994 research outputs found

    On upper bounds on the smallest size of a saturating set in a projective plane

    Full text link
    In a projective plane Πq\Pi _{q} (not necessarily Desarguesian) of order q,q, a point subset SS is saturating (or dense) if any point of ΠqS\Pi _{q}\setminus S is collinear with two points in S~S. Using probabilistic methods, the following upper bound on the smallest size s(2,q) s(2,q) of a saturating set in Πq\Pi _{q} is proved: \begin{equation*} s(2,q)\leq 2\sqrt{(q+1)\ln (q+1)}+2\thicksim 2\sqrt{q\ln q}. \end{equation*} We also show that for any constant c1c\ge 1 a random point set of size kk in Πq\Pi _{q} with 2c(q+1)ln(q+1)+2k<q21q+2q 2c\sqrt{(q+1)\ln(q+1)}+2\le k<\frac{q^{2}-1}{q+2}\thicksim q is a saturating set with probability greater than 11/(q+1)2c22.1-1/(q+1)^{2c^{2}-2}. Our probabilistic approach is also applied to multiple saturating sets. A point set SΠqS\subset \Pi_{q} is (1,μ)(1,\mu)-saturating if for every point QQ of ΠqS\Pi _{q}\setminus S the number of secants of SS through QQ is at least μ\mu , counted with multiplicity. The multiplicity of a secant \ell is computed as (#(S)2).{\binom{{\#(\ell \,\cap S)}}{{2}}}. The following upper bound on the smallest size sμ(2,q)s_{\mu }(2,q) of a (1,μ)(1,\mu)-saturating set in Πq\Pi_{q} is proved: \begin{equation*} s_{\mu }(2,q)\leq 2(\mu +1)\sqrt{(q+1)\ln (q+1)}+2\thicksim 2(\mu +1)\sqrt{ q\ln q}\,\text{ for }\,2\leq \mu \leq \sqrt{q}. \end{equation*} By using inductive constructions, upper bounds on the smallest size of a saturating set (as well as on a (1,μ)(1,\mu)-saturating set) in the projective space PG(N,q)PG(N,q) are obtained. All the results are also stated in terms of linear covering codes.Comment: 15 pages, 24 references, misprints are corrected, Sections 3-5 and some references are adde

    Intersection sets, three-character multisets and associated codes

    Get PDF
    In this article we construct new minimal intersection sets in AG(r,q2){\mathrm{AG}}(r,q^2) sporting three intersection numbers with hyperplanes; we then use these sets to obtain linear error correcting codes with few weights, whose weight enumerator we also determine. Furthermore, we provide a new family of three-character multisets in PG(r,q2){\mathrm{PG}}(r,q^2) with rr even and we also compute their weight distribution.Comment: 17 Pages; revised and corrected result

    Optimal Vertex Cover for the Small-World Hanoi Networks

    Full text link
    The vertex-cover problem on the Hanoi networks HN3 and HN5 is analyzed with an exact renormalization group and parallel-tempering Monte Carlo simulations. The grand canonical partition function of the equivalent hard-core repulsive lattice-gas problem is recast first as an Ising-like canonical partition function, which allows for a closed set of renormalization group equations. The flow of these equations is analyzed for the limit of infinite chemical potential, at which the vertex-cover problem is attained. The relevant fixed point and its neighborhood are analyzed, and non-trivial results are obtained both, for the coverage as well as for the ground state entropy density, which indicates the complex structure of the solution space. Using special hierarchy-dependent operators in the renormalization group and Monte-Carlo simulations, structural details of optimal configurations are revealed. These studies indicate that the optimal coverages (or packings) are not related by a simple symmetry. Using a clustering analysis of the solutions obtained in the Monte Carlo simulations, a complex solution space structure is revealed for each system size. Nevertheless, in the thermodynamic limit, the solution landscape is dominated by one huge set of very similar solutions.Comment: RevTex, 24 pages; many corrections in text and figures; final version; for related information, see http://www.physics.emory.edu/faculty/boettcher

    Weighted Coverings and Packings

    Get PDF
    In this paper we introduce a generalization of the concepts of coverings and packings in Hamming space called weighted coverings and packings. This allows us to formulate a number of well-known coding theoretical problems in a uniform manner. We study the existence of perfect weighted codes, discuss connections between weighted coverings and packings, and present many constructions for them

    Minimum degree of the difference of two polynomials over Q, and weighted plane trees

    No full text
    corecore