3,620 research outputs found

    Analysis of Radar Doppler Signature from Human Data

    Get PDF
    This paper presents the results of time (autocorrelation) and time-frequency (spectrogram) analyses of radar signals returned from the moving human targets. When a radar signal falls on the human target which is moving toward or away from the radar, the signals reflected from different parts of his body produce a Doppler shift that is proportional to the velocity of those parts. Moving parts of the body causes the characteristic Doppler signature. The main contribution comes from the torso which causes the central Doppler frequency of target. The motion of arms and legs induces modulation on the returned radar signal and generates sidebands around the central Doppler frequency, referred to as micro-Doppler signatures. Through analyses on experimental data it was demonstrated that the human motion signature extraction is better using spectrogram. While the central Doppler frequency can be determined using the autocorrelation and the spectrogram, the extraction of the fundamental cadence frequency using the autocorrelation is unreliable when the target is in the clutter presence. It was shown that the fundamental cadence frequency increases with increasing dynamic movement of people and simultaneously the possibility of its extraction is proportional to the degree of synchronization movements of persons in the group

    Deep Learning Techniques in Radar Emitter Identification

    Get PDF
    In the field of electronic warfare (EW), one of the crucial roles of electronic intelligence is the identification of radar signals. In an operational environment, it is very essential to identify radar emitters whether friend or foe so that appropriate radar countermeasures can be taken against them. With the electromagnetic environment becoming increasingly complex and the diversity of signal features, radar emitter identification with high recognition accuracy has become a significantly challenging task. Traditional radar identification methods have shown some limitations in this complex electromagnetic scenario. Several radar classification and identification methods based on artificial neural networks have emerged with the emergence of artificial neural networks, notably deep learning approaches. Machine learning and deep learning algorithms are now frequently utilized to extract various types of information from radar signals more accurately and robustly. This paper illustrates the use of Deep Neural Networks (DNN) in radar applications for emitter classification and identification. Since deep learning approaches are capable of accurately classifying complicated patterns in radar signals, they have demonstrated significant promise for identifying radar emitters. By offering a thorough literature analysis of deep learning-based methodologies, the study intends to assist researchers and practitioners in better understanding the application of deep learning techniques to challenges related to the classification and identification of radar emitters. The study demonstrates that DNN can be used successfully in applications for radar classification and identification.   &nbsp

    Personnel recognition and gait classification based on multistatic micro-doppler signatures using deep convolutional neural networks

    Get PDF
    In this letter, we propose two methods for personnel recognition and gait classification using deep convolutional neural networks (DCNNs) based on multistatic radar micro-Doppler signatures. Previous DCNN-based schemes have mainly focused on monostatic scenarios, whereas directional diversity offered by multistatic radar is exploited in this letter to improve classification accuracy. We first propose the voted monostatic DCNN (VMo-DCNN) method, which trains DCNNs on each receiver node separately and fuses the results by binary voting. By merging the fusion step into the network architecture, we further propose the multistatic DCNN (Mul-DCNN) method, which performs slightly better than VMo-DCNN. These methods are validated on real data measured with a 2.4-GHz multistatic radar system. Experimental results show that the Mul-DCNN achieves over 99% accuracy in armed/unarmed gait classification using only 20% training data and similar performance in two-class personnel recognition using 50% training data, which are higher than the accuracy obtained by performing DCNN on a single radar node

    Performance analysis of co-located and distributed MIMO radar for micro-doppler classification

    Get PDF
    Over the past few years, the use of Multiple Input Multiple Output (MIMO) radar has gained increased attention as a way to mitigate the degredation of micro-Doppler classification performance incurred when the aspect angle approaches 90 degrees. In this work, the efficacy of co-located MIMO radar is compared with that of distributed MIMO. The performance anaylsis is accomplished for three different classification problems: 1) discrimination of a walking group of people from a running group of people; 2) identification of individual human activities, and 3) classification of different types of walking. In the co-located configuration each radar is placed side by side so as to form a line. In the distributed configuration, the radar positions are separated to observe the subjects from different angles. Starting from the cadence velocity diagram (CVD), the Pseudo-Zernike moments based features are extracted because of their robustness with respect to unwanted scalar and angular dependencies. Two different approaches to integrate the features obtained from multi-aspect data are compared: concatenation and principal component analysis (PCA). Results show that a distributed MIMO configuration and use of PCA to fuse multiperspective features yields higher classification performance as compared to a co-located configuration or feature vector concatenation

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    Advanced signal processing solutions for ATR and spectrum sharing in distributed radar systems

    Get PDF
    Previously held under moratorium from 11 September 2017 until 16 February 2022This Thesis presents advanced signal processing solutions for Automatic Target Recognition (ATR) operations and for spectrum sharing in distributed radar systems. Two Synthetic Aperture Radar (SAR) ATR algorithms are described for full- and single-polarimetric images, and tested on the GOTCHA and the MSTAR datasets. The first one exploits the Krogager polarimetric decomposition in order to enhance peculiar scattering mechanisms from manmade targets, used in combination with the pseudo-Zernike image moments. The second algorithm employs the Krawtchouk image moments, that, being discrete defined, provide better representations of targetsā€™ details. The proposed image moments based framework can be extended to the availability of several images from multiple sensors through the implementation of a simple fusion rule. A model-based micro-Doppler algorithm is developed for the identification of helicopters. The approach relies on the proposed sparse representation of the signal scattered from the helicopterā€™s rotor and received by the radar. Such a sparse representation is obtained through the application of a greedy sparse recovery framework, with the goal of estimating the number, the length and the rotation speed of the blades, parameters that are peculiar for each helicopterā€™s model. The algorithm is extended to deal with the identification of multiple helicopters flying in formation that cannot be resolved in another domain. Moreover, a fusion rule is presented to integrate the results of the identification performed from several sensors in a distributed radar system. Tests performed both on simulated signals and on real signals acquired from a scale model of a helicopter, confirm the validity of the algorithm. Finally, a waveform design framework for joint radar-communication systems is presented. The waveform is composed by quasi-orthogonal chirp sub-carriers generated through the Fractional Fourier Transform (FrFT), with the aim of preserving the radar performance of a typical Linear Frequency Modulated (LFM) pulse while embedding data to be sent to a cooperative system. Techniques aimed at optimise the design parameters and mitigate the Inter-Carrier Interference (ICI) caused by the quasiorthogonality of the chirp sub-carriers are also described. The FrFT based waveform is extensively tested and compared with Orthogonal Frequency Division Multiplexing (OFDM) and LFM waveforms, in order to assess both its radar and communication performance.This Thesis presents advanced signal processing solutions for Automatic Target Recognition (ATR) operations and for spectrum sharing in distributed radar systems. Two Synthetic Aperture Radar (SAR) ATR algorithms are described for full- and single-polarimetric images, and tested on the GOTCHA and the MSTAR datasets. The first one exploits the Krogager polarimetric decomposition in order to enhance peculiar scattering mechanisms from manmade targets, used in combination with the pseudo-Zernike image moments. The second algorithm employs the Krawtchouk image moments, that, being discrete defined, provide better representations of targetsā€™ details. The proposed image moments based framework can be extended to the availability of several images from multiple sensors through the implementation of a simple fusion rule. A model-based micro-Doppler algorithm is developed for the identification of helicopters. The approach relies on the proposed sparse representation of the signal scattered from the helicopterā€™s rotor and received by the radar. Such a sparse representation is obtained through the application of a greedy sparse recovery framework, with the goal of estimating the number, the length and the rotation speed of the blades, parameters that are peculiar for each helicopterā€™s model. The algorithm is extended to deal with the identification of multiple helicopters flying in formation that cannot be resolved in another domain. Moreover, a fusion rule is presented to integrate the results of the identification performed from several sensors in a distributed radar system. Tests performed both on simulated signals and on real signals acquired from a scale model of a helicopter, confirm the validity of the algorithm. Finally, a waveform design framework for joint radar-communication systems is presented. The waveform is composed by quasi-orthogonal chirp sub-carriers generated through the Fractional Fourier Transform (FrFT), with the aim of preserving the radar performance of a typical Linear Frequency Modulated (LFM) pulse while embedding data to be sent to a cooperative system. Techniques aimed at optimise the design parameters and mitigate the Inter-Carrier Interference (ICI) caused by the quasiorthogonality of the chirp sub-carriers are also described. The FrFT based waveform is extensively tested and compared with Orthogonal Frequency Division Multiplexing (OFDM) and LFM waveforms, in order to assess both its radar and communication performance

    Practical classification of different moving targets using automotive radar and deep neural networks

    Get PDF
    In this work, the authors present results for classification of different classes of targets (car, single and multiple people, bicycle) using automotive radar data and different neural networks. A fast implementation of radar algorithms for detection, tracking, and micro-Doppler extraction is proposed in conjunction with the automotive radar transceiver TEF810X and microcontroller unit SR32R274 manufactured by NXP Semiconductors. Three different types of neural networks are considered, namely a classic convolutional network, a residual network, and a combination of convolutional and recurrent network, for different classification problems across the four classes of targets recorded. Considerable accuracy (close to 100% in some cases) and low latency of the radar pre-processing prior to classification (āˆ¼0.55ā€…s to produce a 0.5ā€…s long spectrogram) are demonstrated in this study, and possible shortcomings and outstanding issues are discussed

    Specific Emitter Identification Based on Fractal Features

    Get PDF
    If we take into consideration the fact that the radar signal recognition and identification process is an integral part of contemporary combat operations, the importance of the fractal analysis increases significantly. For this reason, the fractal analysis is used in the process of radar sources identification on the contemporary battlefield. Radar Signal Recognition (RSR) with the use of classical methods, that is based on statistical analysis of basic measurable parameters of a radar signal, such as Radio Frequency (RF), Amplitude (A), Pulse Width (PW) or Pulse Repetition Interval (PRI) is not enough to carry out the distinction process of particular copies of the same radar type. Only by this approach, the identification process of particular copies in a set of the same type emitters can be carried out. As a result, it is possible to maximize Correct Identification Coefficient (CIC) in the final stage of the recognition process, which is realized in Electronic Warfare (EW) systems. One of the most important elements of the whole recognition and identification process, which is realized in ELectronic INTelligence (ELINT) battlefield system, is building a measurement data vector, then a radar\u27s metrics and the same database. This approach is called Specific Emitter Identification (SEI)
    • ā€¦
    corecore