
551

Defence Science Journal, Vol. 73, No. 5, September 2023, pp. 551-563, DOI : 10.14429/dsj.73.5.18319 
 2023, DESIDOC

Deep Learning Techniques in Radar Emitter Identification

Preeti Gupta#,*, Pooja Jain$ and O.G. Kakde$

#DRDO-Defence Electronics Research Laboratory, Hyderabad - 500 005, India  
$Indian Institute of Information Technology, Nagpur - 441 108, India 

*E-mail: preetigupta.dlrl@gov.in

ABSTRACT

In the field of electronic warfare (EW), one of the crucial roles of electronic intelligence is the identification of 
radar signals. In an operational environment, it is very essential to identify radar emitters whether friend or foe so 
that appropriate radar countermeasures can be taken against them.  With the electromagnetic environment becoming 
increasingly complex and the diversity of signal features, radar emitter identification with high recognition accuracy 
has become a significantly challenging task. Traditional radar identification methods have shown some limitations 
in this complex electromagnetic scenario. Several radar classification and identification methods based on artificial 
neural networks have emerged with the emergence of artificial neural networks, notably deep learning approaches. 
Machine learning and deep learning algorithms are now frequently utilized to extract various types of information 
from radar signals more accurately and robustly. This paper illustrates the use of Deep Neural Networks (DNN) in 
radar applications for emitter classification and identification. Since deep learning approaches are capable of accurately 
classifying complicated patterns in radar signals, they have demonstrated significant promise for identifying radar 
emitters. By offering a thorough literature analysis of deep learning-based methodologies, the study intends to assist 
researchers and practitioners in better understanding the application of deep learning techniques to challenges related 
to the classification and identification of radar emitters. The study demonstrates that DNN can be used successfully 
in applications for radar classification and identification.
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1. INTRODUCTION 
Identification of radar is of critical importance in the EW 

domain to invoke appropriate countermeasures against the threat 
radar. The most widely utilized radar identification technique 
is the Pulse Descriptor Word (PDW)-based method. Modern 
radar systems are becoming increasingly complicated, making 
it difficult to identify radars using conventional methods. 
Conventional techniques of radar emitter identification depend 
on prior information on the pulse parameters of the emitter such 
as Radio Frequency, Pulse Amplitude, Pulse Width (PW), type 
of pulse modulation, and Pulse Repetition Intervals (PRI). The 
radar threat scenario has evolved over time. The parameters of 
modern radars are becoming more agile and their operations 
are becoming more cognitive. Due to the parameter agility 
and adaptive capabilities of cognitive radars, the conventional 
radar identification approaches will fail to correctly identify 
them. As a result, to prevent cognitive radar threats, new radar 
identification techniques are required. The identification of this 
cognitive radar must be based on the intrinsic and distinctive 
features of the emitter. Machine learning and deep learning-
based algorithms are presently the widest accepted method 
for radar signal classification and automatic target recognition 
(ATR)1-4. The traditional signal processing approaches like a 

short-time Fourier transform (STFT)5, Fast Fourier transform6, 
Wavelet transform7-8, Fractional Fourier Transform9, etc. are 
transformation techniques used for extracting the features of a 
radar signal. Inter-pulse and intra-pulse feature extraction for 
radar signals is also done using time and/ or frequency-domain 
techniques10-11. Nevertheless, the characterization of waveforms 
has become extremely difficult, with increasing overlap in the 
feature space of agile emitters, leading to severe problems such 
as low recognition rate and poor robustness12. The traditional 
signal processing approaches assist in determining the features 
but expertise is required in selecting the essential features. 
This method necessitates more time and resources, as well as 
is expensive too. Hence the research areas are more focused 
to replace manual feature extraction with intelligent systems 
like neural networks and machine learning/deep learning 
algorithms to classify and identify radar signals.

1.1  Related Work in Traditional Machine Learning 
Models
A subfield of artificial intelligence called “machine 

learning” focuses on creating models and algorithms that enable 
computers to learn from data without having to be explicitly 
programmed to do so. K means clustering13, Support vector 
machine (SVM)14, principal component analysis (PCA)15, 
k-nearest neighbors (KNN)16, random forest17, AdaBoost18, and Received : 12 July 2022, Revised : 25 April 2023 
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Table 1. Machine learning approaches for radar emitter identification & classification

Ref Title Techniques Result

4
In Electronic Support Measures 
(ESM), NN-based identification and 
tracking are proposed.

A neural network classifier with an online 
clustering mechanism and an evidence 
accumulation module is part of this 
architecture.

On complex, partial, and overlapping radar 
data, simulation results demonstrate a high 
level of performance.

11
Classification and identification of 
communication emitter signals are 
discussed.

A hybrid classification model using KNN, 
random forest, and neural network is built 
According to simulations, the recognition rates 
are 94.23 percent at 4 dB and 99.82 percent at 
6 dB SNR. 

Identification accuracy is greater than 97%

20
Utilization of Feedforward Networks 
for Radar Emitter Signals Recognition 
and Classification is proposed.

The neural network structure investigated 
comprises a hidden layer with fully connected 
neurons in the successive layers supported with 
batch-mode training.

On the testing, data set very competitive 
results of around 82%, 84%, and 67% are 
demonstrated.

21
Radar applications for target 
classification using Neural networks 
(NN) are shown.

A Multilayer Perceptron network with 
backpropagation is used for target classification.

The suggested NN achieves correct 
classification at a greater percentage than 
the KNN classifier.

34
A Vector Neural Network (VNN) for 
identifying the radar emitter problem 
is proposed. 

The Emitter Identification problem was 
solved using a VNN and a new vector-type 
backpropagation (NVTBP) learning technique.

The simulated results show high 
identification accuracy and insensitivity to 
additive error.

Hidden Markov Model19 are some of the widely applied Ml 
algorithms in radar emitter identification. 

Table 1 briefly describes the machine learning 
algorithm and ANN used for radar emitter classification and 
identification.

1.2  Motivation
Although the traditional machine learning models are 

widely used and provide a reasonable extent of accuracy, 
this approach has some limitations. The effectiveness of the 
Ml algorithm depends on how accurately the features are 
identified and extracted which requires domain knowledge to 
create a feature extractor. This procedure is time-consuming 
and difficult. Contrarily, deep learning algorithms can automate 
the feature extraction process eliminating some of the manual 
intervention required. Deep learning techniques have shown 
great potential for radar emitter identification, as they can 
learn complex patterns in the radar signals and classify them 
with high accuracy. Some of the well-known deep learning 
techniques applied for this task include convolutional neural 
networks (CNNs), recurrent neural networks (RNNs), and long 
short-term memory (lSTM) networks.

The need for this work arises from the increasing demand 
for accurate and efficient radar emitter identification systems, 
as well as the growing availability of large amounts of data 
for training deep learning models. Prior work in this field 
has focused on traditional signal processing techniques, such 
as feature extraction and pattern recognition, which have 
limitations in handling the complexity and variability of 
radar signals. Radar emitter identification systems could be 
made more accurate and resilient by utilizing deep learning 
techniques, which have the ability to overcome these constraints. 
Recent research in this area has shown promising results, 
with deep learning techniques achieving higher accuracy than 
traditional techniques in various benchmark datasets.

Deep learning (Dl) is a subclass of machine learning. 
Deep learning algorithms are built on the backbone of artificial 
neural networks (ANN). In almost every sector, ANNs are 
broadly used, for speech recognition, pattern identification, 
industrial procedures, medical prognosis, websites, and 
social networking applications21. These ANNs have also 
yielded promising results in radar signal processing and target 
recognition. Simple neural networks, multilayer perceptron 
(MlP), convolution neural network (CNN)22, recurrent 
neural network (RNN), deep belief network23, deep restricted 
Boltzmann machine24, radial basis function neural network25, 
deep feedforward network26, etc. are areas where significant 
research has been done to identify radar emitters.

2.  PROBLEM STATEMENT
Modern electromagnetic spectrum scenarios are 

characterized by a high density of emitters with agile and adaptive 
waveforms that often share similar or equal conventional 
parameters (e.g. RF, PRI, and PW). Distinguishing these 
radar emitters is not possible through standard identification 
techniques (ambiguities frequently occur). The current situation 
calls for Specific Emitter Identification (SEI) capabilities. 

Identification of radar signals in real-time with reliability 
is important for early threat detection and its avoidance, for 
situation awareness, and for taking counter-measure actions. 
In this respect, the research explores the possible use of deep 
learning techniques for identifying radar emitters in a timely 
and reliable manner.

3. RADAR IDENTIFICATION
Radar Emitter Signal Identification is a crucial activity in 

the Electronic Warfare domain. It helps in making a decision 
for the countermeasures to be taken against the enemy radar. 
Electronic Warfare is defined as military action that makes 
use of the electromagnetic spectrum for carrying out military 
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and intelligence missions. The objective of Electronic Warfare 
is gained through Electronic Attack (EA) actions, Electronic 
Protection (EP) actions, and Electronic Support (ES) actions. 
The Electronic Attack subdomain of Electronic Warfare focuses 
on the use of electromagnetic energy as a way to degrade, 
neutralize or destroy enemy combat capabilities by attacking 
personnel, structures, or equipment. The Electronic Protection 
(EP) subdomain of Electronic Warfare protects friendly 
sensors against enemy electronic attack actions. The Electronic 
Support (ES) subdomain of Electronic Warfare identifies the 
threat by intercepting, identifying, and locating the emitters of 
electromagnetic sources of the hostile military system.

The ESM/ES intercepts enemy signals to take quick 
action against the signals or the weapons linked with them. 
It’s possible that the received signal will be jammed or that its 
information will be passed on to a lethal reaction capability. The 
received signals can also be utilised for situation awareness, 
i.e., determining the types and locations of the enemy’s forces, 
weaponry, and electronic capability. In most cases, ESM/ES 
assesses which of the known emitter types is present and where 
it is located. Real-time recognition of the radar emitter linked 
to each intercepted pulse train is the main goal of the ESM 
system.  Now, modern radar uses complex waveforms. Some 
of these waveforms are generated intentionally to make the 
intercept difficult. A received signal is processed in an emitter 
identification system to extract parameters that are needed to 
predict radar type. The ESM system recognizes emitters from 
the receiver’s pulse measurement and indicates the presence 
of known radars as hostile or friendly. It also identifies 
platforms and assesses threats. In conventional ESM systems, 
key parameters of the intercepted radar pulses (Frequency, 
Amplitude, Bearing, Pulse Width, and Time of Arrival) are 
measured. The received pulse data are de-interleaved into 
groups deemed to be emanating from one emitter and exploited 
to estimate the time-dependent parameters (Pulse Repetition 
Frequency(PRF), Antenna Scan Period (ASP)35-36.  Finally, the 
ESM system compares the signal signatures which are made 
up of average parameters from each fragmented group, to 
known emitter parameters available in the radar database. This 

operation enables the system to categorize intercepted radar 
signals that may contain inherent ambiguity as a result of the 
processing and data collection methods used.

This process can present a challenge because some radar 
modes may not have an entry in the radar database. Overlap of 
parameters of different radar types; complex electromagnetic 
scenarios with increased pulse density, the agility of radar 
parameters such as radio frequency, pulse repetition interval, 
sample time, etc., noise and propagation distortion are different 
scenarios that result in incomplete or erroneous signals and 
make emitter identification very difficult.

4. DEEP LEARNING MODELS
The deep learning technique uses artificial neural networks 

for learning representation. Multiple layers are used in deep 
learning architectures to extract high-level features from raw 
input.

Conventional machine learning methods have limitations 
in processing the raw input data. Considerable domain 
expertise is required in extracting features that convert the raw 
data into internal representations or feature vectors from which 
the system recognizes or classifies the patterns from the input 
data. Deep learning techniques allow for direct input of raw 
data without extracting the features and it learns the correct set 
of features automatically.

The appeal of deep learning techniques is due to the 
efficiency with which they can learn complicated problems. 
Convolutional Neural Network is the frequently employed 
supervised deep learning model. Researchers have proposed 
some of the CNN architectures which include leNet-5, 
ResNet, DenseNet, AlexNet, ZFNet, VggNet, googleNet, 
and CapsNet27.

Unlike CNN, Recurrent Neural Networks (RNN) are 
being employed to address the issue of data prediction with 
time-series data. The present results are linked to previous data 
sequences. Although the RNN design can perform memory 
functions, the gradient vanishing problem becomes apparent 
as the length of the time series increases during training. As 
a solution to this issue, the long short-term memory (lSTM) 
structure, a kind of RNN is proposed28.

Figure 1.  Architecture of CNN.
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Many novel Deep-learning architectures using CNNs, 
RNNs, gAN, and other advanced deep-learning structures 
have been developed for Radar emitter signal classification 
and identification. The below section gives a brief overview 
of deep learning networks such as Deep Convolutional 
Neural Networks, lSTM, generative Adversarial  Networks 
(gAN), Restricted Boltzmann Machines (RBM), Deep Belief 
Networks (DBN), Auto Encoders (AE), Reinforcement 
learning(Rl).

4.1 Deep Convolutional Neural Network
Deep Convolutional Neural Network (DCNN) is 

widely used to identify patterns in images, audio, and video. 
DCNNs have evolved from the architecture of the brain. 
Deep convolutional neural networks accept image pixels as 
input and use them to train a classifier. The network employs 
multiple hidden layers which extract features from the image. 
The architecture of a typical convolutional neural network 
comprises four kinds of layers: convolution, pooling, activation, 
and fully connected. With each layer, the DCNN extracts more 
complex features for identifying the intended object. DCNN 
is widely used for the accurate classification of radar emitters.
The typical architecture of CNN is shown in Fig. 1.

4.2 Long Short Term Memory
long Short Term Memory (lSTM) network is a deep 

learning, sequential neural network that enables information to 
persist. It is a specific kind of Recurrent Neural Network (RNN) 
that has the capacity to address the vanishing gradient issue 
that RNNs are afflicted with. The lSTM network architecture 
comprises memory cells controlled by three gates. Forget gate 
is the first gate and it determines whether the information from 
the prior timestamp should be remembered or is irrelevant 
and should be ignored. The second gate is the input gate tries 

to learn information from the input provided to the cell. The 
output gate controls what information is output to the memory 
cell at the current time step. This gating mechanism helps the 
lSTM network to retain information for a longer period. The 
lSTM architecture is depicted in Fig. 2.

4.3  Generative Adversarial Networks
generative Adversarial Networks (gANs) are a sort 

of generative model that uses deep learning methods. The 
objective of a generative model is to examine a set of training 
samples and understand the probability distribution that 
generated them.  The estimated probability distribution is then 
used by generative Adversarial Networks (gANs) to produce 
more examples. gANs are among the successful deep learning-
based generative models, especially for generating realistic 
high-resolution images29.

The gAN model architecture involves two primary 
components: generator and Discriminative.

generator network: A generator is used to create new • 
credible examples from the problem area. A generator 
uses random noise as input and produces a sample of 
data in the problem domain. Figure 3 shows generator 
g(z) taking inputs with probability distribution p(z) and 
generating data. This generated data is given as input to a 
discriminator network.
Discriminator network: Discriminator is used to • 
discriminate the examples as real or fake. The discriminator 
network receives input either in the form of real data from 
the problem domain or generated data from the network. 
The network tries to identify whether the given input is 
genuine or not. It solves a binary classification problem 
by taking as input x from the real data distribution pdata (x) 
and yielding values ranging from 0 to 1 as output.

As the training goes on, the generator network learns 
to create new samples that are increasingly indistinguishable 
from the genuine ones, making it harder for the discriminator 
to discriminate between real and false data. The training is 
provided to the discriminator network to enhance its ability to 
detect phony data over time by increasing the realism of the 
generated data.

The generator tries to minimize the following objective 
function of gAN30 and the discriminator tries to maximize it, 
in Eqn. (1).
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Because the amount of available unlabelled data is 
significantly bigger than the amount of labeled data, gANs 
have become prominent for their capacity to tackle the 
challenges imposed by unsupervised learning. Another reason 
that gANs have become the popular choice among other 
generative models, is their ability to generate realistic images.  
Fig. 3 depicts the basic structure of gAN30.

For semi-supervised learning, generative models are a 
popular choice. The transfer learning methods are integrated 
with a semi-supervised learning approach for the identification 
of unknown radar emitters31.Figure 2.  LSTM recurrent unit.
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4.4 Restricted Boltzmann Machines
Restricted Boltzmann Machine (RBM) are common 

components of some of the deep probabilistic models. The word 
“restricted” means that there are no intra-layer connections 
i.e. nodes of the same layer are not connected. RBMs are 
generally utilized for dimensionality reduction, regression, 
feature learning, collaborative filtering, classification, and 
topic modeling.

RBM are generative models comprising two layers of 
neurons, one of which is visible and the other one is hidden. 
The visible layer is represented by the input vector v and the 
hidden layer is represented by vector h. Without intra-layer 
connections, all the neurons from the hidden layer are linked to 
the neurons from the visible layer.

 As seen in Fig.4, In the visible layer of RBM, it contains 
m neurons and in the hidden layer, it contains n neurons. 
Weight matrix W represents the weight between visible and 
hidden neurons. The weight factor between ith visible and jth 
hidden neuron is represented by wij.

The energy function30 in Eqn. (2) defines the RBM, which 
is an undirected graphical model built on energy with joint 
probability distributions across visible and hidden units (v, h):
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where, its denominator is referred to as the partition 
function. It denotes the sum of e−E(v,h) overall possible RBM 
configurations. E(v,h) denotes the energy function of the RBM 
with configuration (v,h) and is given in Eqn. (3):
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                         (3)
or in matrix notation as in Eqn. (4):
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                        (4) 
W stands for weights, and b and a are the bias for hidden units 
and visible units respectively. Visible vector v represents the 
state of the input data and the states of the hidden neurons are 
represented by vector h. The conditional probability distribution 
that the hidden layer neurons will be activated for a given data 
vector v is given in Eqn (5).
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where, the sigmoid activation function is defined as 
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 . 
Using the conditional probability distribution provided in Eqn. 
(6) to activate the units in the visible layer, the hidden states 
can be used to reconstruct the data30.
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                                          (6)
In the radar signal recognition domain, a novel model 

which is modelled on a deep restricted Boltzmann machine is 
presented to resolve the radar signal recognition problem. The 
model which is based on the deep learning method comprises 
multiple restricted Boltzmann machines. The model can extract 
differentiating features from radar signals for classification and 
recognition24.

4.5  Deep Belief Networks 
Deep Belief Networks (DBNs) are generative graphical 

models constructed by the superposition of multiple layers of 
the Restricted Boltzmann Machine. The result of the output of 
the Boltzmann machine is then provided as input to the next 
Boltzmann machine in the sequence, which is then trained until 
convergence and so on until the complete network has been 
trained as shown in Fig. 5.

like RBMs, DBNs show the capability to reconstruct the 
probability distribution of inputs without being supervised.  
Because it is often the case that real-world data are often 
organized into hierarchical patterns, which is beneficial for 
DBN, making them significantly better than shallow neural 
networks.

Figure 3.  Architecture of GAN.

Figure 4. Restricted Boltzmann machine.
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Figure 5. A deep belief network.
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4.6 Auto Encoders 
Auto-Encoders (AEs) leverage the use of the neural 

network for representation learning of input data using 
an unsupervised way. The auto-encoder learns the lower-
dimensional representation (encoding) of input data which is of 
higher dimension, making it useful for dimensionality reduction 
by extracting the important features from the input data. 
This makes auto-encoders a powerful feature detector. Auto-
encoders can also serve as a generative model by generating 
new data resembling the training data.

The fundamental architecture of an AEs is depicted in 
Fig. 6. An auto-encoder structure comprises three components: 
encoder, activation function, and decoder, as given in Fig. 7. 

Figure 6. The general process of an auto-encoder.

Figure 7. Structure of a basic AE.

The first component of the auto-encoder known as the Encoder 
converts the input vector into a compressed form that takes less 
space.

Encoder corresponds to a basic neural network with weight 
matrix W and bias b, and f is defined as the activation function. 
h is the latent representation of the input x, i.e. h=f(Wx+b). The 
decoder decompresses the intermediate version to recover the 
original version, Here the decoder g is represented similarly 
but with different weights, bias and activation functions. It 
reconstructs 
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 of the input x, i.e. 
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A loss function L measures the closeness of the recovered 

output 
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 and x, i.e., min( ( , ))L x x ;
An auto-encoder is similar to a multilayer perceptron in 

terms of architecture, except that the output layer neurons must 
be identical to input layer neurons. The flavors of auto-encoders 
are briefly described as follows:

4.6.1 Sparse Auto-Encoder
Sparse Auto-Encoder (SAE) adds sparsity constraints 

to the hidden layers and activates only those neurons whose 
outputs are close to 1. It greatly reduced training time as the 
number of parameters need to learn is less.

4.6.2 De-noising Auto-Encoder
In De-noising Auto-Encoder (DAE), the partially 

corrupted input data is fed into the network which is being 
trained to reconstruct the original input.

4.6.3  Contractive Auto-Encoder
Contractive Auto-Encoder (CAE) provides a robust 

representation of the input vector by adding a contractive 
penalty on the encoder portion to the standard cost function 
during the reconstruction of the raw input. It corrects the 
sensitivity of the input features. 

4.6.4 Variational Auto-Encoder
Variational Auto-encoders (VAE) model56 has significantly 

increased the ability of auto-encoders to represent data. VAE 
are generative models that make an effort to describe the 
generation of data using a probabilistic distribution.
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Table 2.  Variants of auto-encoders

Autoencoder Characteristics Advantages

Sparse auto-encoders Sparsity constraint is added to hidden layers to 
make the representation sparse.

The categories are more distinct and significant, 
which enhances network performance.

De-noising auto-encoders
The partially corrupted input data is fed into 
the network which is brained to reconstruct the 
original input.

Robustness to noise.

Contractive auto-encoder A contractive penalty is imposed on the standard 
cost function to achieve robustness.

It reduces the representation’s sensitivity toward 
the training input data. 

Variational auto-encoder Describe data generation through a probabilistic 
distribution.

Smooth latent state representations of the input 
data can be learned.

Convolutional auto-encoder Reduces the image reconstruction error by 
learning the optimal filters.

Improves image compression and image de-
noising.

Zero bias auto-encoder Auto-encoder is trained without explicit 
regularization penalty through shrinkage function. 

It provides improved performance on data with 
greater intrinsic dimensionality.

4.6.5 Convolutional Auto-Encoder
The fully connected layers of the basic auto-encoder are 

changed to convolution layers in Convolutional Auto-Encoder 
(ConvAE). Convolution auto-encoder performs better than AE 
for image compression and image de-noising32.

4.6.6 Zero Bias Auto-Encoder 
Regularised auto-encoder training usually leads to hidden 

unit biases with substantial negative values. Negative biases 
are a natural byproduct of utilizing a hidden layer that is 
responsible for both representing the input data and acting as a 
selection process to guarantee that the representation is sparse. 
Negative biases make it difficult to learn data distributions 
with high intrinsic dimensionality. By merely minimising 
reconstruction error, Zero-bias Auto-encoders (ZAE) are 
trained without any explicit regularisation penalty such as 
sparsification, contraction, or de-noising33.

 Table 2, lists a summary of various auto-encoders and 
their advantages and characteristics.

A Convolutional De-noising Auto-encoder (CDAE) and 
deep convolutional neural network (DCNN)-based technique 
to detect intra-pulse modulation of radar signals is suggested34. 
The CDAE significantly eliminates noise interference in TFI 
classification and enhances classification performance even in 
a lower signal-to-noise ratio.

4.6.7 Deep Reinforcement Learning
Deep Reinforcement learning (DRl) is a branch of 

machine learning that blends reinforcement learning algorithms 
with deep neural networks to enable computers to learn and 
make decisions in complex and dynamic environments. Deep 
reinforcement learning integrates artificial neural networks 
with a framework of reinforcement learning that enables 
software agents to learn how to accomplish their goals. 

The Markov Decision Process (MDP) mathematical 
framework is used in Reinforcement learning (Rl) to model 
sequential decision-making problems. In Reinforcement 
learning (Rl), the sequential decision-making problems 
are modeled using the mathematical framework of the MDP. 
The MDP framework provides the representations of the 

environment in terms of states, actions, state transitions, and a 
reward function which is quite significant. It is predicated on 
the idea that the previous state and action determine the current 
state. Reinforcement learning algorithms can determine the 
best course of action to maximize the predicted cumulative 
reward using the Markov Decision Process. In order to solve 
these MDPs, deep reinforcement learning algorithms generally 
represent the learned functions as neural networks and create 
specialized algorithms that work well in this environment. The 
relationship between the agent and the environment is shown 
in Fig. 8.

Deep reinforcement learning-based specific emitter 
identification is proposed55 with a high recognition rate of 
98.42 % as compared to a recognition rate of 80 % with a 
conventional machine learning algorithm.

Figure 8. An agent and an environment relating to RL.

5. DEEP LEARNING IN RADAR EMITTER 
IDENTIFICATION
Due to their massively parallel designs, fault tolerance, 

and capacity to automatically infer features from the raw 
input data, Deep Neural Networks (DNNs) are utilized in a 
substantial percentage of research on the recognition and 
identification of radar emitters Unlike traditional methods 
of feature extraction, deep learning-based algorithms extract 
significant features directly from the raw data set. Radar experts 
take advantage of this automatic feature extraction of deep 
learning methods in radar emitter identification to improve 
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radar identification performance. The deep learning of CNN is 
beneficial in extracting the feature representation of the radar 
signal spectrogram.

Feature extraction in radar classification and recognition 
is employed to extract radar signal parameters from the pre-
processed signal for categorization, model training, and 
identification37. The extracted features encompass pulse 
description words (PDWs) of radar signals containing the 
measured signal parameters of the pulses such as RF, PW, DOA, 
amplitude, and TOA38-39. Signal parameters, on the other hand, 
change over time, which can contribute to signal ambiguity. The 
authors proposed a 1D-CNN-based target recognition method 
to surmount the poor identification accuracy of conventional 
methods40.

A 1D-CNN with an Attention mechanism is proposed5 for 
extracting distinctive features and identifying the radar signals. 
The 1 D convolutional layer is integrated with the attention 
unit to automatically weigh the feature maps according to 
the importance of their features and improve the recognition 
accuracy. 

The author has proposed a method41 to adaptively classify 
radar signals into corresponding optimal jamming techniques 
without a library. The method uses machine learning by using 
the parameters of the threat radar signal as inputs. The CNN is 
used for the classifier and learned using the existing library. 

Similarly, a CNN model based on multiple denoised 
TFD images with zero-mean scaling of intra pulse-modulated 
signals from radar transmitters was presented42. 

A multiplatform fusion recognition structure based 
on ensemble learning is proposed43. High-level signal 
characteristics are extracted from time-frequency images of 
radar signals using a CNN model. The ensemble learning-
based architecture addresses the problem of performance 
deterioration of a single platform and boosts the performance 
of recognition by the multi-platform fusion method.

An approach with an updated CNN model is provided44 to 
improve the identification of radar signal modulation. The dense 
connection blocks and global pooling is used to improve the 
CNN model. The Adagrad, an adaptive learning rate algorithm, 
is chosen to expedite network training. The experimental 
findings reveal that the suggested technique outperforms the 
standard CNNS with a higher recognition rate, shorter training 
time, and stronger generalization performance.

A convolution neural network model based on feature 
fusion is proposed45 that automatically extracts and classifies 
features of frequency and phase-modulated pulses.  The 
resulting data is fed into a deep network architecture consisting 
of two CNNs and a feature fusion layer for fusing the output 
of CNN networks.

A key characteristic feature of radar emitter signals is the 
pulse repetition interval (PRI). A CNN model to identify the 
PRI modulation of the radar pulses is suggested3. During the 
simulation, there were 50 % lost pulses and 20 % false pulses, 
giving in recognition accuracy of 96.1 %.

The generation of an effective threat library based on 
the DBN model is presented for the classification of radar 
signals23. The DBN model is made up of independent Restricted 

Boltzmann Machines (RBMs) for radar frequency, pulse width, 
and pulse repetition interval, as well as an RBM that fuses the 
results from the preceding RBMs. The experiments revealed 
a performance boost of more than 6 % over the existing 
systems. 

The authors have proposed46, a radar-specific emitter 
recognition technique based on the DBN feature extraction 
method. The deep features extracted by the DBN model are 
providing better results when compared to the ambiguity 
function slice feature and dimension reduction algorithm.

For classification, de-noising, and de-interleaving of 
pulse streams, an end-to-end structure was presented47. This 
proposed structure leverage RNNs for extracting long-term 
patterns from previously gathered streams using supervised 
learning and understanding the current features to predict 
features of incoming pulses, which is beneficial in identifying 
the pulse agility in radars.

A method for identifying various multi-function radar 
emitter types is provided48. It is centered on long Short Term 
Memory based recurrent neural networks and a hierarchical 
modeling technique. The sequential information presented in 
the PDW stream must be taken into account while recognizing 
an agile radar. The identification method is demonstrated to 
be robust in the presence of missing and redundant data in the 
input stream.

A new architecture of CNN-lSTM is analyzed for 
automatic recognition of radar signals2. To emphasize the 
information on the type of modulation of the radar signal, first, 
it is converted into a time-frequency image. Finally, the CNN-
lSTM network is developed which exploits the spatial and 
temporal properties simultaneously and extracts the features 
from the time-frequency image of the signal. According 
to simulation results, the suggested method can efficiently 
identify eight different types of low signal-to-noise ratio radar 
signals (SNR).

The authors have proposed deep learning techniques for 
recognizing radar signals using the deep CNN model49. Since 
variation in frequency over time is one of the crucial parameters 
for distinguishing between radar signals with various types of 
modulation, time-frequency analysis for converting 1D radar 
emitter waveforms into time-frequency images (TFIs).  The 
suggested recognition approach has a high generalization 
capability and excellent recognition rate at low SNR, as 
evidenced by simulation results.

To address the issue of complexity in radar parameters and 
the agility in multi-function radars for the recognition of radar 
signals, a new structure for feature extraction and recognition 
of radar emitters is proposed12. 

The model is shown to have a strong recognition ability 
and a high level of robustness. 

Table 3 briefly describes the deep learning algorithm used 
for radar emitter classification and identification.

In brief, the subsection has offered a thorough investigation 
into the identification of radar emitters using deep learning 
methodologies including the recognition of radar waveforms 
and classification of radar signal modulation.
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Table 3. Summary of DL techniques employed for radar emitter identification

Ref Title DL techniques Result Future scope

2

The study of autonomous 
recognition of the type of radar 
signals is done using the CNN-
lSTM .

A CNN-lSTM algorithm 
is presented for utilizing 
temporal and spatial signal 
characteristics.

Based on simulations, the 
recognition accuracy for 
eight varieties of complex 
reconnaissance signals is ~90% 
at an SNR of 0 dB.

The future scope may involve 
improving the recognition rate 
greater than 90.2% with other 
kinds of radar signal

12
Identification of Agile 
Waveform of radar is done 
using DNN.

Both DNN and RNN using 
gRUs structures are designed 
to fuse agile RF pulses for 
identification.

The simulation result shows 
that the identification is 72.3% 
with DNN and 84.8% with 
RNN solution.

Reconsideration of the pulse 
sorting problem can be future 
scope.

22
A deep CNN model for 
radar emitter identification is 
presented

Two different CNN model is 
designed for the identification 
of spectrogram 

CNN’s deep learning o provides 
a better edge in feature extraction 
from the spectrogram.

Future work may involve 
improving network structure 
for identification.

24
The deep restricted Boltzmann 
machine structure is proposed 
for radar signal recognition.

Multiple restricted Boltzmann 
machines are used for the 
constitution of the network.

Experiments show that the 
proposed method recognizes 
the radar emitters with a highly 
correct recognition rate.

Future work involves a reduction 
in complexity and analysis of 
the number of hidden layers.

25
The deep network model 
is studied for radar emitter 
identification.

The estimated parameters 
sample diagram is utilized 
as the parameters data input 
and for identification, Deep 
Feedforward  Network is built.

The simulation results suggest 
that using a deep network 
model enhances the rate of 
identification significantly.

Future work may involve 
improving network structure 
for identification with greater 
accuracy.

34
A recognition method based 
on radar signals intra-pulse 
modulation is proposed. 

Convolutional Denoising Auto 
Encoder for denoising the TFI 
images and deep CNN is used 
for identification.

With SNR -9 dB, it is capable 
of identifying 12 categories 
of signals with a recognition 
probability of more than 90 %.

Future work may involve the 
identification of signals.

40
The use of one-dimensional 
(1D) CNN to recognize radar 
emitter targets is proposed.

The frequency-domain features 
of Automatic- Dependent-
Surveillance-Broadcast signal 
is given as input to  1D-CNN.

The accurate recognition 
rate reaches 97 % with target 
category 10, and with target 
category 50, the accuracy is 
more than 85 %.

An improved CNN model can 
be worked for increasing the 
classification accuracy.

41 Classification of radar signals 
with CNN is proposed.

An adaptive jamming selection 
method using CNN is proposed 
for parameter classification.

Simulation findings indicate 
that the classifier works well for 
new radar types which have not 
been learned previously.

Future work may involve 
designing the network structure 
to work with the limited data 
set.

42

Recognition of radar emitters 
using energy cumulant of STFT 
with Reinforced Deep Belief 
Network (RDBN) is suggested.

When combined with RDBN, 
the time-frequency domain 
feature that is transformed gets 
a greater identification rate with 
lower SNR.

The methods based on EC STFT 
outperform other approaches to 
recognition.

In the future, several features 
may be combined in a deep 
learning model for recognition.

43

An investigation of recognizing 
multi-platform radar emitters 
automatically is done.

CNN’s deep features are 
incorporated into an ensemble 
learning framework in order to 
create a multi-platform fusion 
architecture. 

Experiments show that 
the suggested algorithms 
outperform traditional fusion 
strategies.

The structure of CNNs and 
ensemble methods can be 
improved in future work.

44

For identifying radar signal 
modulation, a proposed 
technique based on an enhanced 
CNN model is presented.

Performance is increased by 
pairing a global pooling layer 
with a dense connection block 
layer.

Experiments reveal that the 
suggested technique has a higher 
recognition rate than traditional 
CNNs while requiring less 
training time.

Future work may involve the 
design of a network for the 
recognition of other radar 
feature parameters.

45

A Feature fusion-based CNN 
is presented for classifying 
intrapulse modulation of radar 
signals.

Types of frequency and 
phase modulation in radar are 
classified using the proposed 
structure.

According to simulation 
data, the suggested method 
outperforms the best alternatives 
and is scalable across a wide 
range of classes.

NN architecture for calculating 
parameter values and finding 
class probabilities need to be 
investigated.
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46

The radar-specific emitter 
recognition algorithm is 
proposed using the Deep Belief 
Network.

The deep features of the radar 
signal are extracted with DBN 
directly in the time domain.

The recognition rate 
outperforms the recognition 
from the traditional method.

Future work involves increasing 
the recognition accuracy with 
low SNR.

48 Radar emitter type identification 
using RNN is proposed.

long Short-Term Memory 
structures along with a 
hierarchical modeling method 
of radar language are used.

It is demonstrated that lSTMs 
are extremely resistant to 
corrupted data. 

Design of network structure for 
syllables and longer sequences

49

Recognition of radar 
waveforms with different types 
of modulation using Dl is 
proposed.

TFIs of radar signals are 
exploited by utilizing a CNN 
model and a  noise-reduction 
methodology is presented.

The TFI-CNN approach has 
remarkable performance in 
simulations.

Future work involves proving 
the capability with more types 
of radar signals.

50
A PCA+ CNN-based emitter 
signal recognition technique is 
suggested.

PCA reduces the dimension of 
TFI of radar signals which is 
input to CNN for identification. 

According to the simulation, the 
proposed algorithm performs 
better at recognizing than the 
conventional technique.

Future work may involve 
improving network structure 
for recognition. 

51
Radar Waveform Recognition 
using Neural networks is 
proposed

A hybrid classifier consisting of 
CNN and Elman neural network 
is proposed for recognition.

The system can classify 12 
kinds of signals with an RSR of 
94.5 % with SNR  -2 dB.

Identification of radar signals 
can be explored in the future.

52
CNN classifier for automatic 
cognitive radio waveform 
recognition is explored.

TFI images from the Choi-
Williams distribution are given 
as input to the CNN network.

The findings indicate that 
the system can categorize 8 
different types of cognitive 
radio waveforms with a Ratio 
of Successful Recognition > 
93.7 % when SNR>=-2dB.

Classification of complex 
multiple samples is to be 
realised in the future.

53
Recognition of radar signal 
intrapulse modulation is 
proposed.

CNN for feature extraction 
from TFI of signal and Deep 
q learning network for 
recognition is researched.

According to simulation 
data, the overall PSR of 
dual-component and single-
component radar signals can 
reach 94 % when the signal-to-
noise ratio (SNR) is -6 dB.

Designing the network structure 
for recognizing a wide variety 
of signals with a limited dataset 
can be future scope.

54

The Non-Negative Matrix 
Factorisation Network (NMFN) 
and Improved Artificial Bee 
Colony (IABC) algorithms are 
used to create a radar signal 
recognition system.

A novel radar signal recognition 
system using NMFN for 
extracting essential features 
and the IABC algorithm as an 
ensemble learning strategy is 
proposed.

According to simulations, the 
recognition rates are 94.23 % at 
4 dB & 99.82 %  at 6 dB SNR.

Recognition of multiple 
unknown signals can be realised 
in the future.

Ref Title DL techniques Result Future scope

Table 3. Summary of DL techniques employed for radar emitter identification

6. CONCLUSIONS
A review of the literature undertaken found that deep 

learning-based radar emitter identification and classification 
algorithms have been employed in a variety of radar-related 
domains. Numerous researchers have thoroughly investigated 
Deep learning for radar signal classification and identification. 
The survey shows that the different flavors of CNN have 
been widely used for radar recognition. This study offers 
a comprehensive analysis of the research on the application 
of deep learning techniques for identifying radar emitters. It 
should be noted that although numerous research works on 
radar target recognition using Deep learning networks have 
claimed classification accuracies up to 99%, there is still 
a long way to go before the Dl techniques become reliable 
replacements for the traditional radar classification and 

Identification methods. The literature review provides us with 
valuable new insights into the subject which will assist in 
exploring new methodologies using a deep learning framework 
for radar emitter identification.  

REFERENCES
1. Zhou, Z.; Huang, g.; Chen, H. & gao, J. Automatic 

radar waveform recognition based on deep convolutional 
denoising auto-encoders. Circuits, Syst. Signal Process., 
2018, 37, 4034-4048.

 doi:10.1007/s00034-018-0757-0
2. Ruan, g.; Wang, Y.; Wang, Sl.; Zheng, Y.; guo, q. & 

Shulga, S.N. Automatic recognition of radar signal types 
based on CNN-lSTM. Telecommun. Radio Eng., 2020, 
79.



gUPTA, et al.: DEEP lEARNINg TECHNIqUES IN RADAR EMITTER IDENTIFICATION

561

       doi:10.1615/TelecomRadEng.v79.i4.40
3. li, X.; Huang, Z.; Wang, F.; Wang, X. & liu,T. Toward 

convolutional neural networks on pulse repetition interval 
modulation recognition, IEEE Communications letters, 
2018, 22, 2286-2289. 

       doi: m10.1109/lCOMM.2018.2864725
4. granger, E.; Rubin, M.A.; grossberg, S. & lavoie, P. A 

what-and-where fusion neural network for recognition 
and tracking of multiple radar emitters. Neural Networks, 
2001, 14, 325-344. 

      doi:10.1016/S0893-6080(01)00019-3
5. Wu, B.; Yuan, S.; li, P.; Jing, Z.; Huang, S. & Zhao,Y. 

Radar emitter signal recognition based on one-dimensional 
convolutional neural network with attention mechanism. 
Sensors, 2020, 20, 6350.

       doi:10.3390/s20216350
6. Chen, T.; Jin, W. & Chen, Z. Feature extraction using 

wavelet transform for radar emitter signals. In WRI 
International Conference on Communications and Mobile 
Computing,  2009, 1, 414-418

 doi:10.1109/CMC.2009.202
7. Bagwe, R.; Kachhia, J.; Erdogan, A. & george, K. 

Automated radar signal analysis based on deep learning. 
10th Annual Computing and Communication Workshop 
and Conference (CCWC), 2020, 0215-0221

       doi: 10.1109/CCWC47524.2020.9031240
8. Shi, q. & Zhang, J. Radar emitter signal identification 

based on intra-pulse features. In IEEE 6th Information 
Technology and Mechatronics Engineering Conference 
(ITOEC), 2022, 6, 256-260.

        doi: 10.1109/ITOEC53115.2022.9734493.
9. Kawalec, A. & Owczarek, R. Radar emitter recognition 

using intrapulse data. In 15th International Conference on 
Microwaves, Radar and Wireless Communications, 2004,  
2, 435-438.

       doi:10.1109/MIKON.2004.135705
10. Chen, T.W.& Jin, W.D. Feature extraction of radar emitter 

signals based on symbolic time series analysis. In 2007 
International Conference on Wavelet Analysis and Pattern 
Recognition, 2007, 3, 1277-1282.

       doi:10.1109/ICWAPR.2007.4421631
11. Zhang, X.; luo, P. & Hu, X. A hybrid method for 

classification and identification of emitter signals. In 4th 
International Conference on Systems and Informatics 
(ICSAI) 2017, 1060-1065.

        doi:10.1109/ICSAI.2017.8248442
 12. Shapero, S.A.; Dill, A.B. & Odelowo B.O. Identifying 

agile waveforms with neural networks. In 21st International 
Conference on Information Fusion (FUSION) 2018, 745-
752

        doi:10.23919/ICIF.2018.845537
13. Dash, S.S.; Nayak, S.K. & Mishra, D. A review on machine 

learning algorithms. Intelligent and Cloud Computing, 
Proceedings of ICICC 2019, 2020, 2, 495-507.

      doi:10.1007/978-981-15-6202-0_51
14. gao, H. & Zhang, X.D. Automatic radar waveform 

recognition using SVM. Appl. Mechanics and Material., 
2012, 229, 2348-2351.        

       doi: 10.4028/www.scientific.net/AMM.229-231.2348
15. Yu, Z.; Chen, C. & Jin W. Radar signal automatic 

classification based on pca. In WRI global Congress on 
Intelligent Systems 2009, 3, 216-220

        doi: 10.1109/GCIS.2009.332
16. Ezuma, M.; Erden, F.; Anjinappa, C.K.; Ozdemir, O. & 

guvenc, I. Micro-UAV detection and classification from 
RF fingerprints using machine learning techniques. In 
IEEE Aerospace Conference, 2019,  1-13.

        doi:10.1109/AERO.2019.8741970 
17. Jordanov, I.; Petrov, N. & Petrozziello, A. Supervised radar 

signal classification. In International Joint Conference on 
Neural Networks (IJCNN), 2016, 1464-1471. 

        doi:10.1109/IJCNN.2016.7727371
18. Revillon, g.; Mohammad‐Djafari, A. & Enderli, C. Radar 

emitters classification and clustering with a scale mixture 
of normal distributions. IET Radar, Sonar & Navigation, 
2019, 13,128-138.

        doi:10.1049/iet-rsn.2018.5202
19. Kim, K.; Spooner, C.M.; Akbar, I.; Reed, J.H. Specific 

emitter identification for cognitive radio with application 
to IEEE 802.11. In IEEE global Telecommunications 
Conference, 2008, 1-5.

        doi:10.1109/glOCOM.2008.ECP.404
20. Petrov, N.; Jordanov, I. & Roe, J. Radar emitter signals 

recognition and classification with feedforward networks. 
Procedia Comput. Sci., 2013, 22, 1192-1200.

        doi:10.1016/j.procs.2013.09.206
21. Ibrahim, N.K.; Abdullah R.S. & Saripan, M.I. Artificial 

neural network approach in radar target classification. J. 
Comput. Sci., 2009, 5, 23.

22. Kong, M.; Zhang, J.; liu, W. & Zhang, g. Radar emitter 
identification based on deep convolutional neural network. 
In International Conference on Control, Automation and 
Information Sciences (ICCAIS), 2018, 309-314. 

        doi:10.1109/ICCAIS.2018.8570480
23. Jeong, C.M.; Jung, Y.g. & lee, S.J. Deep belief networks 

based radar signal classification system. J. Ambient 
Intelligence and Human. Comput., 2018.

        doi:10.1007/s12652-018-0774-7
24. Zhou, D.; Wang, X.; Tian, Y. & Wang, R. A novel radar 

signal recognition method based on a deep restricted 
Boltzmann machine. Engineering Review, 2017, 37, 165-
171.

25. Hongyan, W.; qiu, J. & Juan P. Radar emitter type 
identification effect based on different structural deep 
feedforward networks. 13th International Congress on 
Image and Signal Processing, BioMedical Engineering 
and Informatics(CISP-BMEI), 2020, 473-478. 

        doi:10.1109/CISP-BMEI51763.2020.9263549
26. gao, J.; Shen, l.; gao, l. & lu, Y. A rapid accurate 

recognition system for radar emitter signals. Electronics, 
2019, 8, 463.

        doi:10.3390/electronics8040463
27. Bulut, Y.E. AI for data science: artificial intelligence 

frameworks and functionality for deep learning, 
optimization, and beyond. Technics Publications; 2018.

28. Hochreiter, S. & Schmidhuber, J. long short-term 



DEF. SCI. J., VOl. 73, NO. 5, SEPTEMBER 2023

562

memory. Neural computation, 1997, 9, 1735-80.
        doi:10.1162/neco.1997.9.8.1735
29. goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; 

Warde-Farley, D.; Ozair, S.; Courville, A. & Bengio, Y. 
generative adversarial networks. Commun. ACM, 2020, 
63, 139-144.

        doi:10.1145/3422622
 30. Wani, M.A.; Bhat, F.A.; Afzal, S. & Khan, A.I. Advances 

in deep learning, studies in big data. Springer Nature, 
Singapore, 2020

        doi:10.1007/978-981-13-6794-6
31. Feng, Y.; Wang, g.; liu, Z.; Feng, R.; Chen, X. & Tai, N. 

An unknown radar emitter identification method based on 
semi-supervised and transfer learning. Algorithms, 2019, 
12, 271. 

 doi:10.3390/a12120271
32. Zhang, Y. A better autoencoder for image: Convolutional 

autoencoder, ICONIP17-DCEC,2018
33. Konda, K.; Memisevic, R. & Krueger, D. Zero-bias 

autoencoders and the benefits of co-adapting features, 
arXiv:1402.3337, 2014.

        doi:10.48550/arXiv.1402.3337
34. qu, Z.; Wang, W. & Hou, C. Radar signal intra-pulse 

modulation recognition based on convolutional denoising 
autoencoder and deep convolutional neural network. 
IEEE Access, 2019, 7, 112339-112347.

        doi:10.1109/ACCESS.2019.2935247
35. Matuszewski, J. The analysis of modern radar signals 

parameters in electronic intelligence system. In 13th 
International Conference on Modern Problems of Radio 
Engineering, Telecommunications and Computer Science 
(TCSET),  2016,  298-302 

        doi:10.1109/TCSET.2016.7452040
36. Adamy, D. EW 102: a second course in electronic warfare, 

Artech house, 2004.
37. Matuszewski, J. The specific radar signature in electronic 

recognition system. Przegląd Elektrotechniczny, 2013, 
89, 236-239.

38. Shieh, C.S. & lin, C.T. A vector neural network for emitter 
identification. IEEE Transact. Antennas and Propagation, 
2002, 50,1120-1127.

 doi:10.1109/TAP.2002.801387
39. Matuszewski, J. Applying the decision trees to radar 

targets recognition. 11th International Radar Symposium, 
2010, 1-4. 

40. Xiao, Y. & zhang, W.X. Specific emitter identification 
of radar based on one dimensional convolution neural 
network. J. Physics, 2020, 1550, 032114

        doi:10.1088/1742-6596/1550/3/032114
41. Hong, S.J.; Yi, Y.g.; Jo, J. & Seo, B.S. Classification 

of radar signals with convolutional neural networks. In 
10th International Conference on Ubiquitous and Future 
Networks (ICUFN), 2018, 894-896. 

        doi:10.1109/ICUFN.2018.8436647
42. Wang, X.; Huang, g.; Zhou, Z. & gao, J. Radar emitter 

recognition based on the short time Fourier transform 
and convolutional neural networks. In 10th International 
Congress on Image and Signal Processing, BioMedical 

Engineering and Informatics (CISP-BMEI), 2017, 1-5
        doi:10.1109/CISP-BMEI.2017.8302111
43. Zhou, Z.; Huang, g. & Wang, X. Ensemble convolutional 

neural networks for automatic fusion recognition of 
multi‐platform radar emitters. ETRI Journal, 2019, 41, 
750-759.

        doi:10.4218/etrij.2017-0327. 
44. Cai, J.; li, C. & Zhang, H. Modulation recognition of 

radar signal based on an improved CNN model. In IEEE 
7th International Conference on Computer Science and 
Network Technology (ICCSNT), 2019, 293-297

        doi: 10.1109/ICCSNT47585.2019.8962418
45. Akyon, F.C.; Alp, Y.K.; gok, g. & Arikan, O. 

Classification of intra-pulse modulation of radar signals 
by feature fusion based convolutional neural networks. In 
26th European Signal Processing Conference (EUSIPCO), 
2018, 2290-2294.

        doi:10.23919/EUSIPCO.2018.8553176 
46. Dong, X.; Cheng, S.; Yang, J. & Zhou, Y. Radar specific 

emitter recognition based on DBN feature extraction. J. 
Physics: Conference, 2019, 1176, 032025

       doi:10.1088/1742-6596/1176/3/032025
47. liu, Z.M. & Philip, S.Y. Classification, denoising, and 

deinterleaving of pulse streams with recurrent neural 
networks. IEEE Transact. Aerospace and Electron. Syst., 
2018, 55,1624-1639. 

 doi:10.1109/TAES.2018.2874139
48. Apfeld, S.; Charlish, A. & Ascheid, g. Identification 

of radar emitter type with recurrent neural networks. 
In Sensor Signal Processing for Defence Conference 
(SSPD), 2020, 1-5

 doi:10.1109/SSPD47486.2020.9271988
49. Wang, C.; Wang, J. & Zhang, X. Automatic radar 

waveform recognition based on time-frequency analysis 
and convolutional neural network. In IEEE International 
Conference on Acoustics, Speech and Signal Processing 
(ICASSP), 2017, 2437-2441

 doi:10.1109/ICASSP.2017.7952594
50. Ye, W. & Peng, C. Recognition algorithm of emitter 

signals based on pca+cnn. In IEEE 3rd Advanced 
Information Technology, Electronic and Automation 
Control Conference (IAEAC), 2018, 2410-2414

 doi:10.1109/IAEAC.2018.8577538
51. Zhang, M.; Diao, M.; gao,l. & liu, l. Neural networks 

for radar waveform recognition. Symmetry, 2017, 9, 75.
  doi:10.3390/sym 9050075
52. Zhang, M.; Diao, M. & guo, l. Convolutional neural 

networks for automatic cognitive radio waveform 
recognition, IEEE Access, 2017, 5, 11074-11082.  
doi:10.1109/ACCESS.2017.2716191

53. qu, Z.; Hou, C. & Wang, W. Radar signal intra-pulse 
modulation recognition based on convolutional neural 
network and deep q-learning network. IEEE Access, 
2020, 8,  49125-49136.

        doi:10.1109/ACCESS.2020.2980363
54. gao, J.; lu, Y.; qi, J.& Shen, l. A radar signal recognition 

system based on non-negative matrix factorization 
network and improved artificial bee colony algorithm, 



gUPTA, et al.: DEEP lEARNINg TECHNIqUES IN RADAR EMITTER IDENTIFICATION

563

IEEE Access, 2019, 7, 117612-117626.
        doi:10.1109/ACCESS.2019.2936669
55.  leng, P.F. & XU, C.Y. Specific emitter identification based 

on deep reinforcement learning. Acta Armamentarii, 
2018, 39, 2420.

       doi:10.3969/j.issn.1000-1093.2018.12.016
56.  Kingma, D.P. & Welling, M. Auto-encoding variational 

bayes, arXiv:1312.6114, 2013
       doi:10.48550/arXiv.13126114 

CONTRIBUTORS

Ms Preeti Gupta obtained her M.E. (Digital Systems) from 
NIT, Allahabad and working as Scientist ‘F’ at DRDO-DlRl, 
Hyderabad. Her areas of interest include: Design and development 
of an electronic warfare operational support system.

Contribution to the current study, she undertook a retrospective 
qualitative study to explore the different AI-based techniques 
for radar emitter identification.

Dr Pooja Jain obtained her PhD from JUIT, Solan. She is 
working at Department of Computer Science and Engineering 
at IIIT, Nagpur. Areas of interest is Machine learning.
She has examined the work, provided numerous insightful 
contributions, and consistently offered direction, support, and 
encouragement in support of the current project.

Dr O.G. Kakde obtained his PhD from Visvesvaraya National 
Institute of Technology (VNIT), Nagpur and working as Director, 
IIIT, Nagpur. Areas of interest is Machine learning.
He has given insightful suggestions and provided guidance and 
support as part of his contribution to the current study.


