4 research outputs found

    A DATA DRIVEN METHOD FOR FLAT ROOF BUILDING RECONSTRUCTION FROM LiDAR POINT CLOUDS

    Get PDF

    Extracting Physical and Environmental Information of Irish Roads Using Airborne and Mobile Sensors

    Get PDF
    Airborne sensors including LiDAR and digital cameras are now used extensively for capturing topographical information as these are often more economical and efficient as compared to the traditional photogrammetric and land surveying techniques. Data captured using airborne sensors can be used to extract 3D information important for, inter alia, city modelling, land use classification and urban planning. According to the EU noise directive (2002/49/EC), the National Road Authority (NRA) in Ireland is responsible for generating noise models for all roads which are used by more than 8,000 vehicles per day. Accordingly, the NRA has to cover approximately 4,000 km of road, 500m on each side. These noise models have to be updated every 5 years. Important inputs to noise model are digital terrain model (DTM), 3D building data, road width, road centre line, ground surface type and noise barriers. The objective of this research was to extract these objects and topographical information using nationally available datasets acquired from the Ordnance Survey of Ireland (OSI). The OSI uses ALS50-II LiDAR and ADS40 digital sensors for capturing ground information. Both sensors rely on direct georeferencing, minimizing the need for ground control points. Before exploiting the complementary nature of both datasets for information extraction, their planimetric and vertical accuracies were evaluated using independent ground control points. A new method was also developed for registration in case of any mismatch. DSMs from LiDAR and aerial images were used to find common points to determine the parameters of 2D conformal transformation. The developed method was also evaluated by the EuroSDR in a project which involved a number of partners. These measures were taken to ensure that the inputs to the noise model were of acceptable accuracy as recommended in the report (Assessment of Exposure to Noise, 2006) by the European Working Group. A combination of image classification techniques was used to extract information by the fusion of LiDAR and aerial images. The developed method has two phases, viz. object classification and object reconstruction. Buildings and vegetation were classified based on Normalized Difference Vegetation Index (NDVI) and a normalized digital surface model (nDSM). Holes in building segments were filled by object-oriented multiresolution segmentation. Vegetation that remained amongst buildings was classified using cues obtained from LiDAR. The short comings there in were overcome by developing an additional classification cue using multiple returns. The building extents were extracted and assigned a single height value generated from LiDAR nDSM. The extracted height was verified against the ground truth data acquired using terrestrial survey techniques. Vegetation was further classified into three categories, viz. trees, hedges and tree clusters based on shape parameter (for hedges) and distance from neighbouring trees (for clusters). The ground was classified into three surface types i.e. roads and parking area, exposed surface and grass. This was done using LiDAR intensity, NDVI and nDSM. Mobile Laser Scanning (MLS) data was used to extract walls and purpose built noise barriers, since these objects were not extractable from the available airborne sensor data. Principal Component Analysis (PCA) was used to filter points belonging to such objects. A line was then fitted to these points using robust least square fitting. The developed object extraction method was tested objectively in two independent areas namely the Test Area-1 and the Test Area-2. The results were thoroughly investigated by three different accuracy assessment methods using the OSI vector data. The acceptance of any developed method for commercial applications requires completeness and correctness values of 85% and 70% respectively. Accuracy measures obtained using the developed method of object extraction recommend its applicability for noise modellin

    Abschlussbericht für die Jahre 1996 - 2007 mit Berichtsband für die Jahre 2005 - 2007 [mit CD]

    Get PDF
    Sonderforschungsbereich 461 "Starkbeben : Von geowissenschaftlichen Grundlagen zu Ingenieurmaßnahmen" von Juli 1996 bis Dezember 2007 an der Universität Karlsruhe. Forschungsfeld des SFB 461 waren Starkbeben mit einem regionalen Fokus auf den Vrancea-Ereignissen in Rumänien, wo sie immer wieder starke Schäden verursachten. Diese Risiken und die Gewissheit, dass Rumänien und seine Städte wieder von einem Starkbeben betroffen werden, bildeten die Motivation der Arbeit, erkennend, dass Schadensminderung mit moderner Wissenschaft und Technik sowie mit konsequenter Implementierung des Wissens möglich und aussichtsreich ist

    Detektion und Klassifizierung eingestürzter Gebäude nach Katastrophenereignissen mittels Bildanalyse

    Get PDF
    corecore