasks like scene classification [40],

crop monitoring [60], [44], oceanography [24], land coverage mapping [39], and

disaster analysis [25], [37]. Such data has been used for many years to generate
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risk mappings, disaster impact assessments, and damage assessments due to its

capability of capturing a wide area and being operational in all weather conditions.

Recently, satellites have been providing higher resolution images which help in

the analysing and mapping of disaster damage at a finer level of detail. Analysing

disasters using satellite images has several specific applications such as change

detection, flood monitoring, building damage mapping and assessment, and the

extraction of road networks, all of which directly benefit rescue planning [82], [75],

[85], [65]. Traditionally, disaster analysis through satellites has been performed as

a manual process or with hand crafted features [83]. But with the advancement

in artificial intelligence the true automation of the process is now much more

feasible.

2.2 Satellite Image Data Fusion

With respect to integration across the many different sources and types of satellite

data, many data fusion techniques have been proposed, such as the fusion of

optical and radar images, the fusion of low spatial resolution (LSR) data with

high spatial resolution (HSR) data, to name but two. Data fusion is not new,

but there have been considerable amounts of interest lately across the research

community where it is hoped that it can improvise information content.

One of the widest applied fusion methods is spatio-spectral fusion, which is

used to obtain high spectral and spatial resolution images from combinations of

fine and coarse spectral and spatial resolution sources. With respect to spatio-

spectral fusion, methods are further categorised into different data fusion tech-

niques such as Panchromatic (PAN)/multispectral (MS) [72], PAN/hyperspectral

(HS) [30], and MS/HS [102], [23] fusion. Another fusion method is spatio-temporal

fusion, which uses images with fine spatial resolution but less frequent temporal

coverage to fuse with coarse spatial resolution and frequent temporal coverage,
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in order to obtain fine spatio-temporal images [109], [64]. Spatio-temporal fu-

sion has many applications in change detection for land coverage. But it is also

highly advantageous in the assessment of disaster damage such as flood detection,

building damage and more, due to the changes that occur following disasters

[110].

Another type of fusion is cross modality fusion where data from different

sensors, namely optical and radar sensors are combined. Where optical images

often suffer limitations due to weather effects, radar images suffer instead with

low spectral resolution. However, each of their limitation is complimented by the

other, which has motivated researchers to obtain high-quality images through the

fusion of optical and radar images [59], [82]. The application of this particular

fusion method is highly advantageous in monitoring floods, tsunami, hurricane etc.

where weather conditions are not favourable and optical images fail to capture

fine images [82].

Most of the research work mentioned to this point was based on classical

methods, but recently tremendous amounts of interest have been seen in applying

deep learning to learn and recognise the intrinsic pattern in the underlying data.

Some of the recently proposed networks for spatio-spectral fusion include the

multiscale and multidepth convolutional neural network (MSDCNN) [105], and

the two-stream fusion network (TFNet) [67]. Similarly for spatio-temporal fusion,

Liu et al. [69] proposed the spatial-temporal fusion net (StfNet) with a two

stream CNN, and Li et al. [64] proposed a temporal framework based on a deep

CNN. A numbers of works on optical/radar fusion has also been investigated

with deep learning methods [88], [43], [45].

Although all these methods are studied well, there are still very few works

which attempt to combine all into a single model– though some of the work

shows the possibility of combining multiple aspects in a model [5], [85], [80]. The
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importance of the fusion of multiple data sources however is of vital importance

as it is expected to lead to more robust modelling as is required for domains such

as disaster analysis.

2.3 Satellite Images with Deep Learning

Traditionally, satellite image analysis has been manual or at least benefited from

a hand crafted feature extraction process. But with the advancement in machine

learning, many researchers explored the possibility of satellite data analysis

through machine learning. There are a number of techniques commonly applied

to satellite images but the most popular are support vector machine (SVM),

random forest (RF) and neural networks. A comparative analysis by Bangira et

al.[4] has been performed for different traditional ML algorithms such as decision

tree (DT), k-nearest neighbours (KNN), RF, and SVM. These were applied

to different water index techniques such as normalised difference water index

(NDWI), modified NDWI (MNDWI), which showed that SVM outperformed all

other model [4]. SVM is mainly based on establishing a decision boundary with the

maximum distance between two classes that minimises misclassifications. Notably,

it can handle non-linear and high-dimensional tasks with limited amounts of data.

There are many research works that have shown the high performance of SVM in

remote sensing tasks [2], [76], [84], but they are highly dependent on hand crafted

feature extraction, eg. HOG, Gabor feature and Hough transform, etc. and kernel

selection. Also, with the increase in dimensions as seen in hyper-spectral or

multi-spectral images, SVMs have increasing issues with noisy data and high

computational requirements [76].

More recently, deep learning (DL), which is the form of classical artificial

neural network (ANN), has attained great performance in several tasks ranging

from computer vision, through speech recognition, natural language processing

(NLP), to machine translation. The key reason for these successes is due to the
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ability of the neural network to self learn complex patterns within data without

requiring hand crafted features. Also, they are versatile in nature due to their

robustness and scalability, ease in fine-tuning hyperparameters, and knowledge

transfer. Although the initial training process for DL models is expensive in terms

of time and computational requirements, they can easily be applied to real-world

applications with a fast inference time.

Most DL models are based on stacking multiple neural network layers with

suitable architectures to gain optimum performance with a minimised error rate.

Among the many deep learning architectures, convolutional neural networks

(CNNs) have shown excellent performance in computer vision tasks such as image

recognition [91], [38], image detection [90], [98] and segmentation tasks [73], [34].

A basic CNN architecture is a multi-tier network, consisting of convolutional

layers, pooling layers and one or more fully connected layers (FC) layers. The

power of the CNN is based on learning the local features (eg. edges, lines) of

images and then combining them to learn high-level features under the assumption

that low-level features are spatially invariant, with their position relevant only

in terms of relation to other features [62], [61]. The concept of a local receptive

field, shared weights and spatial sub-sampling of CNN make them robust and

applicable to a number of domains such as medical imaging, remote sensing, face

recognition, historical data collection analysis and many more.

Since CNNs are highly scalable, many variant CNN architecture have been

proposed over the last ten years, in terms of scaling width and depth, reducing

parameters and minimising error rate or loss. Some of the popular architecture in

image recognition are AlexNet [58], VGG [91], ResNet [38], DenseNet [42], and

EfficientNet [94] etc. With the introduction of image recognition challenge on

ImageNet [21] data, which is a library of million images, AlexNet showed the

highest initial performance amongst CNNs. Following this, many deep networks
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(eg. VGG, ResNet) were introduced in order to overcome the drawbacks seen in

former models.

The wide use of CNNs image processing has led to many research efforts in

their analysis of satellite imagery for disaster analysis [26]. One such application

area is change detection in time-series images [57], [99]. Change detection using

CNNs significantly helps in automating flood detection and mapping [85], [65],

building damage assessment models [28], [55], and extracting road networks and

mapping passable roads [75].

Among the popular deep CNNs, VGG and ResNets have been very popular in

most computer vision tasks as well as in remote sensing. Although VGG suffers

from vanishing gradients, and has a high training time, several applications

showed its potential in remote sensing tasks [68], [79], [95]. Building on the early

VGG models, the so called ResNets overcame the vanishing gradients issue with

skip connections to allow deeper networks with in some cases 100s of layers.

ResNets typically reduced the size of parameters to provide faster training time

while facilitating in some cases error rates below a human error rate. Considering

these factors, many works utilised the skip connections concept in multispectral

image processing such as in MRI [47], and reconstruction of hyper-spectral images

from RGB images [36]. Also, evaluation of EuroSat data, which consists of a

large amount of high resolution images for land cover classification, showed

that ResNet50 outperformed other larger models on classification with 98.57%

accuracy, in spite of it having many fewer layers than of the competing networks

[40].

The relative lack of research in applying CNNs to satellite data for disaster

analysis is due to the fact that labelled data is scarce in satellite imaging and

especially for disaster analysis. But recently, high-resolution satellite images have

been made freely available from satellites like Sentinel, Landsat, MODIS; yet still
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it is difficult to get annotated data for particular domains of work. To bridge this

gap in the availability of annotated datasets for research, many competitions are

being held. These competitions include DeepGlobe [20], MediaEval [6], xView2

[35], and many more. Recently, datasets such as EuroSat [40], BigEarthNet [93],

Sen12MS [87] have also been released which include diverse land coverage and

multi-modality. These competitions and datasets provide labelled datasets for

scene classification, building damage mapping, flood detection and mapping, land

coverage mapping and classification, cloud segmentation, agricultural land cover

and so on. It is notable however that these datasets are still small in terms of the

size and variety of labels in comparison to traditional datasets such as ImageNet.

2.3.1 Transfer Learning

Originally deep learning CNN models were designed only for either grey-scale

or RGB images but due to the availability of more spectral information their

application has expanded to multi-spectral or hyper-spectral imaging [86], [100],

[98], [89]. CNNs have shown good performance in multi-spectral image recognition,

multi-spectral image segmentation, and in a number of remote tasks in both the

EO and medical domain [56], [47], [18]. Many different CNN variants have been

proposed for remote sensing classification such as the work by Zhang et al., which

showed the potential of combining CNN with a multilayer perceptron (MLP) for

processing spectral bands [107]. Another approach proposed by Jiang et al. takes

advantage of the fusion of features from RGB and NIR images with double channel

CNN models [53] for scene classification. There is however very little research

that has utilised the full spectral capacity of multi-spectral images; instead bands

are mostly selected manually to enhance performance. While this is not an ideal

approach, it has to this point been a necessity due to the low availability of

data and the high computational cost of training models from scratch. Within

this approach, work by Mahadianpari et al. showed that increasing spectral
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information improves performance when trained with pre-existing deep CNNs for

wetland classification [70]. Another recent work proposed Sen2HSE-Net, which

utilises 10 spectral bands of sentinel-2 for mapping human settlement extent with

the help of a CNN architecture [81]. Chen et al., meanwhile showed the potential

of 3D CNN for feature extraction and scene classification in hyperspectral images

[17]. These works clearly highlight the suitability of CNNs for multi-spectral

satellite image classification tasks, however, it should be kept in mind that each

classification task has different architectural requirements and there is clearly a

lack of a more systematic generalised representation, comparable to those derived

from the ubiquitous ImageNet [21].

Considering the issue of scarcity of labelled satellite data, transfer learning

can have great potential through the application of pre-trained models that have

already been trained on large volume datasets from other sources. Some of these

large volume datasets as mentioned earlier are ImageNet [21], MS Coco [66], and

Pascal VOC [29] which consists of millions of labelled images. These datasets are

used to train deep learning models to learn generic features from the data, and

then their learned weights can be utilised to bootstrap task-specific models. This

phenomena of transfer learning have shown a great advantage in many domains

such as medical imaging, self-driving systems, and more. It has also useful for

satellite image problems and it has been shown that models trained on ImageNet

can give better results than training from scratch [41], [68], in-spite of the fact

ImageNet is quite a different dataset from the data obtained in satellite imaging.

The drawback of transfer learning centres on the number of channels, since

all the pre-trained models, as mentioned above are trained on three colours only

i.e. RGB; it is thus not possible to utilise them directly for multispectral images;

instead they can only be applied to a selected three bands. This issue of transfer

learning again leads to under-utilisation of multispectral data. The solution to this
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challenge may be to construct suitable pre-trained networks from multi-spectral

and other satellite data. However as indicated previously, having a large amount

of labelled satellite data is difficult to amass in the remote sensing domain, which

in turn suggests that we explore methods for training with unlabelled data or at

least minimal amounts of labelled data.

2.3.2 Semi-Supervised and Self-Supervised Learning

Recently, semi-supervised learning (SSL) has become popular to resolve the

traditional dependency on large amounts of labelled data, hence making models

more generalisable. Semi-supervised learning lies between supervised and unsuper-

vised learning, which exploits both unlabelled and labelled data. Semi-supervised

learning can be broadly divided into inductive and transductive methods, where

inductive methods try to optimise over classification model whereas transductive

methods optimise over the predicted labels from unlabelled data [96]. Previously

wrapper methods and graph based methods were quite popular in SSL, but

with the recent advancement of neural networks, perturbation based and pseudo

labelling based methods have gained popularity. Perturbation based methods

are based on the weak smoothness assumptions, which says that small changes

or distortion in data should not change the labels of the data [96]. Whereas

pseudo labelling methods are based on assigning the artificial (pseudo) labels to

unlabelled data through an initially trained model on small amounts of labelled

data. This model is then trained on labelled data, along with pseudo labelled data

[92]. Recently hybrid models have been quite popular; in particular, methods that

have utilised pseudo labelling and perturbation methods together [8], [92]. These

methods have shown state-of-art results against supervised learning by tweaking

cost functions with unsupervised loss terms [96]. The main approach of these

models remains focused on pseudo labelling, consistency regularisation, entropy

minimisation and various augmentation theories [92]. Considering the general
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concept of perturbation, FixMatch [92] utilises strong augmentation i.e. heavily

distorting an image using CutOut [22], CTAugment [7] and RandAugment [19]

and weak augmentation by flipping or rotating the images. The performance

of FixMatch with different augmentation shows the applicability of smoothness

assumption and can be beneficial in the case of satellite data because of variable

resolution and spectral data.

Alongside semi-supervised learning, there has been considerable interest in

self-supervised learning methods [106]. The goal of self-supervised learning is to

learn the invariant representations of data, which then can be used for downstream

tasks. The most popular methods for self-supervised learning are pre-text task

learning and contrastive learning. These types of learning are again based on

the smoothness assumptions that perturbation or augmentation of images do

not change their labels. Pre-text tasks are useful in learning semantic invariant

representations in visual data by dividing them into learning pre-text tasks

such as rotation [32], colourisation [108], solving a jigsaw puzzle [77] and more.

Recent works also showed the possibility of combining the self-supervised pre-text

tasks along with semi-supervised learning techniques in order to learn better

representations [106], [14].

Contrastive learning is based on the concept that an image and its augmented

view (positive pairs) should have closer similarity, while two different images

(negative pairs) should be much further apart [13]. This concept has led to a surge

in various self-supervised architectures recently, such as SimCLR [13], MoCo [15],

SwAV [11], BYOL [33], and SimSiam [16]. Where SimCLR and MoCo are based

on positive and negative pairs of images, BYOL and SimSiam are based on only

positive pairs of images. All these methods show outstanding performances while

optimising the learning process by reducing the complexity of an architecture in

terms of batch size, memory requirements, and training time.
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Although their application in satellite imagery is not well explored, some work

have recently shown the potential of self-supervised learning in satellite imagery

such as that of Bischke et al. [9] where distance learning was used along with a

building footprint segmentation task. Also recently, Vincenzi et al. [97], utilised

a colourisation pre-text task to learn representation to recolour images based on

the assumption that spectral and semantic connection strongly exists in satellite

images [97]. Another work by Ayush et al., [3], utilised temporal information as

the basis of a self-supervised task with contrastive learning, which showed the

potential of using pre-text tasks with contrastive learning.

While this review has shown a great many advances in the processing of

satellite imagery, the automated high-quality processing of satellite data from

applications as wide as disaster management to ocean observation is far from a

completed task. In particular, since satellite data comes with multi-spectral, multi-

resolution, multi-modal, and multi-temporal aspects, fusing these aspects may

be essential in providing high-quality semantic information for EO applications.

Although previous work highlighted the potential of data fusion to obtain fine

spatio-spectral-temporal information from satellite images, there remains a lack

of generalisation across different sensors. Also, most of the previous works were

limited to the fusion of one or two aspects, and knowledge transfer was limited

across spectral and model bands in the EO domain. The major cause of not

having generalised models is the limitation of labelled data in the EO domain.

So to solve both aspects, that is generalisation and scarcity of labelled data,

the idea of knowledge transfer by utilising the concept of semi-supervised and

self-supervised learning with a range of data sources is one potential solution.
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3 Research Question

We have seen that satellite imagery can be thought of as having multiple aspects,

namely, multi-spectral (MS), multi-resolution (MR), multi-temporal (MT), as

well as being based upon fundamentally different sensor technologies or models,

e.g., radar vs optical imaging. While these are seemingly very different aspects,

the resultant data is highly correlated, which can be used to maximise information

from satellite imagery for a particular task such as disaster analysis. Many work

have shown the potential for the fusion of one or two aspects together, but little

work has been done in utilising multiple aspects of satellite data together. There

are mainly two challenges in fusing different aspects for a disaster relief task: i)

complex data structures, and ii) the scarcity of labelled data. In order to overcome

both of these issues, the creation of a generalised model that is trained, specifically

on the earth observation (EO) domain can be seen as one solution. Here the

concept of building and then applying a generalised model can be interpreted as

transfer learning, but usually the construction of the pre-trained model in the EO

domain would require a large amount of labelled data, which is scarce. To resolve

this scarcity of labelled data, one can leverage self-supervised and semi-supervised

learning methods. These techniques recently demonstrated tremendous potential

to move machine learning towards generalisation by utilising a large amount of

unlabelled data.

Concerning the above issues, in this research work, I aim to investigate and

build upon the transfer learning phenomena, with the help of self-supervised

learning, in order to solve the scarce labelled data problem in multi-dimensional

satellite imagery. As such, I hypothesise that a model trained on two or more

aspects of satellite image data can be applied to other aspects as well as for

downstream tasks in disaster analysis. This work in return can benefit domain

adaptation across different satellite data sources, and more specifically across
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different disaster analysis domains. With this established, the research question

can be phrased more concretely as follows:

How can disaster analysis from satellite data sources leverage trans-

fer learning using semi-supervised and self-supervised learning tech-

niques to provide greater scalability and cross-domain utility while

minimising the need for labelled datasets?

In order to approach the research question, it has been broken down into the

following sub-questions:

1. RQ 1: How can traditional satellite data processing methods such

as indexing techniques benefit the machine learning approach to

disaster analysis? Among several multi-spectral satellite image processing

techniques, indexing techniques such as NDWI, NDVI, Normalised Burn Ratio

(NBR) have been very popular and shown good accuracy. Considering the

efficiency of these traditional techniques, it would be beneficial to investigate

their application further with machine learning for disaster analysis tasks.

2. RQ 2: Given the multi-aspect and specifically multi-spectral nature

of satellite imagery data, what is the overall benefit of applying

traditional transfer learning methods to the satellite data process-

ing challenge? Over time, transfer learning has benefited several domains by

applying pre-learned features to task-specific model creation and fine-tuning.

Considering the richness of information content in satellite data and the

scarcity of labelled data in the EO domain, it is essential to investigate the

traditional transfer learning models, i.e. pre-trained model on ImageNet data,

in order to tackle disaster analysis tasks.

3. RQ 3: How can feature representations learned from one type of

spatio-spectral data be applied to data with other spatio-spectral



20 P. Jain

properties, and indeed modalities, for downstream tasks to assist

in disaster analysis? Spatio-spectral information works wonders in distin-

guishing several geographical features in traditional handcrafted techniques.

Hence learning spatio-spectral representations can be highly advantageous

for EO domain tasks. However, a problem exists in the size of data required

to learn those representations. Although pre-trained models have shown great

performance in several domains including EO, they are not optimised for the

EO domain since they consist of only optical data, i.e. RGB images. Consid-

ering this, I hypothesise that having features learned from spatio-spectral

data specific to the EO domain can easily be transferred to other aspects

of satellite data to solve multiple EO domain problems including disaster

analysis.

4. RQ 4: How can semi-supervised and self-supervised learning be

used to reduce the large labelled dataset dependency and provide

for robust performance compared to supervised learning for the

EO domain and especially for different disasters? It is commonly

understood, that a lack of data can reduce the performance of supervised

learning models significantly whereas transfer learning improves performance.

But as mentioned, pre-trained models are generally limited to RGB and

hence non-EO domain, which motivates our investigation of semi-supervised

learning to learn spatio-spectral features for disaster analysis. By this, I also

hypothesis that semi-supervised and self-supervised learning methods will

improve the robustness of models due to active learning as compared to

supervised learning.

5. RQ 5: How can generalisation across different disasters be achieved

through transfer learning from EO trained models? So far models

are limited to one disaster domain and there is no single model for different

disasters. One promising direction is to investigate the application of spatio-
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spectral features learned from one disaster to other disasters as downstream

tasks.

To address these research questions, I believe that deep learning is an appro-

priate computational framework due to its ability to self-learn complex patterns

within data without requiring hand-crafted features. Deep learning methods also

show the state of the art performance in several satellite imaging and fusion

tasks due to their robustness, scalability, ease in fine-tuning hyper-parameters,

and knowledge transfer properties. Fortunately as also seen there exists a wide

number of EO datasets. While these are not all labeled, they do provide a firm

foundation for studies.

4 Work Done To Date

Given the research questions above, my initial research focused on the applicability

of the multi-spectral aspect of satellite imaging for flood detection along with

the comparison between transfer learning and model training from scratch [51],

[52]. I also investigated several deep learning architectures to explore the impact

of supervised learning with multi-spectral data for disaster analysis in floods. In

the following, these initial research activities are expanded upon.

4.1 Multi-Spectral Satellite Images and Flood Detection

To address research question 1 & 2, my initial work carried out an investigation

of the benefit of indexing techniques in multi-spectral satellite images; along

with traditional transfer learning methods i.e., pre-trained deep learning models

trained on RGB images from the ImageNet dataset, to use with multi-spectral

and multi-resolution data.

From this work I looked at data from a flood detection task, which was sourced

from the MediaEval 2019 competition– the competition provided the labelled
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multi-spectral data as mentioned in Section 4.1.1. Multi-spectral satellite data

as introduced earlier varies in terms of its reflectance and absorption properties

at different frequencies, eg., NIR absorbs water and reflects vegetation. Such

properties of multi-spectral data help to separate different geographical features

and land use types. In this work I considered in particular the challenge of

identifying water bodies and the detection of floods. This is one particular

challenge type, but in general the detection of land usage type and major changes

of use is applicable across a range of disaster management scenarios. Although

there have been many works which have shown the potential of identifying water

bodies from multi-spectral images, floods are still difficult to identify due to

shallow water, clouds, or building shadows and mixed pixels [74], [9], [4].

With the focus on the automatic flood detection task, and given the two

research questions in MS satellite imagery, I proposed two methods. Firstly, I

proposed an index for flood detection, and secondly, I explored different com-

binations of spectral bands, which can be applied with pre-trained deep CNN

models to learn features for floods. For water indices, the final image obtained is

grayscale whereas with spectral band combination the ideal image should consist

of 12 spectral image channels. However, due to the fact that I utilise pre-trained

models, which are limited to three channel information only, grayscale channels

were tripled and for raw bands, I utilised three spectral bands at a time. This

led me to identify the best tri-band combination in order to detect floods in

images. Also, with the many variants of deep learning models, it is necessary

to choose the right model for the tasks. For that, in this work I explored the

popular VGG16, ResNets, and EfficientNets architectures.

With this as the overall goal, I further worked with three sub-questions:

1) Can classic flood detection methods benefit from enhancement with deep

learning based image processing?
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2) Can existing pre-trained models be leveraged for multi-spectral flood damage

analysis, and if so, which three spectral bands combinations are most suitable

for flood detection?

3) How do pre-trained models perform as compared to models trained from

scratch for spectral band combination based detection?

In the following, I first give an overview of the dataset used for this work, before

expanding on the analysis and results with respect to these three sub-questions.

4.1.1 Dataset Overview

SENTINEL-2 is a satellite platform that provides multi-spectral instrument

(MSI) data with 13 spectral bands. Among the 13 spectral bands, four bands

are at 10 metres, six bands at 20 metres and three bands at 60 metres spatial

resolution. For flood detection, I leveraged the annotated dataset provided by

the MediaEval1 2019 competition [6]. This dataset consists of 335 image sets

with 267 identified as development sets and 68 as test sets. Each set consists

of between 1 to 24 day time-series images of before and after flood events; this

provides a total of 2,770 images. The data has 12 bands as shown in appendix

A.1, which comes in three different sets of resolutions: 10 metres, 20 metres and

60 metres. Each 10-metre resolution image is 512 x 512 pixels in size, 20-metre

resolution images are 256 x 256 pixels, and 60-metre images are 128 x 128 pixels

in size. The provided dataset includes ground truth only for the development

dataset. Therefore, in this work I utilised only the development dataset which is

subsequently split into three parts, i.e. training, validation, and test, in the ratio

of 80:10:10. Additionally, I pre-processed the data with the following steps:

– Upscale the low-resolution bands to 10m resolution using nearest neighbour

interpolation.
1 http://www.multimediaeval.org/mediaeval2019/
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– Normalise each band’s pixel values between 0 and 255.

– Augment images by shifting, rotating, and flipping the images with batch

sizes of between 8 and 16 in order to increase the size of the training dataset.

4.1.2 Water Index Driven CNN Analysis

While the primary focus is on deep learning driven solutions, the reality is that

hand crafted functions have been used in multispectral data analysis for the last

40 years. Rather than ignoring such research, I ask whether it is advantageous

to pre-process image data to generate such index features prior to deep image

analysis rather than simply processing the raw spectral information. This work

was presented in the Symposium of Applied Computing (SAC 2020) conference

[51].

Over time many water indices have been proposed for water bodies detection.

For example, normalised difference water index (NDWI) [71] showed good results

in mapping water but suffered from giving water bodies and built-up areas similar

values. Xu meanwhile proposed modified NDWI, which used SWIR and the Green

band to improve mapping and overcome the built-up area problem [103], while

Mishra & Prasad [74] used the combination of NDWI with Blue/NIR spectral

indices to detect shallow water [74]. Similarly, the AWEI technique by Fyesia

et al. [31] helps in overcoming the cloud shadow problem by calculating indices

using coefficient values for different bands [31]. However, all these indices are

primarily designed for water bodies instead of flood detection. Floods requires

different approaches to be map from or detected in satellite images [9], [65].

With my focus on flood detection, in this work I proposed an index (PI),

motivated by the work of Mishra & Prasad, i.e. MI, by integrating two indices,

MNDWI and an index based on Blue/NIR. The reason for using MNDWI instead

of the originally used NDWI is because SWIR is good at separating built-up

areas from water, and has a capability to capture moisture in the soil, which can
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be an important factor with the flooded region. Another property of SWIR is

that it can pass through thin clouds, which is important as during floods the

region is typically covered with clouds due to weather conditions. Moreover, as

Mishra & Prasad showed that combining NDWI with Blue/NIR improves the

mapping of the shallow water body, it is appropriate to utilise Blue/NIR with

MNDWI. The proposed index (PI) is described by the following functions:

PI =
Green− SWIR

Green+ SWIR
+

Blue−NIR

Blue+NIR
(1)

Thus, I pre-process four input data channels to provide a single PI channel which

is used in subsequent modelling.

For the image processing backbone, I utilised the popular VGG16 model with

pre-trained weights based on ImageNet and froze the first four blocks in the

VGG16 model while leaving block 5 trainable to allow task specific features to be

learned. Global average pooling was used to reduce the overfitting of the model by

reducing the total parameters. After the VGG16 blocks, I used a fully connected

layer of 128 units followed by a dropout layer with a dropout parameter of 0.5, and

finally a softmax layer 2. Rectified linear unit (ReLU) were used as the activation

function in all but the final layer, and I made use of the Adam optimiser to guide

the training process. As the problem was a binary classification problem I used

the binary cross entropy loss function. This architecture is depicted in Figure 1.

Fig. 1: Model Architecture For Flood Detection with Water Index Technique

2 Since this was a binary classification problem, a single logistic unit could have been
used here and was indeed used for all future studies.
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As these pre-trained models were designed for RGB images (i.e, three channel

images) whereas index images are single channel, as part of pre-processing I

duplicated the PI image to each channel in order to feed them to the model

architecture.

Results showed that the water index flood detection model outperformed all

prior work which had aimed to make use of the water index model directly as

shown in Table 1. To provide some insights into the potential causes of improved

performance, I further analysed the histograms of indices values in Figure 2 for

different geographical features. I found that the proposed model approach reduces

the noise in the images and clearly distinguish between clouded and cloud free

water images. The approach causes the cloud index count to move near to zero

with water values remaining positive, while everything else remaining negative. I

argue that this reduces the likelihood of misclassification of water areas due to

either built-up areas or cloud shadows.

Index Type TP TN F1 Kappa
NDWI [71] 0.84 0.78 0.80 0.59
MNDWI [103] 0.76 0.96 0.88 0.74
AWEI [31] 0.74 0.90 0.83 0.66
Mishra et al. [74] 0.83 0.94 0.90 0.79
Li et al. [63] 0.92 0.84 0.87 0.71
Proposed 0.93 0.98 0.96 0.92

Table 1: Evaluation of Water Indices Techniques with VGG16 Model

4.1.3 Tri-Band Estimators for Flood Detection

Whereas the first study considered the benefit of applying a deep image processing

architecture to pre-processed water index data, the second study instead broad-

ened the approach to allow the model to determine the best possible combination

of input channels while taking advantage of pre-trained CNN features. This work
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(a) Clouded Image (b) Cloud Free Image

(c) Clouded Histogram (d) Cloud Free Histogram

Fig. 2: Proposed Index. The index makes water values positive while non-water region
negative. Red line is a threshold for water and non water region.

was presented in Machine Learning for Earth Observation (MACLEAN 2020)

[52].

In order to utilise these pre-trained models, I stacked three different bands

together to form three channel combinations. By stacking three bands together,

I got 33 different band combination out of 10 base bands. The selection of

33 combinations out of 120 was made by evaluating the performance of all

combinations and selecting those combinations which had an F1 score greater

than 0.75.

I proposed the architecture as shown in Figure 3, where I fed the 3 band

combination to different CNN models, i.e. VGG16, ResNet18, ResNet50, and

EfficientNetB0 (Baseline). Global average pooling was used at the output of each

pre-trained model, which was then fed to a fully connected layer of 512 units

with a ReLU activation function. In order to avoid over-fitting during training,

a dropout of 0.5 was used. The final output layer used a sigmoid function for
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binary classification. The model architecture remains the same for models trained

from scratch or with models that made use of pre-trained weights.

Fig. 3: Model Architecture For Flood Detection with 3 Band Combination

Again, the rectified linear unit (ReLU) was used as an activation function for

all but the final layer and the Adam optimiser was applied to guide the training

process. Binary cross entropy function was used to calculate the loss.

Figure 4 shows the F1 score spread of 33 band combinations across the four

pre-trained models for each architecture variant. Each model had its own band

combination, that outperformed all other combinations but a few combinations

showed an overall better score across all models. Such combinations are RB11B,

RB8aB11, and B7B11B, while combinations like RGB, RB12B and B8B11B

showed the overall worst performance across all four models.

Since SWIR bands are known for good performance on water identification, the

best performance of all three combinations (RB11B, RB8aB11, and B7B11B) are

justifiable. But that doesn’t make all combinations with SWIR good performers,

evaluation results showed that RB12B and B8B11B were the worst performers

among 33 band combinations, which highlights the need for meaningful band

combinations to detect flooding. Similar to SWIR, combination with NIR were

expected to perform well, but this was not seen in practice as we look at the top

5 combinations in the boxplots. Instead, narrow-band NIR (NNIR) shows better
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Fig. 4: Boxplot of 33 band combinations showing F1 score from all four models (VGG16,
ResNet18, ResNet50, and EfficientNetB0)

performance. Individual bands are known to have specific abilities to identify

types and hence to be useful in object detection, but single bands in themselves

are insufficient for useful detection, and instead requires useful combinations.

With that, I argue that to identify shallow water bodies such as floods, RB11B,

RB8aB11, and B7B11B combinations are better identifiers with deep learning

models.

Fig. 5: Model Performance Across all 33 Combinations
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Figure 5 shows the overall performance of the four pre-trained architectures

across all 33 band combinations. This shows that ResNet18 and ResNet50 had

similar results but by examining the top-10 best performing combination in Table

2, I see that the top 3 results are from ResNet18 and those are also the best

combinations according to the boxplot comparison in Figure 4. One potential

reason for ResNet18 outperforming ResNet50 is that ResNet18 better generalised

with the relatively small training sets.

Combination Model F1 Kappa TN TP
RB8aB11 ResNet18 0.96 0.913 0.95 0.97
RB11B ResNet18 0.96 0.912 0.97 0.94
B7B11B ResNet18 0.954 0.905 0.95 0.95
RB8aB ResNet50 0.954 0.90 0.96 0.94
B11GB ResNet50 0.95 0.89 0.95 0.94
B7GB11 ResNet18 0.95 0.89 0.96 0.93
B8aGB ResNet50 0.945 0.884 0.95 0.94
RB8B11 ResNet18 0.944 0.882 0.92 0.98
B7B8B11 VGG16 0.944 0.88 0.97 0.90
B7B8aB11 EfficientNetB0 0.943 0.88 0.94 0.95

Table 2: Top-10 Best Performing Combinations in Terms of F1 and Kappa with Pre-
Trained Models

4.1.4 Usefulness Of RGB Based Pre-Trained Models

Considering the overall best performance of RB8aB11 combinations, I trained

VGG16, ResNet18 and ResNet50 from scratch on RB8aB11 and compared results

with similar models derived from pre-trained weights.

The models ran with varied epoch lengths in order to find the best performance.

The results are presented in Figure 6. Here it can be seen that among the three

models, ResNet50 showed the best performance, but it could not compete with

the pre-trained models with the performance of 0.96 F1 score that was shown

for the previous study in Table 2. Also, it can be noted that among pre-trained
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models, ResNet18 performed better than ResNet50 when trained for 100 epochs.

Whereas in the case of ’from scratch’ models ResNet50 performed better when

trained for 500 epochs. By that, I argue that the pre-trained model requires less

deep models, while training from scratch requires deeper models to perform at

their optimum level.

Fig. 6: Validation Results for Models Trained from Scratch on RB8aB11

4.2 Social Media Disaster Tweet Classification

My second distinct branch of research activity took the multi-modality of data

for disaster analysis to perhaps its most extreme case and investigated issues

relevant to representation use when applied to social media content that encodes

information about disasters. It is worth noting that this work was performed

prior to the identification of the main research questions that are now being

proposed in this work.

As social media has grown tremendously, it has also become one of the major

sources of information in disaster management. Previous work has shown the
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importance of social media in disaster management due to high uses of social

media to post disaster related updates, or to ask for or to provide help. Even

rescue agencies use social media platforms to spread information. However, social

media can also be a source of fake or non-informative information that can

obscure the truly valuable content. For this reason my initial research focused on

an investigation of disaster related social media content analysis to determine

whether the level of informativeness could easily be estimated and hence factored

into a complete framework for multi-modal disaster data integration.

Specifically, my initial work focused on the classification of Twitter disaster

related tweet data into a two level classification, i.e., informativeness and type of

information, where the type of information can be further categorised into affected

individual, caution and advice, donation and volunteering, and sympathy and

support. This particularly classification approach had already been proposed by

Imran et al., [46]. Hence from my perspective, this study was mainly carried out

to understand the impact of different textual feature representation techniques

for disaster related social media data. Given the potential uniqueness of disaster

related social media with novel terminology and a lack of time for composing

grammatically well-formed tweets, I believe that the approach to analysing tweet

data in this context is vital.

This study analysed two aspects of textual representations, that is: 1) com-

parison of the feature representation techniques Bag-of-Words (BoW), Term

Frequency-Inverse Document Frequency (TF-IDF), pre-trained Word2Vec model

trained on Google news data, and Doc2Vec; and 2) comparison of pre-trained

distributed representations, i.e., Word2Vec, GloVe, ELMo and BERT. ELMo and

BERT are recent state-of-art transformer techniques, which have shown great

performance in several domains.



Confirmation Report 33

For this work I utilised the benchmark CrisisLex [78] and CrisisNLP [46]

datasets. These datasets consist of tweets relating to earthquakes, floods, and

storms over a three years time period (2012 - 2015). I used a total of 15 Twitter

datasets of different disasters (earthquakes, floods, and storms) where 6 datasets

were taken from CrisisLex [78] and 9 datasets were taken from Crisis NLP [46].

Each dataset consists of data labelled according to the informativeness of the

tweet on the particular event, and according to the type of information in each

tweet. For transparency in results, I split the data in two ways: 1) Leave one out

(LOO), and 2) Cross Disaster. In the case of LOO, I trained the model on 14

datasets out of 15 and kept back one dataset as a test dataset. Consequently,

the model trained 15 times, and I obtain 15 test scores from which I calculated

the average weighted F1 score of all test results. In the case of Cross Disaster, I

trained the model on one type of disaster data at a time and tested the model

on different disaster datasets individually. From this, I subsequently calculated

the average of weighted F1 score over all test results.

4.2.1 Comparison of Feature Representation Techniques

For the first study, that is the comparison of the feature representation techniques

BoW, TF-IDF, Word2Vec, and Doc2Vec, I also compared the performance based

on unigram, hybrid unigram and bigram features to add a word-to-word relation

feature and part of speech (POS) tagging, which capture the syntactic behaviour

of words. However for Word2Vec, POS tagging was not used, since the pre-

trained model does not support this. The actual classification model was based

on logistic regression which was fed with data processed through the different

feature representations.

Word2Vec with Unigram encodings outperformed all other representations as

shown in Table 3. This I believe was due to the fact that a pre-trained model is

trained on a comparatively large corpus, which creates a much improved context
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similarity representation. However, Word2Vec struggles with out of vocabulary

words, which are more prevalent in text from a Twitter feed, as such data contains

human created hashtags and slang words. Meanwhile, there is very little difference

between hybrid n-gram and unigram. This could be due to the use of a pre-trained

model, which does not consist of words related to hashtags and bigrams. This

work was presented as a poster in the International Systems for Crisis Response

and Management (ISCRAM 2019) [49]

Data Trained On: Earthquake Flood Storm LOO Avg F1
Feature I IT I IT I IT I IT
BoW Hybrid 0.66 0.63 0.7 0.69 0.71 0.66 0.76 0.73
BoW Unigram 0.67 0.64 0.68 0.71 0.67 0.66 0.76 0.74
BoW POS 0.67 0.63 0.69 0.71 0.75 0.67 0.77 0.74
Doc2Vec Hybrid 0.72 0.61 0.68 0.66 0.67 0.66 0.79 0.71
Doc2Vec Unigram 0.71 0.62 0.68 0.66 0.65 0.66 0.78 0.71
Doc2Vec POS 0.72 0.61 0.67 0.67 0.63 0.66 0.78 0.71
TF-IDF Hybrid 0.69 0.54 0.72 0.62 0.62 0.6 0.79 0.74
TF-IDF Unigram 0.72 0.58 0.73 0.69 0.62 0.65 0.79 0.75
TF-IDF POS 0.72 0.58 0.72 0.7 0.72 0.65 0.79 0.75
Word2Vec Hybrid 0.76 0.68 0.75 0.73 0.81 0.7 0.8 0.76
Word2Vec Unigram 0.78 0.7 0.75 0.73 0.81 0.71 0.81 0.76
Word2Vec POS NA NA NA NA NA NA NA NA
Average F1 score for I = Informativeness Classification,

and IT = Information Type Classification
Table 3: Comparative Results for Different Feature Representations with Cross Disaster
and Leave One Out

4.2.2 Comparison Of The Pre-Trained Distributed Representations

For the second study, I utilised a number of pre-trained distributed representations,

namely Word2Vec, GloVe, ELMo and BERT, to perform a similar study with two

level classification into informativeness and information type. More concretely,

I made use of the following embedding specifications: (a) GloVe, which was

trained on 2 billion tweets, 27 billion tokens, 1.2 million words and with 200
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dimension vectors; (b) Word2Vec, which is a pre-trained model which includes

300 dimension word vectors for a vocabulary of 3 million words and phrases, and

has been trained on 100 billion words from a Google News dataset; (c) ELMo

(Small), which was trained on a raw 1 Billion Word Benchmark [12] and which

has a 1024 dimension output vector; and (d) BERT (Base), which is trained on

the concatenation of BooksCorpus (800M words) [111] and English Wikipedia

(2,500M words) and uses 12 transformer blocks, a hidden layer of size 768 with a

filter size of 3,072, and 12 self-attention heads.

With the objective of evaluating the strength of embedding models for disaster

tweet data, I utilised a vanilla feed-forward neural network (FFNN) for the actual

classification task. The FFNN is chosen due to a desire to reduce the complexity

as ELMo and BERT themselves are computationally expensive, and to provide

transparency of the model. I used the model architecture as shown in figure 7, but

I fed each pre-trained embedding layer to two fully connected (FC) layers of 128

units. As the activation function, I utilised Leaky ReLU with alpha=0.1 after each

layer to overcome the dying ReLU problem i.e. instead of having zero slope for

each x<0, Leaky ReLU uses a small negative slope. In order to avoid over-fitting,

I applied both a dropout of 0.5 after each FC layer, and L2 regularisation of

0.001 in each layer. For the output layer, a softmax function was used with an

output of 2 or 5 dimension logit, depending on the classification task. The Adam

optimiser and categorical cross-entropy loss function were used for training. Since

ELMo and BERT require the additional parameter of maximum sequence length

to process the input sentence at once, I set the maximum sequence length to 128

characters, which is based on the Twitter word limit.

The results from the LOO training approach showed that ELMO outper-

formed in the informativeness classification task, while Word2Vec outperformed

in information type classification. However, there was not too much difference in
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Fig. 7: Study 1.2 - Model Architecture

the results among different embeddings. Meanwhile, results from cross disaster

training showed similar outcomes with mixed results between Word2Vec, GloVe

and ELMo for both classification tasks.

Embedding P R A F1

Informativeness

Word2Vec 0.83 0.80 0.80 0.80
GloVe 0.83 0.80 0.80 0.80
ELMo 0.84 0.80 0.80 0.81
BERT 0.83 0.77 0.77 0.78

Information Type

Word2Vec 0.78 0.76 0.76 0.76
GloVe 0.77 0.75 0.75 0.75
ELMo 0.76 0.76 0.75 0.75
BERT 0.77 0.75 0.75 0.75

Table 4: Classification Result of LOO Training Approach for Distributed Representations
Comparison

The advantage of ELMo and BERT is that they capture the context of word

in a sentence rather than generalising the word representation as in Word2Vec

and GloVe representations. This overcomes the out of vocabulary (OOV) issue,

where BERT utilises the WordPiece tokenisation embeddings and ELMo uses a

character-based approach. These results clearly highlighted that this advantage of

ELMo and BERT did not benefit us in the disaster related data. This is perhaps

due to the fact that Twitter messages are short and highly informal messages



Confirmation Report 37

Trained on Embedding P R A F1
I IT I IT I IT I IT

Earthquake Data

Word2Vec 0.83 0.74 0.75 0.7 0.75 0.7 0.78 0.69
GloVe 0.83 0.72 0.77 0.69 0.77 0.69 0.79 0.67
ELMo 0.84 0.73 0.79 0.69 0.79 0.69 0.81 0.68
BERT 0.83 0.67 0.76 0.73 0.76 0.68 0.78 0.68

Flood Data

Word2Vec 0.79 0.76 0.73 0.72 0.73 0.72 0.73 0.72
GloVe 0.8 0.73 0.77 0.69 0.77 0.69 0.76 0.68
ELMo 0.8 0.76 0.75 0.7 0.75 0.7 0.75 0.70
BERT 0.8 0.72 0.76 0.67 0.76 0.67 0.75 0.66

Storm Data

Word2Vec 0.83 0.74 0.76 0.71 0.76 0.71 0.78 0.71
GloVe 0.84 0.74 0.74 0.72 0.74 0.72 0.77 0.72
ELMo 0.84 0.75 0.78 0.71 0.78 0.71 0.80 0.71
BERT 0.83 0.74 0.75 0.69 0.75 0.69 0.77 0.69

Table 5: Cross Disaster Classification Result for Distributed Representations Comparison,
I = Informativeness and IT = Information Type

with significant amounts of unknown or rare words which cannot be captured by

pre-trained models.

Further analysis was performed on wrongly predicted tweets and found that

tweets with the following issues commonly were interpreted wrongly: 1) messages

with a lot of hashtags like #ineedwater, or 2) where the pre-processing step

reduced some tweets to 2-3 words whose meaning was difficult to interpret.

With this, I argue that for data like Twitter, Word2Vec and GloVe are still

better representation techniques. Also that there is a need for more fine-grain

pre-processing approach in the case of Twitter data. Apart from that, the final

conclusion from both studies showed that in cross-disaster training, disaster

related tweets appears to be independent of the actual type of disaster. This

could be due to similar vocabulary shared across the type of disaster in terms of

donation, sympathy, needs, etc. This work was presented in Advances in Social

Network Analysis and Mining (ASONAM 2019) [48].
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4.2.3 Summary

My results to date have covered both textual and multi-spectral analysis. My

focus moving forward is however on the multi-spectral data. From this work, it

can be seen that indices and band combinations (i.e., the first and third studies)

provide similar results in terms of performance, that is 0.96 F1 score. Also, I

conclude that combining the right bands can enhance the performance of shallow

water or flood water detection, which in this case was RB8aB11, and RB11B.

The reason for their best performance could be that SWIR bands are sensitive

towards the water, soil moisture and clouds, whereas the Red band is sensitive to

built-up areas and vegetation, which makes them ideal for flood detection. The

major limitation in this work remains the use of the existing pre-trained model,

which can only train three-band combinations, and has limited us from seeing the

potential impact of all 10 base band on the flood detection task. This limitation

motivates future work to obtain transfer learning modelling approaches specific

to the EO domain.

5 Planned Work

In the main branch of our initial work, I explored the concept of multi-spectral

satellite imaging with transfer learning. The analysis showed that correct spectral

combinations or indices enhance the specific information content in multi-spectral

images. Work also showed that deep learning is an excellent approach to address

the underlying multi-spectral data complexity. Unfortunately, it also shows that

training from scratch requires a lot of labelled data and pre-trained models are

designed for only three band information. This underscores the limitations of

conventional supervised learning and transfer learning approaches to completely

explore multiple band data.
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Considering the limitation of pre-trained models and supervised learning, in

the next phase of this research I plan to extend my previous work with respect

to two aspects: firstly, learning the spatio-spectral features of the EO domain

by utilising semi-supervised learning techniques to provide a more robust and

generalised framework. Secondly, exploring transfer learning by applying already

learned weights on various satellite data sources varying in their spectral, spatial

and even their mode (i.e., radar versus imaging). With that goal I can further

divide my future work into the following high level tasks for disaster analysis

from satellite data:

– Learning the spatio-spectral representations in semi-supervised and self-

supervised settings to improve information content.

– Evaluating transfer learning with already learned spatio-spectral features

across different dimensions of satellite data.

– Testing the model for cross-domain application across different disasters.

In the following sub-sections, I expand on these plans.

5.1 Learning spatio-spectral representations in semi-supervised and

self-supervised settings

Multi-spectral imagery provides a great level of information based on different

absorption and reflectance properties for different geographical features. I believe

that this property of multi-spectral data can be one of great benefit and can

provide better representations for EO tasks than normal RGB images with

features that are more relevant to the given data types. Apart from normal

spectral variation, multi-spectral data commonly have various spatial resolution

and temporal properties, which can increase its usefulness while also providing

challenges.
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So far I have worked with multi-spectral information that has low and high-

resolution spectral bands to identify the floods. I observed that multi-spectral

information provides distinguishable geographical features, which help in mapping

floods in the images. But our work was limited to three bands or indexing

techniques, which was due to the lack of labelled data to utilise deep learning

model for all spectral bands.

To eradicate the data size issue, pre-trained models are commonly applied

in several domains including satellite imagery, but they are limited to three

channels information only, i.e. RGB, which is not ideal for the multi-spectral type

data. As per our current research into this area, there is very limited available

pre-trained models for remote sensing that specifically incorporate multi-spectral

information. Our goal here therefore is to build on transfer learning methods

with representations learned from spectral data specific to the EO domain.

In order to build a pre-trained model in a supervised learning setting, a large

amount of labelled multi-spectral satellite data is required, which unfortunately

is the major issue across the EO domain. For this reason, I focus on a semi-

supervised and self-supervised approach, which utilises largely unlabelled data in

order to learn representations actively.

As described in Section 2.3.2, the good performance of S4L [106], and Sim-

CLRv2 [14], BYOL [33], SimSiam [16] was based on the applicability of smooth-

ness assumption. I believe that it will be beneficial for satellite data, as multi-

spectral and SAR data itself is a variation of an image and should have the same

labels across different bands and modality. Most of the methods utilise cropping,

rotation, Gaussian blur or colour distortion of images as augmentation. Among

them, colour distortion and Gaussian blur can be considered as variations within

multi-spectral and SAR data. I believe that these can help in learning better
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Fig. 8: Model architecture motivated from SimCLRv2 [14] and BYOL [33]

spatio-spectral representations and can help in generalising spectral and SAR

data with geographical features.

5.1.1 Experimental Plan

For training such a model, various benchmark datasets are already available, these

include EuroSat [40], BigEarthNet [93], and Sen12MS [87]. The BigEarthNet

and Sen12MS datasets consist of images from Sentinel-1 (SAR) and Sentinel-2

(MS) for land coverage classifications and segmentation. EuroSat consists of

64x64 pixel chip of MS with single labels of land coverage, BigEarthNet dataset

consists of 120x120 images with multi-labels for land coverage, and Sen12MS

data consists of 256x256 images with labels for scene classification and semantic

segmentation. Considering theses datasets, this study will utilise the Sen12MS

dataset for training the model as it is the most diverse and consists of a huge

volume (180K) of Sentinel-1 and Sentinel-2, which makes it more relevant for

learning spatio-spectral information for different geographical aspects.
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The model architecture will be based on a combination of self-supervised and

semi-supervised learning as shown in Figure 8, which is motivated from recent

work in SimCLRv2 [14], BYOL [33], and SimSiam [16]. This work will utilise

the semi-supervised approach by leveraging a large amount of unlabelled data

and train it in a self-supervised task agnostic way. This then can be utilised for

fine-tuning with a supervised mechanism on a small amount of labelled data. For

the task agnostic model, I will leverage the random MS band and SAR images,

along with basic augmentation methods such as rotation, cropping, flipping etc.

This way, the self-supervised model will be trained to get latent representations

of the unlabelled data, which then can be fine-tuned further with supervised

learning. The added advantage of this training approach is that the model learns

latent representation from unlabelled data once. And then supervised learning

part can leverage both classification and segmentation tasks, as the labelled data

requirement is reduced in such a training method. The last step is self-distillation

for task-specific learning from the fine-tuned model, which in our case is random

spectral and radar bands. This will allow us to have a model, which can be highly

advantageous in other EO domain tasks.

Such training requires an unsupervised loss in order to optimise the perfor-

mance of pre-training. For my model, the unsupervised loss will be the contrastive

loss [13] as in Eq 2, which is calculated based on the similarities within two

variations of an image. The goal is to maximise the agreement between two

variations of a single image and minimise it with respect to the other set. For

supervised training loss, traditional cross-entropy loss will be used. I believe that

this approach will provide us with the model, which can learn the representations

that can be transferred to a more task-specific model including for example our
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central flood prediction task. The contrastive loss is defined as:

Loss = 2− 2 · h

‖h‖2
· z2
‖z2‖2

(2)

where ‖·‖2 is l2 normalisation, h is the multi-layer perceptron (MLP) prediction

output and z2 is the MLP projection output.

5.2 An investigation of transfer learning with already learned

spatio-spectral features across different dimensions of satellite

data.

While spatio-spectral data can be considered to be the baseline of satellite data,

I believe that by achieving a model with learned geographical features, it can

be used for several other EO domain tasks. As mentioned earlier, MS, MR, MT

or radar data might initially be thought of as different data types, but they are

highly interdependent. Though optical and radar sensors are different in terms of

data format, they do provide similar information in terms of geographical features

along with different resolution and temporal information. Since transfer learning

in general has shown outstanding performance in several domains, I believe the

applicability of transfer learning in EO specific domains can be improved.

5.2.1 Experimental Plan

The next task will be to evaluate the applicability of the model trained on

spatio-spectral data with self-supervised settings as mentioned in section 5.1.1.

These learned representations then can be used to transfer for more task-specific

supervised training for different EO domain tasks including disaster analysis with

different data such as radar, or different spectral information. For the evaluation

of knowledge transfer success, I will be using benchmark datasets such as EuroSat

[40] for EO domain land cover classification, MediaEval2019 [6] and Multi3Net
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[85] for floods related tasks and xView2 [35] for various disaster mapping tasks.

The performance of same will also be evaluated against state-of-art pre-trained

models trained on ImageNet [21] data and recently available BigEarthNet pre-

trained models, which is based on supervised methods for the same EO domain

tasks.

5.3 Generalising the model across different disasters

Different disasters naturally lead to different types of damages such as flooding

mostly consisting of water mapping around areas or buildings, whereas earthquake

leads to more infrastructure damage and hence involves changes to roads, bridges

or building. Meanwhile, hurricanes or typhoons result in both infrastructure

damage and flooded regions; similarly, wildfires and volcano require different

mapping. Considering the different type of damage from different disasters,

individual task-specific models are required. This increases the requirement of

large labelled data which are scarce in the remote sensing domain.

5.3.1 Experiment Plan

Considering the challenge of having task specific models, this work will evaluate

the pre-trained models on two tasks, namely flood and building damage seg-

mentation. I believe these two tasks can be combined in order to have a single

model for damage assessment due to floods, typhoon, hurricane etc. With this, I

identified a number of datasets such as MediaEval2017 [10], Multi3Net [85] and

xView2 [35], which are different in terms of resolution, spectral information, and

sensors. This is where our pre-trained model will be helpful in transferring the EO

related features and train on a specific task irrespective of the resolution, spectral

information and sensors. Although another challenge remains in dealing with

the different types of labels available for each dataset, such as MediaEval2017
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consisting of flood segmentation, Multi3Net consisting of buildings and flooded

buildings segmentation. Whereas xView2 consist of different disasters (i.e. floods,

earthquake, hurricane, volcano, wildfires) images with labels as disaster, building

detection and their intensity of the damage. With that, this work will leverage

these datasets as multi-label segmentation problems by fine-tuning the pre-trained

models for task-specific learning. I believe by learning disaster related features,

this work can be a step towards better generalisation for different disaster damage

types. In result, this work can produce an end-to-end system to analyse floods

and building damage from satellite images irrespective of resolution and spectral

information.

5.4 Planned Timeline

The two years (2021-2022) research plan shown in Figure 9 is split into eight

quarters. The two years of work is divided into four achievable tasks as follows:

– Implementation of Self-Supervised and Semi-Supervised learning methods:

The task will be carried out throughout four quarters of 2021 to the first

quarter of 2022 with different settings of data processing, hyperparameters,

and learning algorithms. Meanwhile, I plan to submit this research work in

at least two top tier-1 computer vision and remote sensing conferences.

– Evaluation of transfer learning on benchmark datasets: Simultaneously, eval-

uation of learned features from Self-Supervised and Semi-Supervised learning

methods will be performed on EO domain benchmark datasets such as

BigEarthNet, Sen12MS etc.

– Evaluate the application of learned features in disaster analysis tasks: From

later quarters of 2021 until mid of Q2 in 2022, I will begin evaluating the

usefulness of the learned features in disaster analysis tasks. The major focus

of this task will remain on methods to obtain a model to generalise across

different disasters.
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– Thesis writing: The last two and half quarters of 2022 will be dedicated to

thesis writing.

Fig. 9: Research Timeline

6 Concluding Remarks

In the domain of multi-spectral satellite data, the impact of spectral information

was analysed to identify floods in images applying transfer learning. From this

work, it was evident that traditional pre-trained models (i.e. models trained on

ImageNet) provide better performance than the model trained from scratch, even

though ImageNet data are natural images rather than multi-spectral images.

Based on this, my future work focuses on attaining an EO based pre-trained

model with a semi-supervised learning approach to provide robust performance.

The efficiency of learned representations will be evaluated on several benchmark

EO domain tasks including disaster analysis.

Our achievements in this research to date include one poster presentation,

one short and two long papers along with participation in the MediaEval2019

competition and various academic events.

Long Paper
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A Satellite Imaging

A.1 Satellite Bands- Sentinel 2

Sentinel-2 bands Central
wavelength (nm) Bandwidth (nm) Spatialresolution (m)

Band 1 – Coastal aerosol 442 21 60
Band 2 – Blue 492 66 10
Band 3 – Green 559 36 10
Band 4 – Red 664 31 10
Band 5 – Vegetation red edge 704 15 20
Band 6 – Vegetation red edge 740 15 20
Band 7 – Vegetation red edge 782 20 20
Band 8 – NIR 832 106 10
Band 8A – Narrow NIR 864 21 20
Band 9 – Water vapour 945 20 60
Band 11 – SWIR 1613 91 20
Band 12 – SWIR 2202 175 20

Table 6: Sentinel-2 Bands Detail

A.2 Water Indexing Techniques



60 P. Jain

Water Indexing Techniques
NDWI [71] Green-NIR/Green+NIR
MNDWI [103] Green-SWIR1/Green+SWIR1
AWEI_S [31] Blue + 2.5 x Green - 1.5 * (NIR+SWIR1) - 0.25 x (SWIR2)
AWEI_NS [31] 4 x (Green - SWIR2) - (0.25 x NIR + 2.75 x SWIR1)
MI [74] NDWI + Blue-NIR/Blue+NIR

Table 7: Water Indexing Techniques
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