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Abstract 

In this paper we introduce a generalization of the concepts of coverings and packings 

in Hamming space called weighted coverings and packings. This allows us to formulate 

a number of well-known coding theoretical problems in a uniform manner. We study 

the existence of perfect weighted codes, discuss connections between weighted coverings 

and packings, and present many constructions for them. 

1 Introduction 

Conventional packings and coverings are arrangements of Hamming spheres of a given radius 

in the Hamming space. We generalize these concepts by attaching weights to different layers 

of the Hamming sphere. If several such spheres intersect in a point of the space we define 

the density at that point as the sum of the weights of the corresponding layers. In this paper 

we study the general problem of weighted packings (coverings) for which the density at each 

point is at most one (resp. at least one). In this way we can consider several known types of 

codes, e.g., the uniformly packed codes, list codes, multiple coverings, L-codes, in a uniform 

way. Some results about this problem have previously been presented in several conferences, 

see [15, 16, 13]. The goal of our paper is to provide an introduction to this interesting area, 

summarize what is known about it, and state some new results. 

There are many applications of weighted packings and coverings. In particular, we would 

like to mention two. The first is list decoding; see [4],[19] and their references. In list decoding 

the output of the decoder is a list with a given maximum size, and correct decoding means 

that the transmitted codeword appears in the list. If the received word is in fact a codeword, 

we do not actually want to have a long list of possibilities. On the other hand, if the received 

word is very unreliable, i.e., very far from the code, it would be desirable to have a longer 

list. So we arrive to the following generalization of list decoding. We want the size of the list 

to be a function of the Hamming distances between the received word and the codewords. 

This leads us to weighted packings. This kind of criterion could be useful, for example, in 

spelling checkers with the code being the English (French, Finnish, Hebrew) vocabulary, and 

the "ambient" space being all combinations of letters with maximal length n. 

For our second application of weighted coverings we consider a generalized football pool 

problem [28], [32]. A player wishes to forecast the outcome of n football matches (each with 

three possible outcomes) and is allowed to make several guesses (each guess being a word 

in Fj). A guess with exactly k wrong outcomes wins the player a (k + 1)st prize. If the 
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player thinks he knows the outcome of some i 2: 1 matches he may wish to fix an integer 

R and construct a set of forecasts in such a way that, no matter what the outcomes in the 

remaining n - i matches, he will win at least an ( R + 1 )st prize (provided he is right about 

the i matches). In other words, he wishes to construct a code C ~ F~-i with covering radius 

at most R. If he instead uses a J.L-fold covering code, defined as a weighted covering with the 

same weight 1/ JL attached to the first R + 1layers (i.e., the vectors at distances 0, 1, ... , R 

from C), he will be guaranteed to win the (R + 1)st prize at least JL times (more precisely, 

he will win at least JL prizes each of which is at least the (R + 1)st prize). Such codes are 

called multiple coverings (MC). However, the player wants to surely win a certain amount of 

money, so it is natural to attach different weights to different prizes and construct a weighted 

covering instead. For that purpose multiple coverings of the farthest-off points (MCF) are 

introduced in [26]. For constructions and numerical tables for binary MC and MCF, see 

[25],[27] and [26]. Let us give an illustration. 

Example 1.1 Suppose n = 13, i = 9. Furthermore, assume that the player is able to 

exclude one of the outcomes in each of the remaining four matches. He wishes to find a 

suitable set of forecasts that-no matter what the outcomes in the remaining four matches 

are-ensures him a forecast in which there is at most one incorrect result. Then he can use 

the following four forecasts (after choosing a suitable notation for the outcomes): 

c1 = {oooo, 0111, 1000, 1111}. 

If the player uses the four forecasts of cl twice, he is guaranteed to get at least two forecasts 

with at most one incorrect entry. The same can be achieved using C2 , 7 = IC2 I < 2IC1 1, 
where 

c2 = {ooo1, oo10, oo11, 1100, 1100, 0111, 1011 }. 

However, by using only the following six forecasts of C3 

c3 = {1111, 1111, 10oo, 0100, oo10, ooo1}, 

he will always get at least one entirely correct forecast or at least two forecasts with one 

incorrect entry, as can easily be checked. 

C~, C2 and C3 are weighted coverings with weights {1, 1 }, {1/2, 1/2} and {1, 1/2} resp. 

attached to the first two layers. 

Weighted coverings are also used to prove lower bounds on the cardinality of binary codes 

with a given length and covering radius (see [40], [41], [31]): one shows that such a code 
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is a weighted covering for a suitable collection of weights and then uses the sphere-covering 

lower bound for weighted coverings. Weighted coverings can be found in [20) as well, in a 

construction for mixed perfect codes. 

From now on, we study only codes in this paper, i.e, the same word is never allowed to 

appear more than once. 

The paper is organized as follows. In Section 2 we introduce the notations and present 

a unified approach to previous work. Section 3 is devoted to a strong necessary condition 

for the existence of perfect weighted coverings (PWC), the Lloyd theorem. In Section 4 we 

classify all q-ary linear PWC with radius one. In Section 5 we study a subcase of PWC, 

namely linear perfect multiple coverings (PMC) of radius 2, according to the number of 

distances s of the dual code. The case s = 1 is settled; for s = 2, we conjecture that we 

have found all existing codes with minimum distance two. Section 6 establishes connections 

between weighted packings and coverings, showing their complementarity. Section 7 presents 

a number of constructions for weighted coverings and packings. 

2 Notations and known results 

We denote by F q the q-ary alphabet. If q is 2, we usually omit it. Denote by Fn the vector 

space of binary n-tuples, by d(·, ·) the Hamming distance, by C(n, K, d)R a code C with 

length n, size K, minimum distanced= d(C) and covering radius R = R(C). When Cis 

linear, we write C[n, k, d]R, where k is the binary log of K (or simply [n, k]R or [n, k]). We 

denote the Hamming weight of x E Fn by wt(x). 

For x E Fn, A(x) = (A0 (x), A1(x) ... An(x)) will stand for the distance distribution of C 

with respect to x; thus 

Ai(x) := I{ c E C: d(c, x) = i}l. 

For any (n +I)-tuple M = (m0 , m1 , ... , mn) of weights, i.e., rational numbers, we define 

the M-density of Cat x as 
n 

B(x) := L mi Ai(x) = <M, A(x)>. (2.1) 
i=O 

We say that a code C is an M -covering if 

B(x) ~ 1 

for all x E Fn, and it is an M -packing if 

B(x) ~ 1 
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for all x E Fn. Furthermore, Cis a perfect M-covering (PWC) if O(x) = 1 for all x E Fn. 

We define the radius of an M -covering as 

6 :=max{ i : mi =f. 0}. 

From now on we always assume that all codes are binary unless otherwise stated. 

Here are the known special cases: 

• Classical codes and coverings: mi = 1 fori= 0, 1, ... , 6. 

• List codes [4], [19] and multiple coverings [11], [25]: mi = 1/j where j is a positive 

integer, for i = 0, 1, ... , 6. 

• Multiple coverings of the farthest-off points (MCF) [26]: mi = 1 for i = 0, 1, ... , 6-

1, m 6 = 1/j, where j is a positive integer. 

Many known classes of codes can be viewed as perfect weighted coverings: 

• Classical perfect codes [35]: mi = 1 fori= 0, 1, ... 6. 

• Nearly perfect codes [21], [37]: mi = 1 for i = 0, 1, ... , e- 1, me = me+l = 1/[(n + 
1)/(e + 1)], where e = [(d- 1)/2]. 

• Perfect multiple coverings (PMC) [39] and [11]: mi = 1/j fori= 0, 1, ... 6, 

where j is a positive integer. 

• Perfect L-codes [30] and [12] : mi = 1 fori E L ~ {0, 1, ... , Ln/2J }. 

• Strongly uniformly packed codes [37], [8]: 

mi = 1 fori= 0, 1, ... 'e- 1, me= me+l = 1/r; 

for some integer r. 

• Uniformly packed codes of j-th order [22]: 

mi = 1 fori= 0, 1, ... , d-e- j- 1; 

m · = 1 - t/r for d - e - J. < i < e · 
1 - - ' 

mi = 1/ r for e + 1 ::; i ::; e + j, 

for t and r integers. 
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• Uniformly packed codes [7], [22]: 8(M) = R(C). 

It can be shown that every code is a PWC with respect to a suitable weight vector M . 

In fact, suppose that Cis a linear code and that the number of non-zero weights in the dual 

code of Cis s. Then, by a result of Delsarte [18] one can always choose 8 = s: 

Proposition 2.1 A code C is a perfect M-covering with 8(M) = s. In that case the mi 's 

are uniquely determined by 

where ai is the ith coefficient in the Krawtchouk expansion of the annihilator polynomial a(x) 

ofC. Here 

a(x) := 2n-k IJ (1- ~) , 
wEW W 

and W is the set of s nonzero weights of vectors in CJ... 

So, in our notation, a uniformly packed code in the sense of [7] is just a PWC with 

8(M) = R(C). In that case, R = s = 8 and Proposition 2.1 applies. The reason is that 

R ~ s ~ 8 in general. The first inequality is Delsarte's Theorem, (3.3) of [18]; the second is 

Corollary 3.1. A similar remark applies to non-linear codes as well. 

Another example could be found if 8 is permitted to be as large as n. Then every code 

C can be viewed as a PWC with mi = 1/ICI for all i = 0, 1, ... , n. 

Nevertheless, we are interested in a different problem: given a weight vector M, we would 

like to determine for which lengths there exist PWC, or to provide good weighted packings 

and coverings. Notice that the same code can be a PWC for different weight vectors if 

8(M) > s (consider for example C = Fn). 

It is interesting to draw some parallels with design theory [3]. In design theory (where 

the covering relation is set-theoretic inclusion) we are interested not only in Steiner systems, 

t-designs and covering and packing designs, but also in more general configurations like in 

[9] . Similarly, we are interested not only in perfect codes, perfect t-fold multiple coverings 

and covering and packing codes but also in more general codes like the weighted coverings. 

If Cis an M-covering one gets from the definition: 
n 

L mi Ai(x) ~ 1 for all x. 
i=O 

Summing over all x in Fn and permuting sums, we get 
n 

L mi L Ai(x) ~ 2n. 
i=O xEFn 
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Fori= 0, the second sum is ICI = K, fori= 1 it is Kn, and so on. Therefore we get the 

following sphere-covering lower bound on weighted coverings: 

(2.2) 

Similarly, we see that if Cis a weighted M-packing then 

(2.3) 

In particular, for the perfect M-covering C we get the the following analog of the Hamming 

condition. 

Proposition 2.2 A covering C is a perfect M -covering if and only if 

(2.4) 

D 

We can interpret (2.4) in a geometrical way: we define a weighted sphere around any 

vector c in Fn by means of the function 

Wc(x) := ffid(c,:z:)· (2.5) 

For d(c, x) > 6, wc(x) = 0; hence 6 can be viewed as the radius of the weighted sphere, 

denoted by S ( c, 6). Set 

w(S(c, 6)) := L Wc(x) 

then (2.5) becomes 

so that C is a perfect weighted covering (PWC) of Fn. 

Equation (2.5) is reminiscent of a fuzzy membership function, as studied, e.g., in [5]. 

In the next sections we will attempt to classify the perfect weighted coverings of small 

radius. 

6 



3 A Lloyd theorem 

In his new proof of Lloyd's theorem3 [34] in 1965-1966, A. M. Gleason introduced the group 

algebra into coding theory. Since Gleason did not publish his proof, but left it to be recorded 

in [2], many coding theorists may never have seen it. We found that it extended effortlessly 

to the present setting, and we thus present it here, specialized, for simplicity, to the binary 

case. (Gleason proved the result for general prime powers q; evidently, his method yields a 

q-ary version of Theorems 3.1 and 3.2.) We are grateful to a referee for pointing out that 

our Lloyd theorem can also be proved by appealing to work of Delsarte showing that his 

annihilator polynomial divides the Lloyd polynomial. But for completeness and for historical 

interest, we prefer to present the following proof. 

We denote by Pn,i(x) the Krawtchouk polynomial, for 0 :S i :S n, 

· (n- X) (X) Pn,i(x) = L (-1)1 . _ . . . 
O~j~i ~ J J 

(3.1) 

Theorem 3.1 Let C be a perfect weighted covering with M = (m0 , m1, ... , m6) and covering 

radius R. Then the Lloyd polynomial of this covering, 

L(x) := L mi Pn,i(x) 
o~i~o 

has at least R distinct integral roots among 1, 2, ... , n. 

In the linear case we have 

Theorem 3.2 An [n, k, d] R code C is a perfect (m0 , m1, .•. , m 6 )-covering only if the Lloyd 

polynomial 

L(x) := L mi Pn,i(x) 
o~i~o 

has among its roots the s nonzero weights of C.L. 

Corollary 3.1 s s 8. 

Proof of Theorem 3.1. (Adapted from Gleason's proof in [2], Chapter II, Section 1) We 

use the group algebra A of all formal polynomials 

3 Golay [23] anticipated Lloyd's theorem in the linear case. 
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with 'Ya E Q, the field of rational numbers. 

Define 

(3.2) 
O~i~.S wt(a)=i 

We let the symbol C for our code also stand for the corresponding element in A, namely, 

(3.3) 

Then we find that 

(3.4) 

Characters on Fn are group homomorphisms of (Fn, +) into { 1, -1}, the group of order 

2 in Q*. All characters have the form Xu for u E Fn, where Xu is defined as 

Xu(v) = (-1)u·v for u,v E Fn. 

We use linearity to extend Xu to a linear functional defined on A: For all Y E A 

if Y = EaeF" 'YaXa, then Xu(Y) := E'YaXu(a). 

It follows that 

Xu(Y Z) = Xu(Y)Xu(Z) for all Y, Z E A. 

It is known [2], [18] that for any u E Fn, if wt(u) = w, then 

Xu ( L . xa) = Pn,i(w). 
wt(a)=• · 

(3.5) 

It follows that 

Xu(S) L(w). (3.6) 

From (3.4), furthermore, we see that 

Xu(SC) = Xu(S)xu(C) - 0 

for all u =/= 0. 

Let u0 , u~, .. . , uR be translate-leaders for C such that wt( ui) = i. Define 

Then 

(3.7) 
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Define the symmetric sub-ring A of A as the set of all elements Y of A in which the 

coefficient of xa depends only on the weight of a: 

y = L 'Ya xa E A iff Va, bE Fn, wt(a) = wt(b) ~ 'Ya = 'Yb· {3.8) 
aEFn 

The mapping T : A ~ A defined by 

1 
T(Y) := I L cp(Y), 

n. 'P 

where cp runs over all n! permutations of the n coordinates of Fn, maps A onto A. Further-

more, 

WE A, VZ E A, T(YZ) = YT(Z). {3.9) 

Define Ci := T(Ci)· Applying {3.9) to {3.7), we see that 

since, of course, S E A. Define also 

K := { Z; Z E A, SZ = 0}. {3.10) 

Thus K is the kernel of the linear mapping from A to A defined by Y ~------t SY for all Y E A. 

It now follows that for any character Xu such that Xu(S) ::/= 0, 

VZ E K, Xu(Z) = 0. 

Since A has dimension n + 1, its space of linear functionals also has dimension n + 1. 

Since every linear functional on A can be extended to one on A, the n + 1 linear functionals 

on A obtained by restricting the Xu to A, as 

Xuh =: Xw for wt(u) = w 

w = 0, 1, ... ,n, 

are linearly independent. 

Suppose that p is the exact number of values of w E {0, 1, ... , n} for which 

Xw(S) ::/= 0. 
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Since Xw(S)xw(K:) = 0 for all w, it follows that Xw(K:) = 0 for p values of w. Since SCi= pn 

for i = 0, 1, ... , R, we see that 

S(Ci- C0 ) = 0 for i = 1, ... , R. 

The elements Ci- C0 are linearly independent because Ci contains elements of weight i but 

of no smaller weight. We find that 

R ~ dimq K: ~ n + 1 - p, 

since K: is included in the intersection of the t kernels of the Xw mentioned above. But 

n + 1- pis the number of Xw's which vanish on S; therefore Xw(S) = 0 for at least R values 

ofw. 

Notice now that 

Xw(S) - L mi Pn,i(w). 
O~i~6 

This finishes the proof. D 

Remark 3.1 As one can see in the proof of Theorem 3.1 we actually get a slightly stronger 

result in the non-linear case, namely that the number of zeros of the Lloyd polynomial is at 

least the number of values wE {0, 1, ... , n} for which Xw(S) = 0, i.e., at least s, the number 

of non-zero elements in the MacWilliams transform of the distance distribution of the code. 

In the linear case s equals the number of non-zero weights in C.l... 

In case we do not know the covering radius R in Theorem 3.1 we may use for instance 

the sphere covering lower bound on R. 

4 PWC with radius 1 

4.1 The linear case 

Assume that F q is the finite field of q elements. We first give a completely elementary way 

of determining all the parameters for which a q-ary PWC with radius 1 exists. In the proof 

we use the concatenation construction, which is also useful in constructing many binary 

nonlinear PWC. Using results from the previous section and the literature we then show 

that we can completely characterize all the q-ary linear PWC with radius 1. 

If Cis an (m0,m1)-covering and C =/=- F;, then m1 > 0; otherwise the density at a non

codeword could not be at least 1. If, furthermore, Cis a perfect (m0 , m1)-covering then the 
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density at a non-codeword equals 1, and m1 ~ 1, and also m 0 ~ 1 because the density at 

any codeword equals 1. 

Proposition 4.1 Assume that the codes C(a) C F;,a E FQ, are (perfect} (m0,m1)

coverings and that they are disjoint and their union is F;. Assume further that D C FZ is 

a (perfect) (M0 , MI)-covering. Then the code 

U C(xi) ffi · · · ffi C(xN) 
(xi.···,xN)ED 

Proof. Suppose z = (zb z2 , ... , ZN) E F:n where each Zi has length n. Because the union 

of the codes C (a) is the whole space F;, there exists a word y = (y1 , y2 , .•• , y N) E FZ such 

that z E C(yi) ffi · · · ffi C(yN ). 

Assume first that d(y, D)= 1. Then there are at least 1/M1 words x = (xi. ... , xN) ED 

such that d(y, x) = 1, and for each such word x there are at least 1/m1 words in C(x1) E9 

· · · E9 C ( x N) that have distance 1 to z. 

Assume then that y E D. Then z E C(y1) E9 · · · E9 C(yN ), and in each C(yi) there are at 

least (1 - m0)/m1 words that have distance 1 to Zi. Therefore, together there are at least 

N(1- m0)/m1 words in C(y1) ffi · · · ffi C(yN) that have distance 1 to z. Furthermore, there 

are at least (1- M0)/M1 words xED such that d(y,x) = 1, and for each such word x there 

are again at least 1/m1 words in C(x1) ffi · · · E9 C(xN) that have distance 1 to z. 

In both cases it is easy to check that the (M0 - N M1 (1 - m0 ), m1M1)-density at z is at 

least 1. 

If the codes C(a) and D are perfect, then in the previous discussion the estimated 

numbers of words are exact, and in both cases the (M0 - NM1(1- m0),m1MI)-density at 

z equals 1. 0 

Proposition 4.2 If C is a perfect q-ary ( m 0 , m 1)-covering, then the code C E9 F q is a perfect 

(mo- (q- 1)mb m1)-covering. 

Proof. Let (x, a), x E F;, a E Fq be arbitrary and denoteD= C E9 Fq. 

If x E C, then (x, a) E D and the words of D that have distance 1 to (x, a) are the q -1 

words (x, {3) ED, {3 =1- a, and the (1- m0)/m1 words (y, a) where y E C and d(y, x) = 1. 

If d(x, C) = 1, then also d((x, a), D) = 1 and the words of D that have distance 1 to 

(x, a) are precisely the 1/m1 words (y, a) where y E C and d(y, x) = 1. 0 
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If C c F; is a perfect linear (m0 , m1)-covering with K codewords, then according to the 

sphere-covering equality we have (m0 + (q- 1)nm1)K = qn. 

The numbers m 0 , m 1 are rational numbers and by the discussion preceding Proposition 

4.1, m0 :::; 1 and 0 < m1 :::; 1. Thus mo = aft and m1 = b/t for some integers t > 0, a :::; 

t, 0 < b:::; t. Because C =IF;, there exists a point x ¢ C, and fJ(x) = 1 implies that some 

multiple of b/t equals one, and hence b divides t. On the other hand, if x E C, then fJ(x) = 1 

implies that some multiple of bjt equals 1 -aft and hence b divides a. We may therefore 

assume that b = 1. 

Theorem 4.1 A perfect q-ary linear (m0 , m 1)-covering C =I F; of length n exists if and 

only if 

mo =aft, m1 = 1/t for some integers t > 0, a:::; t 

and a= t (mod (q- 1)), and for some integer i > 0 

tqi- a 
n=--

q-1 

Proof. We have already seen that m0 and m1 are as described in the theorem. By the 

sphere-covering equality we have 

(aft+ (q- l)njt)K = qn 

and because C is linear, its cardinality K is a power of q, say qn-i, 0 < i :::; n, and then 

n = (tqi- a)f(q- 1). In particular, a= t (mod (q- 1)). 

To construct such codes, assume first that a = t. Then we can in Proposition 4.1 choose 

for a E Fq and 

D = the q-ary linear Hamming code of length ( qi - 1) / ( q - 1). 

Each C(a) is a perfect (1, 1/t)-covering and D is a perfect (1, I)-covering. Then the con

struction of Proposition 4.1 yields a perfect (1, 1/t)-covering of length t(qi - 1)/(q- 1). By 

the construction and the definitions of C(a) and D it is clear that this code is linear. If a 

is smaller than t, then a= t- (q- l)j for some integer j 2: 1, and we obtain the required 

perfect (aft, 1/t)-covering of length j + t(qi- 1)/(q- 1) by applying Proposition 4.2 to this 

code j times. D 
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In fact, it is even possible to characterize all the q-ary linear PWC with radius 1. Assume 

that C is a q-ary linear perfect (m0 , m 1)-covering. By Corollary 3.1, s ~ 1. If s = 0 then 

C = F;, so assume that s = 1. It is well-known, cf. [1], that the generator matrix of CJ. has 

the form 

(4.11) 

where each Gi is a generator matrix of the i-dimensional simplex code and 0 is the i by l 

zero matrix. It is easy to check that there are two kinds of covering equalities, namely, for 

the points that have distance 0 and 1 to the code. These two equalities are 

mo + (q- 1)Zm1 = 1 

and we see that C is a PWC with m1 = 1/t and m0 = 1- (q- 1)ljt. We have therefore 

proved the following result. 

Theorem 4.2 For every q, n, m 0 , m1 for which there exists a q-ary perfect linear (m0 , m1)

covering of length n such a PWC is unique up to equivalence. D 

4.2 The nonlinear PWC with radius 1 

Let us first give two general constructions. 

Proposition 4.3 If there exists a perfect (m0 , m 1)-covering of length n, then there exists 

a perfect ( m 0 , mr/ s)- covering of length ns. 

Proof. Apply the construction of Proposition 4.1 using the perfect (m0 , m 1)-covering of 

length n as the outer code and the q-ary [s, s- 1] parity check code as the inner code. D 

Proposition 4.4 If C1 , C2 , ... , Ci are disjoint perfect (m0 , m 1)-coverings of length n, then 

their union is a perfect (m0/i, mr/i)-covering. D 

We cannot characterize all the PWC with radius 1. We can, however, give a partial 

characterization: 

Suppose that C C F; is a perfect (not necessarily linear) (m0 , m 1)-covering of length n. 

As discussed in the previous section, we may assume that m1 = 1/t and m 0 =aft for some 

integers t > 0 and a ~ t. The case m 0 = m1 = 1/t corresponds to the PMC case; it is 

considered in [39]. 
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By (2.4), 

K(a + (q- 1)n) = tqn. (4.1) 

If we instead of linearity assume that q is a prime and tis a power of q, then we still know 

that K is a power of q, and obtain the following result. 

Proposition 4.5 Assume that q is a prime and t = qh. A perfect (ajt, 1/t)-covering 

C C F; exists if and only if a= t (mod (q- 1)) and for some integer i > 0 

tqi- a 
n=---

q-1 

Furthermore, there exists a linear PWC with these parameters. 

Proof. Again K is a power of q, say qn-i where 0 < i ~ n, and n = (tqi- a)j(q- 1) and 

a-t (mod (q- 1)). By Theorem 4.1 there exists a linear PWC with these parameters. D 

We would like to point out that for some parameters satisfying ( 4.1) there is no corre

sponding code. In the binary nonlinear case we have the following non-existence result. 

Proposition 4.6 If a perfect (1, 1/t)-covering C C Fn exists and n =1- t, then n 2: 2t + 1. 

Proof. If necessary we translate C so that the all-zero word does not belong to C. Then 

there are exactly t codewords of C of weight 1. Suppose x is any other word of weight 1. 

Then xis covered by t codewords of C of weight 2, none of which has any 1's in common 

with the codewords of weight 1. Therefore, n 2: t + (t + 1) = 2t + 1. D 

Example 4.1 If i 2: 3 is odd and t = (2i + 1)/3, then n = 2i- t and K = t2n-i satisfy the 

equality K(1 + njt) = 2n. However, because n = 2t- 1, no perfect binary (1, 1/t)-covering 

of length n exists by the previous proposition. 

5 Linear PMC with radius 2 (m0 = m 1 = m 2 = 1/ j) 

5.1 The case s = 1 

We begin this section by assuming only that the orthogonal code C.l has exactly one nonzero 

weight, i.e., that s = 1. Let C be a binary linear [n, k, d] code. 
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5.1.1 Description of C 

Let w denote the nonzero weight in C.1.. Because s = 1, we know [1] that C.l. is a t-fold 

repetition of the [2i -1, i] simplex code Si, with l zero coordinates appended, for some t ~ 1 

and l ~ 0. Thus C.l. consists of all words of the form ctoz forcE Si (with the superscripts 

standing for catenation). Here i := n- k ~ 1, and w = t2i-I, and n = t(2i- 1) + l. 
We will need some further notation, but only for this section: 

ni := 2i -1 

H ·- S.l.. i .- i . 

H1 is the [1, 0] code, and if i ~ 2, Hi is the Hamming code of length ni. 

The orthogonal code C is therefore the direct product L x F1, where L is the code 

<L11 L2> spanned by the subcode 

and by the subset L2 of all vectors of weight 2 in L, namely, 

for a+ f3 + 'Y = t- 2 and u any unit vector of length ni. L 2 = 0 if t = 1. 

If l > 0, then d = 1; if l = 0, then d = 3 if t = 1 and d = 2 if t ~ 2. If i = t = 1, 

then L is the [1, 0] code; otherwise d(L) = 2 or 3. Most of our focus is on this [tni, k- l] 

code L, where we speak of two coordinate-places as congruent if they are congruent mod ni. 

For example, the two 1's of a vector of weight 2 in L are in congruent places (reflecting two 

identical coordinate-places in C.l. as we have ordered it). 

5.1.2 Counting 

The results of this Lemma will be helpful. 

Lemma 5.1 {i} The number of vectors of weight 2 in L is G)(2i- 1); inC it is 

G)(2i -1) +G)· 
{ii} For each two incongruent coordinate-places a, f3 of L, the total number of vectors of 

weight 3 in L with 1 's at a and f3 is t. 

{iii} For each coordinate-place a of L, there are exactly (ni- t)t/2 = t 2 (2i-l- 1) vectors 

of weight 3 in L with a 1 at a. 
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We omit the proofs, remarking only that we used (ii) to prove (iii). 

We now use Lemma 5.1 to count how many codewords of C are within distance 2 of a 

given vector. 

Let x E L and f E F 1• Then (x; f) E C. It is obvious that there are exactly 

N : = 1 + l + ( ~) ( 2i - 1) + G) (5.1) 

vectors of C at distance 0, 1, or 2 from (x, t). 

Now consider a vector not inC: Let v be in Ftn; and f E F 1, with v ~ L. Since s = 1, C 

has covering radius 1, so (v, f) is at distance 1 from C. It follows that for some x E Land 

some vi of weight 1 and length tni, 

(5.2) 

Of course vi = ocm;uo.Bn; for some integers a, f3 ~ 0 with a + f3 = t - 1 and for some 

unit vector u of length ni. Thus (v; f) is at distance 1 from exactly t codewords, namely, 

(x; f)+ vi+ v2 , where v2 is a unit vector congruent to VI· 

We now count the vectors of weight 2 in Fn that, added to (v; f), produce a word in 

C. Of the three types of vectors of weight 2, namely, (2; 0), (1; 1), and (0; 2), indicating the 

weight on the first tni coordinates and on the last l, obviously there are none of the third 

type. 

For type (1; 1), there are exactly l of the form (vi; Jr), where fr is a unit vector of length 

l. But instead of vi, we may choose any unit vector v2 congruent to VI, so there are exactly 

tl of type (1; 1). 

For type (2; 0) we add (v3 ; 01) to (x + v1 ; f). On the left the result is x + v1 + v3 E L. 

Since VI and v3 have weights 1 and 2, resp., and since VI+ v3 E L, wt(vi + v3 ) :::; 3 implies 

wt(vi + v3 ) = 3. By Lemma 5.1 (iii), the number of vectors we seek of type (2; 0) is 

Therefore the number of vectors inC within distance 2 from a vector not inC is 

(5.3) 

Our code C is PMC iff N = N'. We will test a candidate code by seeing whether 

N- N' = 0. For future reference we record, without showing the routine algebra, 

2(N- N') = (l- t) 2 + 2(l- t) + 2- n. (5.4) 
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5.1.3 Necessary and sufficient conditions for PMC 

We now consider binary linear PMC (perfect multiple coverings) with radius 2. Let the linear 

[n, k, d] code C be a perfect (1/ j, 1/j, 1/ j)-covering. Recall from [39) that this means that 

every vector in the space is within distance 2 of exactly j codewords. We now characterize 

all such codes C. 

We first prove a necessary condition. Since (i) holds with no assumptions on s, we'll also 

use it in Section 5.2. 

Theorem 5.1 We use the previous notations. 

(i) The length n of any binary linear PMG code C of 

radius 2 has the form 1 + ,\2 for some integer,\. 

(ii) Moreover, when s = 1, we have 

2w = ,\ 2 - ,\ + 2 = t2i 

n - 2w = ,\ - 1 = l - t 

l=t+.\-1. 

Proof. Since Cis PMC, we see from Theorem 3.2 that its Lloyd polynomial L(x), 

jL(x) = 2x2 - 2(n + 1)x + 1 + n + (;), 

has was a root. Solving (5.6) we find the roots are 

1 
2" (n + 1 ± v'1i"=l). 

(5.5) 

(5.6) 

(5.7) 

It follows that n = 1 + ,\2 for some integer ,\. If, as we may, we represent w with the negative 

sign in (5. 7), we get (5.5). D 

We now prove that the conditions of Theorem 5.1 are sufficient. 

Theorem 5.2 Let ,\ be any integer. Define n := 1 + ,\2, and let i ~ 1 and t ~ 1 be any 

integers satisfying 

(5.8) 

If l := t + ,\- 1 is nonnegative, and setting n' := t(2i- 1) + l, then define the binary linear 

[n', i, t2i-l) code Cl_ as Sf01, the t-fold repetition of Si with l zeros appended. Then Cl_ is a 

one-weight code; that weight is w := t2i-I. Then n' = n, and C is an [n, n- i) PMG code. 
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Proof. n' = .\2 - ,\ + 2- t + l = .\2 + 1 = n. Since l- t = ,\- 1, we find from (5.4) that 

2(N- N') = (.\- 1)2 + 2(.\- 1) + 2- (1 + .\2) = 0. 

Therefore Cis PMC, and j = N = N'. 0 

The [2, 1, 2] and [2, 1, 1] codes are the only linear codes with s = 1 and n = 2; they are 

obviously PMC. The first of these is unique, as we show next. 

Theorem 5.3 The only binary linear PMC with radius 2 and s 

distance 2 is the [2, 1, 2] code. 

1 that has minimum 

Proof. Under the previous notations d = 2 only if l = 0, and then t(2i - 1) = 1 + ,\2. If 

i ~ 2 this equation has no integer solutions. For if p is a prime dividing 2i - 1, then -1 is 

a quadratic residue mod p, and hence p = 1(mod 4). Applying this to every prime factor 

of 2i - 1 yields 2i- 1 1(mod4), a contradiction. Therefore i = 1 and C has to be an 

[n, n- 1, 2] code. We see that n = 2 by setting l = 0 in (5.5); we must take,\= -1. 0 

We close this section with a short table of the PMC codes for I-XI :S 3. 

Table: PMC codes with s = 1 and n :S 10 

,\ n t2i ~ t k c words 

0 1 2 1 1 0 0 [1, OJ 0 

1 2 2 1 1 1 1 [2, 1, 1] 0* 

-1 2 4 1 2 0 1 [2, 1, 2] a2 

2 5 4 1 2 3 4 [5, 4, 1] a2*3 

2 1 2 3 [5, 3, 1] a3*2 

-2 5 8 1 4 1 4 [5, 4, 1] e4* 

2 2 -1 

3 1 -2 

3 10 8 1 4 6 9 [10, 9, 1] e4*6 

2 2 4 8 [10, 8, 1] PB*4 

3 1 3 7 [10, 7, 1] h7*3 

-3 10 14 1 7 3 9 [10, 9, 1] e7*3 

Key: *m is any element of Fm; a E F; em is even-weight word in Fm; 

PB E <a3b3, 100 100, 010010>; h7 E [7, 4, 3] code. 
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5.2 The case s = 2 

We have found the following PMC codes C in this case (d = s = 8 = 2): 

c cj_ 

[5, 1, 5] j=1 [5, 4; 2,4] 

[5, 2, 2] j=2 [5, 3; 2,4] 

[5, 3, 2] j=4 [5, 2; 2, 4] (5.9) 

[10, 7, 2] j=7 [10, 3; 4, 7] 

[37, 32, 2] j = 22 [37, 5; 16, 22] 

[8282, 8269, 2] j = 4187 ~282,13;4096,418~ 

The first is a classical perfect code. The notation [n, k; w 1 , w2 , ... ] stands for an [n, k] 
code in which all nonzero weights are among w1 , w2 , .... In the above codes C..L both weights 

are present, since s = 2. All the above codes Care P MC codes. 

These codes arise from the following two constructions. We denote the i-dimensional 

simplex code by Si, and the generator matrix of a code C by g(C). 

First Construction. We construct a 2-weight code C..L by setting g(C..L) equal to g(Si); ch 

where cis any column of g(Si)· For example, the [5, 3, 2] code for j = 4 above has 

1 1 0 1 1 

0 1 1 0 0 

Here i = 2 and h = 2. There is no loss of generality in taking c = (1, 0, 0, ... , Of. 
In general we have 

The weights in C..L are 2i-l and 2i-l +h. 

We will now calculate the values 

for the cosets of C: 

Identify the cosets with the syndromes, which are columns of Si. 
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( i) The code C has 

D=1,o,(h; 1) 

since column c occurs h + 1 times in g(CJ._). 

( ii) For any column c' of g(Si) other than c, 

2i- 2 
D = 0,1,-2- + h, 

since there are (2i- 2)/2 vectors v of weight 2 in any coset of weight 1 in the Hamming code 

Sf. Column cis covered by one of those vectors v. We may replace c there by any of its h 

clones. 

(iii) For column c, 
2i- 2 

D = O,h+1,-2-

Now the code C will be a P MC iff the sum of Dis the same in all three cases: 

J = 1 + ( h ; 1) = 1 + h + 2i ; 2 . 

This equation can be written 

(5.11) 

(5.12) 

All solutions of this Diophantine equation are known [38]. They exist precisely for h = 

0, 1, 2, 3, 6, and 91. 

Since h is the difference between the two weights in CJ._, h = A as defined in Theorem 5.1. 

Thus we consider h = A = 0, 1, 2, 3, 6, and 91. The corresponding values of j, from (5.11), 

are j = 1, 2, 4, 7, 22,4187. Since i = dim(CJ._), i = n- k. We may calculate i from (5.12). 

Because s = 2, we must have i ;:::: 2, which excludes the first two values of h. For the other 

four we get n- k = 2, 3, 5, 13, and we obtain the four largest codes in (5.9). 

Second Construction. The [5, 1, 5] code C has s = R = 2. Since it is perfect, it is a P MC 

with j = 1. If we now let c2 be a coset of c of weight 2, and define cl := c u c2, we get a 

[5, 2, 2] code C1 . This construction obviously doubles the value of j for any P MC code with 

R = 2. Thus we get the second code in (5.9). 

Since C1 has R = 2 as well, we may arrive at the [5, 3, 2] P MC code again by applying 

the second construction to cl. 

Remark 5.1 The first construction yields nothing if we repeat the simplex code in CJ._. I.e., 

if g(CJ._) = t x g(Si); ca then the smaller weight in CJ._ is t · 2i-l = 1 + >. 2;>., from (5.7). 

The length is n = t(2i- 1) + A = 1 + A2 , from Theorem 5.1. These easily imply t = 1. 
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Conjecture 5.1 We conjecture the nonexistence of PMC codes with d = s = 8 = 2 other 

than those in {5.9}. 

6 A Connection between weighted packings and cov-
• er1ngs 

From now on in this paper we assume that all the numbers mi are non-negative. 

It turns out that in this general set-up, the dual problems of finding all the best weighted 

packings and weighted coverings are really one and the same. 

Suppose M = (m0 , m17 ••• , m6), and denote 

6 (n) . v = L mi . (q- 1)', 
i=O 'l 

If v < 1 then every code C ~ F; is an M-packing and no Cis an M-covering. The same 

is true also if v = 1 except that in that case the whole space is an M-covering. So, assume 

that v > 1 and C C F;, and denote C' := F; \ C =/= 0. Then 

<A(x), M> + <A'(x), M> = v 

holds for all x E F;, where A'(x) is the weight distribution of C' with respect to x. Therefore, 

the condition 

<A(x), M> 2:: 1 for all x E F; 

is equivalent to .the condition 

<A'(x), M'> ~ 1, 

where M' = (m0/(v- 1), md(v- 1), ... , m6/(v -1)). Similarly, Cis an M-packing if and 

only if C' is an M' -covering. 

A similar observation is already true for multiple coverings and packings. If M = 
(m0 , m17 .•• , m6) and mi = 1/ J1. for all i = 0, 1, ... , 8, and we denote by Kq(n, 8, JJ.) (resp. 

Aq(n, 8, JJ.)) the smallest (largest) possible number of codewords in any M-covering (M

packing) in F; (again if q = 2 the subscript 2 is usually omitted), then 

where 

Vq(n, 8) = t (~) (q- 1)i. 
i=O 'l 
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Proposition 6.1 Suppose C ~ F; is an M-covering, where M = (m0 , ... , m 8) and that 

P ~Cis an M*-packing, where M* = (m0, ... , m6), and let 

8 

m = max L miAi, 
L mi A; ::;I i=O 

where maximum is taken over all Ai 's. If m < 1, then the code C \ P is an (m0/(l -

m), ... , m8/(1- m))-covering. 

Proof. Suppose x E F; and denote by Af(x) = I{Y E Xld(y,x) = i} 1- Then 

8 8 

L miAf(x) 2: 1 and L m;Af(x) :S 1 
i=O i=O 

and hence 
8 8 

L miAf\P(x) > L mi(Af(x)- A[(x)) 
i=O i=O 

8 

> 1- L miAf(x) 2: 1-m. 
i=O 

D 

Corollary 6.1 Suppose C is an M -covering, where M = (m0 , ... , m8) and P C C has 

minimum distance at least 28 + 1. If 

m = maxmi < 1, 
O~i~8 

then C \ P is an (mo/(1- m), ... , m8/(1- m))-covering. 

Corollary 6.2 K(n, r, J.L) :S K(n, r, Jl + 1)- A(n, 4r + 1). 

Proof. See [25]. 

7 Constructions of weighted coverings and packings 

D 

D 

In this section we study only the binary case. All the weights are assumed to be non-negative. 

Some of the examples presented in this section were borrowed from [25] and [26]. 
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7.1 Puncturing 

Proposition 7.1 If C is an (m0 , mt, ... , m6)-covering, then the punctured code C* is an 

(m(j, mr, ... 'm;_1, m6)-covering where mt = max{mi, mi+1} fori= 0, I, ... ' 8 -I and m6 = 

m6/2, provided there are no two codewords inC that differ only in the punctured coordinate. 

Proof. Let x E Fn-1 be arbitrary. Denote by Ai the number of words of the punctured code 
6-1 

C* at distance i from x. If EmiA;(x) ;:::: I there is nothing to prove. Assume, therefore, 
i=O 

6-1 6-1 6-1 
that EmiAi(x) < 1. Then L miAi((x, 0)) <I and L miAi((x, I)) <I, and there are at 

i=O i=O i=O 

least ( 1- ~mjA;(x)) fm, words yin C for which d(y•,x) = 6 and d(y, (x, 0)) = 6 and, 

similarly, there are at least (I - ~m; Ai ( x)) / m6 words z in C such that d(z*, x) = 8 and 

d(z, (x, I))= 8, thus giving us 2 (I- ~miA;(x)) /m6 words u inC for which d(u*, x) = 8, 

proving our claim. 0 

Corollary 7.1 Suppose C is an M -covering of length n and radius r where M = (I/,_,, ... , 

I/ J.t) and that no two codewords of C differ only in the first coordinate. Then there is 

an M' -covering of length n - I and radius r with the same number of codewords, where 

M' = (I/,_,, I/,_,, ... , I/,_,, I/(2J.t)). o 

Remark 7.1 We would like to point out the interesting fact that the sphere-covering lower 

bounds for K(n, r, J.t) and the resulting weighted covering in the previous corollary are equal, 

and in that sense the resulting code is as good compared to the sphere-covering bound as 

the original one. 

Example 7.1 The I92-element (I, I)-covering of length 11 defined in [I7] has the property 

that no two codewords differ only in the first coordinate. Hence, by puncturing the first 

coordinate we obtain a (I, I/2)-covering of length IO with the same cardinality. 

Proposition 7.2 If Pis an (m0,m1, ... ,m6 )-packing, then P* is a (min{m0,mi},min{mt, 

m2}, ..• , min{min6-b m6 }, D)-packing. 

Proof. Let again x E Fn-1 be arbitrary. We use the same notation as in the previous 

proof. Denote further by A~(x) the number of words (p, I) in P for which d(x,p) = i- 1. 

Then 
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6-1 6-1 
L A;(x) min{mi, mi+1} :::; L:(Ai((x, 0))- A~((x, 0)) + A~+1 ((x, 0))) min{mi, mi+1} 
i=O i=O 

6-1 
:::; L((Ai((x, 0)) - A~((x, O)))mi + A~+l ((x, O))mi+l) 

i=O 
6-1 6 

= L Ai((x, O))mi + A~((x, O))m6 :::; L Ai((x, O))mi :::; 1. 
i=O i=O 

D 

7.2 Shortening 

If Pis an (m0 , ... , m6)-packing and we denote by P' the set of words c such that (c, 0) E P, 

then it is easy to show that P is both an (m0 , ... , m6)-packing and an (m1, m2 , ... , m6)

packing (by considering for each x E Fn-1 the densities at (x, 0) and (x, 1), respectively). If 

the sequence of weights is decreasing, then the latter statement is trivial. 

7.3 Lengthening 

Proposition 7.3 Suppose C is an (m0 , m1, ••. , m6)-covering. Adding a parity check bit to 

each word of C gives an (mo, max{mo, m1}, ... , max{m6-1, m6}, m6)-covering C. 

Proof. Suppose x E Fn. Denote by p(x) = wt(x) (mod 2). Then the weight distribution 

of C with respect to (x,p(x)) is (Ao(x), 0, A1(x) + A2(x), 0, A3(x) + A4 (x), ... , A6_1(x) + 
A6(x), 0) if 8 is even and (Ao(x), 0, A1 (x) + A2(x), 0, A3(x) + A4(x), ... , A6-2(x) + A6-1 (x), 0, 
A6(x) + A6+1(x)) if 8 is odd and the weight distribution of C with respect to (x, 1 + p(x)) 

is (0, Ao(x) + A1 (x), ... , A6-1 (x) + A6(x), 0) if 8 is odd and (0, A0 (x) + A1(x), ... , A6_2(x) + 
A6-1(x), 0, A6(x) + A6+1(x)) if 8 is even. D 

It is sometimes possible to improve on the previous proposition. 

Proposition 7.4 {26} Suppose C is a (1, 1, ... , 1, m8 =!)-covering of length n and covering 

radius 8, then the extended code C is a (1, 1, ... , 1, m6+1 = 1/ f(n + 1)/(8 + l)l )-covering. 

Example 7.2 Adding a parity check bit to a 62-element (1, !)-covering of length 9 gives us 

a (1, 1, 1/5)-covering of length 10 with the same cardinality [26]. 
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Proposition 7.5 Suppose P is an (mo, m1, ... , m0 )-packing. Adding a parity check bit to 

each word of C gives an (m0 , min{mo, m1}, ... , min{m0_ 1, m0} )-covering C. 

Proof. The same as in the covering case. D 

7.4 Direct sum 

Proposition 7.6 Suppose C is an (m0 , m1, ... , m0 )-covering. Then the code C EB F is 

an (m0/2, max{mo, mi}/2, ... , max{mo-2, m0_I}j2, max{mo-I/2, m0} )-covering (having ra

dius 8) and an (m0/2, max{m0 , mi} /2, ... , max{m0_ 1, m0}/2, m 0/2)-covering (having radius 

8 + 1}. 

Proof. If x E Fn, then the weight distribution of both (x, 0) and (x, 1) with respect to 

CEBF equals (Ao(x), Ao(x)+A1(x), A1(x)+A2(x), A2(x)+A3(x), ... , Ao-1(x)+Ao(x), A0(x)+ 

Ao+l (x)). 
D 

Example 7.3 Applying the previous proposition to a 10-element (1, 1/2)-covering of length 

5 obtained by the piecewise constant code construction in [26] we get a (1/2, 1/2)-covering 

of length 6 with 20 elements, which actually is the best known upper bound on K(6, 1, 2) 

obtained by the matrix construction in [25]. 

Proposition 7. 7 Suppose P is an ( m0 , m 1 , ... , m0) -packing. Then the code C EB F is an 

(mo/2, min{mo, m1}/2, ... , min{mo-2, mo-d/2, min{mo-I/2, mo} )-packing. D 

P •t• 7 8 s C1 • ( I I I ) • d C11 • ( II II ropos1 1on . uppose zs an m0 , mu ... , m6, -covermg an zs an m0 , m1, ... , 

mZ") -covering. Then their direct sum C is an ( m0 , m1 , ... , m0 ) -covering, where 8 = 81 + 811 

d I II an mk = max mimi. 
i+j=k 

Proof. The result simply follows from the fact that 

o' 
L A~(x)m~ 2: 1 
i=O 

and 
8" 

L Aj(y)mj 2: 1 
j=O 
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imply that 

( 
h' ) ( 6

11 

) ~ A~(x)m~ ~ Aj(y)mj ~ 1. 

D 

We have no idea if the ADS construction [24] can be successfully generalized to the 

weighted covering case. Nevertheless, in the multiple covering case it is possible to generalize 

the concepts of normality and subnormality in a useful way [29]. For some applications of 

the ADS construction in the case of multiple coverings, see also [25]. 

7.5 (u, u + v)-construction 

Proposition 7.9 Suppose C' is an (m~,m~, ... ,m~,)-covering and C" is an (m~,m~, ... , 

m~") -covering. Then the code { ( u, u + v) lu E C', v E C"} is an ( m 0 , m1 , ... , m 6 ) -covering, 

where {j = 6' + 6" and mk = ,max m~mj. D 
z+J=k 

Usually this construction is effective for codes with radius one. In the following proposi

tion we denote p(u) = wt(u) (mod 2). 

Proposition 7.10 Suppose C C Fn is an (m0 , m 1)-covering with m 0 ::; 1. Then the code 

{(p(u), u, u+c)lu E Fn, c E C} is an (m, m)-covering, where m = mr/(l+m1 -m0 ), provided 

that m1 ::; m 0 , and it is an (m0 , m 1)-covering, provided that m1 > m 0 . 

Proof. It is easy to verify that the weight distribution of the resulting code with respect 

to a given word (x0 , x, y) is either (A0(x + y), A1 (x + y)) or (0, A 0(x + y) + A1 (x + y)). D 

Example 7.4 Applying the previous construction to a perfect (1/5, 1/5)-covering consisting 

of all the 16 binary words of length 4, we obtain a perfect (1/5, 1/5)-covering of length 9 

having 256 codewords, cf. [25]. 

Applying the previous construction to a (1, 1/ J.L)-covering gives us a (1, 1)-covering (ordi

nary covering code), and we can always obtain at least as small a (1, 1)-covering by applying 

the construction to a (1, 1)-covering in the first place. 

Proposition 7.11 Suppose P is an (m0 , m 1)-packing. Then the code {(p(u), u, u + c)lu E 

Fn, c E C} is an (m, m)-packing, where m = mr/(1 + m1 - m0), provided that m 1 ~ m 0 , 

and it is an (mo, m1)-packing if m1 <mo. D 
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7.6 Cascading 

Sometimes it is useful to combine binary and nonbinary weighted coverings using a suitable 

variant of cascading that gives us a code whose length is the product of the lengths of the 

components. 

Proposition 7.12 Assume that C0 s;;; yn satisfies the following two conditions: 

1. for all x E yn such that d( x, C0) s; rJ we have 

8 

L m~o) A(x) 2: 1, 
i=O 

2. for all x E yn we have 
8 

L m~1) Ai(x) 2: 1. 
i=O 

Assume further that C 1 , ... , Cq-1 are disjoint translates of C0 and that 

C = Co U · · · U Cq-1 

has covering radius at most rJ. Let D s;;; F: have covering radius at most R. Then the code 

E = U Cd1 EB Cd2 EB · · · EB CdN 

(d1 ,d2, ... ,dN )ED 

has length nN, size IDI · ICoiN and is an (m0, mi, ... , m'N8 )-covering, with 

m* =max m(al) m(a2 ) m\aN) 
J ]1 ]2 • • • ]N 

where the maximum is taken over all indices j 1 , ... , j N such that j 1 + · · · + j N = j and over 

all a1 , ... , aN such that wt(a1 ... aN) s; R. 

Proof. Let x = ( x 1 , ... , x N), Xi E yn, be arbitrary, and for each i choose Yi E F q such that 

d(xi, CyJ s; rJ. Because D has covering radius at most R, there exists a word d1d2 ..• dN ED 

whose distance to the word y = y1 ... y N is at most R. Now consider the code C d1 EB · · · EB C dN. 

Denote by Acdi (xj) the weight distribution of Cdi with respect to Xj. Now we have 

I < ll (~ mld(u;,dj)) A~'J (x;)) 

N6 ( 
N 

Ac'i( ) (•,) (a,) (•N)) < ~ i1+~N=t II ij Xj ·max mi1 mi2 ... miN 
j=1 

N6 ( 
N 

c, ( ) ·) < ~ i1+~N=t II Aii 3 Xj mt 
j=l 
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where the maximum is taken over all indices ib ... , iN such that i1 +···+iN= t and over 

all a1 , ... , aN such that wt(a1 ... aN) ::; R. Our claim now follows because 

Af(x) ~ L 

D 

In the previous construction we can choose a different system C0 , ... , Cq_1 , C for each 

of the N coordinates of D, and D can be a mixed code (its coordinates are over different 

alphabets). 

7. 7 Matrix construction 

We now generalize the matrix construction [6]. Assume that a(l), ... , a<N) E Fn are (not 

necessarily distinct) column vectors whose linear span is the whole space Fn and that S = 

{s<1), ... ,s<t)} ~ Fn. For every k = 0,1, ... ,N andy E Fn, denote by fk(Y) the number of 

different (k + 1)-tuples (ib ... , ik,j) such that i1 < ... < ik and 

Proposition 7.13 If 

i=O 

for ally E Fn, then the code { (xb ... 'XN) E FN!xlal + ... +X NaN E s} is an (mo, mb ... l 

mfJ)-covering of cardinality 2N-nt. 

Proof. For z E FN, the number of words in the code that have distance exactly k to z 

equals the number of ways in which y = Az can be represented as a sum 

for some i 1 < · < ik and j, since the vector obtained by adding 1 to the coordinates i 1 , ... , ik 

of z belongs to the code. In other words, this number equals fk(y). D 

Example 7.5 By choosing Sand A as the set of the columns 

01010 10001011 

01110 01000100 

00101 00100100 

01001 00011101 
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we can check that each vector in F 4 is in S or can be represented in at least three ways 

as a sum of an element in A and an element inS, hence the resulting SO-element code is a 

(1, 1/3)-covering of length 8 [26). 

We have an analogous proposition for weighted packings. 

Proposition 7.14 If 

i=O 

for ally E Fn, then the code { (xb ... ,xN) E FNixlal + ... + XNaN E s} is an (mo, mb ... ' 
mo)-packing of cardinality 2N-nt. 

7.8 Piecewise constant codes 

A piecewise constant code [17) of length n = n1 + n2 + · · · + ni consists of all the words 

(c17 c2 , ••• , ci), c; E Fn•, such that (wt(c1), wt(c2), •.• , wt(c;)) E W, where W is a given subset 

of zi. For such a code the weight distribution with respect to a given word (x 17 x2 , ••• , xi) 

depends only on (wt(xi), wt(x2), ••• , wt(xi)), which essentially reduces the amount of check

ing. 

Example 7.6 As mentioned in [26) the words of weights 0, 2, 5 and 7 in F 7 form a (1, 1/3)

covering. In fact, the density of this covering is equal to 1 at all except the 14 points that 

have weight 1 or 6, at which the density is 7/3. In the same way we can check, for instance, 

that the words of weights 2 and 5 form a (1/6, 1/6, 1/12)-covering and the density of this 

covering is equal to 1 at all points except the all-zero and the all-one points, at which it is 

21/12. 
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