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Abstract

In this article we construct new minimal intersection sets in AG(r, q2)
sporting three intersection numbers with hyperplanes; we then use these
sets to obtain linear error correcting codes with few weights, whose weight
enumerator we also determine. Furthermore, we provide a new family of
three-character multisets in PG(r, q2) with r even and we also compute
their weight distribution.
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1 Introduction

Throughout this paper q is taken to be an arbitrary prime power. A set of points S
in the projective space PG(r, q2) or in the affine space AG(r, q2) is a t-intersection
set or a t-fold blocking set with respect to hyperplanes if every hyperplane contains
at least t > 0 points of S. A point P of a t-intersection set S is said to be essential
if S \ {P} is not a t-intersection set. When all points of S are essential then S is
minimal.

An intersection set S in PG(r, q2) or in AG(r, q2) is an m-character set if the
size of the intersection of S with any hyperplane might assume just one out of m
possible different values called the characters of S.

Sets with few characters are connected with many theoretical and applied ar-
eas such as coding theory, strongly regular graphs, association schemes, optimal
multiple coverings, secret sharing; see in particular [7, 9, 10, 11, 12, 13, 16, 17]
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for applications of 2– and 3–character sets. For an extensive survey of results on
three-character sets, see also [15] and the references therein.

A multiset in PG(r, q2) is a mapping M : PG(r, q2) → N from the points
of PG(r, q2) into non-negative integers. The points of a multiset are the points
P of PG(r, q2) with multiplicity M(P ) > 0. Certain multisets arise in various
classification problems for optimal linear codes of higher dimension; see [17, 18].

We recall how a linear code in q2 symbols is generated from a (multi)-set V of
points in PG(r, q2). Fix a reference frame in PG(r, q2) and construct a matrix G
by taking as columns the coordinates of the points of V suitably normalized. The
code C having G as generator matrix is called the code generated from V .

In the case in which V is a set of points, that is G does not contain columns
which are scalar multiples of each other, then C is the projective code generated
from V . The spectrum of the intersections of V with the hyperplanes of PG(r, q2)
provides the list of the weights of the associated code; we refer to [21] for further
details on this geometric approach to codes.

As the order of the points in V or their normalization change, it is potentially
possible to construct different codes from the same set of points. However, all of
these are monomially equivalent; thus, in the following discussion we shall speak
of the code associated to a multiset; see [14].

The present paper is organized as follows. In Section 2 we recall a non-standard
model of PG(r, q2) which will be useful for our constructions. In Section 3 we
consider certain affine sets of AG(r, q2) which allows to construct in theorems 3.1
and 3.2 interesting geometric objects with three characters. These sets are then
applied in Section 4 to obtain linear error correcting codes with four weights whose
weight enumerator we fully determine in Theorem 4.2. Finally, in Section 5 we
consider one-point extensions of the sets obtained in Theorem 3.2 and obtain 3-
character multiset in PG(r, q2), for any r even in Theorem 5.1. This leads to
3-weight codes whose weights and weight distribution we compute in Theorem 5.2
and in Theorem 5.3, respectively.

We point out that study of the weights is important, since they measure the
efficiency of the code and their knowledge is useful for decoding.

The codes we shall obtain in the present paper are all q-divisible that is they
are q-ary code whose all non-zero weights are divisible by q; see [22].

2 Preliminaries

It is well known that all non–degenerate Hermitian varieties of PG(r, q2) are pro-
jectively equivalent and that they sport just two intersection numbers with hyper-
planes; see [20]. Thus, non–degenerate Hermitian varieties are two-character set.
Quasi–Hermitian varieties V of PG(r, q2) are combinatorial objects which have the
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same size and the same intersection numbers with hyperplanes as (non–degenerate)
Hermitian varieties H.

In [1, 2] new infinite families of quasi–Hermitian varieties have been constructed
by modifying some point-hyperplane incidences in PG(r, q2). To this purpose,
the authors kept the point-set of PG(r, q2) but altered the geometry by suitably
replacing the subspaces of higher type.

The following non-standard model Π of PG(r, q2), originally introduced in [2],
leads to an extension to higher dimensional spaces of Buekenhout-Metz unitals
and it shall also be relevant for the current work.

Fix a non-zero element a ∈ GF(q2). For any choice m = (m1, . . . ,mr−1) ∈
GF(q2)r−1 and d ∈ GF(q2) let Qa(m, d) denote the quadric of affine equation

xr = a(x2
1 + . . .+ x2

r−1) +m1x1 + . . .+mr−1xr−1 + d. (1)

Consider now the birational transform AG(r, q2) → AG(r, q2) given by

ϕa : (x1, . . . , xr−1, xr) 7→ (x1, . . . , xr−1, xr − a(x2
1 + . . .+ x2

r−1)).

We can define a new geometry Πa whose t-dimensional subspaces are the image
under ϕa of the subspaces of AG(r, q2) of dimension t for 0 ≤ t ≤ r − 1. As ϕa is
bijective, Πa is isomorphic to AG(r, q2). In particular, the set of the hyperplanes of
Πa corresponds to the set of all hyperplanes of AG(r, q2) through P∞(0, 0, . . . , 0, 1)
together with all of the quadrics Qa(m, d). Completing Πa with its points at
infinity in the usual way we obtain a projective space isomorphic to PG(r, q2).

In [1], an extension of Buekenhout-Tits unitals is considered, leading to non-
isomorphic families of quasi-Hermitian varieties for q an odd power of 2. However,
we shall not be concerned any further with this second construction in the present
paper.

In order to be able classify quadrics defined over finite fields we shall extensively
use Theorem [19, Theorem 1.2]; some special care is necessary when q is even. We
refer to Chapter 1 of [19] for the complete details. Here, we just recall that for
any quadric Q in PG(r, q2), the radical Rad(Q) of Q is the subspace of PG(r, q2)
given by

Rad(Q) := {x ∈ Q : ∀y ∈ Q, 〈x, y〉 ⊆ Q},

where by 〈x, y〉 we denote the line through x and y.

3 3-character sets in AG(r, q2)

In this section we construct an infinite family of minimal intersection sets in
AG(r, q2) that sport just three intersection numbers. Fix a projective frame in
PG(r, q2) and assume the space to have homogeneous coordinates (X0, X1, . . . , Xr).

3



r q 4aq+1 + (bq − b)2 Tr q(a
q+1/(bq + b)2)

odd odd non-zero
even odd non-square in GF(q)
odd even Any
even even 0

Table 1: Summary of the cases considered in [2, Theorem 3.1]

Let AG(r, q2) be the affine space obtained by taking as hyperplane at infinity Π∞
of PG(r, q2) that of equation X0 = 0. Then, the points of AG(r, q2) have affine
coordinates (x1, x2, . . . , xr) where xi = Xi/X0 for i ∈ {1, . . . , r}.

Consider now the non–degenerate Hermitian variety H with affine equation

xq
r − xr = (bq − b)(xq+1

1 + . . .+ xq+1
r−1), (2)

where b ∈ GF(q2) \GF(q). The set of the points at infinity of H is

F = {(0, x1, . . . , xr)|xq+1
1 + . . .+ xq+1

r−1 = 0}; (3)

that is F is a Hermitian cone of PG(r − 1, q2), projecting a Hermitian variety of
PG(r − 2, q2) from the point P∞(0, . . . , 0, 1). In particular, the hyperplane Π∞ is
tangent to H at P∞.

For any a ∈ GF(q2)∗ and b ∈ GF(q2) \GF(q), let B(a, b) be the affine algebraic
set of equation

xq
r−xr+aq(x2q

1 + . . .+x2q
r−1)−a(x2

1+ . . .+x2
r−1) = (bq− b)(xq+1

1 + . . .+xq+1
r−1). (4)

It is shown in [2] that B(a, b), together with the points at infinity of H, as given
by (3), is a quasi–Hermitian variety V of PG(r, q2) provided that the following
algebraic conditions are satisfied: for q odd, r is odd and 4aq+1 + (bq − b)2 6= 0, or
r is even and 4aq+1 + (bq − b)2 is a non–square in GF(q); for q even, r is odd, or r
is even and Tr q(a

q+1/(bq + b)2) = 0. Here Tr q with q = 2h, denotes the absolute

trace GF(q) → GF(2) which maps x ∈ GF(q) to x+ x2 + x22 + . . .+ x2h−1
.

We recall that for r = 2 the condition that 4aq+1 + (bq − b)2 is a non-square in
GF(q) for q odd or b 6∈ GF(q) and Tr q(a

q+1/(bq + b)2) = 0 for q even is known as
Ebert’s discriminant condition see [5, 8].

We shall study the point-set B(a, b) when complementary of conditions of those
mentioned above hold.

We are going to prove the following results.

Theorem 3.1. Suppose q to be an odd prime-power and 4aq+1 + (bq − b)2 = 0.
Then, B(a, b) is a set of q2r−1 points of AG(r, q2) with characters:
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r q 4aq+1 + (bq − b)2 Tr(aq+1/(bq + b)2)
odd odd 0
even odd 0
even odd non-zero square in GF(q)
even even 1

Table 2: Summary of the cases considered in Theorem 3.1 and Theorem 3.2

r q Case
r ≡ 1 (mod 4) q ≡ 1 (mod 4) 1)
r ≡ 1 (mod 4) q ≡ 3 (mod 4) 1)
r ≡ 3 (mod 4) q ≡ 1 (mod 4) 1)
r ≡ 3 (mod 4) q ≡ 3 (mod 4) 2)
r ≡ 0 (mod 2) q ≡ 1 (mod 2) 3)

Table 3: Cases for Theorem 3.1

1. for r ≡ 1 (mod 4) or r odd and q ≡ 1 (mod 4)

q2r−3 − q(3r−5)/2, q2r−3, q2r−3 − q(3r−5)/2 + q3(r−1)/2;

2. for r ≡ 3 (mod 4) and q ≡ 3 (mod 4)

q2r−3 + q(3r−5)/2 − q3(r−1)/2, q2r−3, q2r−3 + q(3r−5)/2;

3. for r even,
q2r−3 − q(3r−4)/2, q2r−3, q2r−3 + q(3r−4)/2.

Furthermore, B(a, b) is a minimal intersection set with respect to hyperplanes for
r > 2.

Theorem 3.2. Let r be even. Suppose that either q is odd with 4aq+1+(bq − b)2 a
non–zero square in GF(q) or q is even and Tr q(a

q+1/(bq + b)2) = 1. Then, B(a, b)
is a set of q2r−1 points of AG(r, q2) with characters

q2r−3 − qr−2, q2r−3, q2r−3 − qr−2 + qr−1.

B(a, b) is also a minimal intersection set with respect to hyperplanes.

As it can be seen from Tables 1 and 2, all of the possibilities have been ac-
counted for. For the convenience of the reader, we also summarize the subcases of
Theorem 3.1 in Table 3.
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3.1 Proof of Theorem 3.1

Assume B(a, b) to have Equation (4). It is straightforward to see that B(a, b)
coincides with the affine part of the Hermitian variety H of equation (2) in the
space Πa; hence, any hyperplane πP∞ of PG(r, q2) passing through P∞ meets B(a, b)
in |H ∩ πP∞ | = q2r−3 points.

Now we are interested in the possible intersection sizes of B(a, b) with a generic
hyperplane

π : xr = m1x1 + · · ·+mr−1xr−1 + d,

of AG(r, q2) with coefficients m1, . . . ,mr, d ∈ GF(q2). This is the same as to study
the intersection of H with the quadrics Qa(m, d) and hence we have to solve the
system {

xq
r − xr = (bq − b)(xq+1

1 + . . .+ xq+1
r−1)

a(x2
1 + . . .+ x2

r−1) +m1x1 + . . .+mr−1xr−1 − xr + d = 0
(5)

Recovering xr from the second equation in (5) and replacing its value in the first
equation, we obtain the following

aq(x2q
1 + . . .+ x2q

r−1) + (b− bq)(xq+1
1 + . . .+ xq+1

r−1) +mq
1x

q
1+

+ . . .+mq
r−1x

q
r−1 + dq − a(x2

1 + . . .+ x2
r−1)−m1x1 + . . .+

−mr−1xr−1 − d = 0.
(6)

As q is odd, there is ε ∈ GF(q2)\GF(q) such that εq = −ε. For any x ∈ GF(q2)
write x = x0 + εx1 with x0, x1 ∈ GF(q); in this way the previous Equation (6)
becomes

r−1∑
i=1

(
(b1 + a1)ε2(x1

i )
2 + 2a0x0

ix
1
i + (a1 − b1)(x0

1)
2
)
+

r−1∑
i=1

(m0
ix

1
i +m1

ix
0
i )+d1 = 0;

(7)

that is the number N of affine points which lie in B(a, b) ∩ π is the same as the
number of points of the affine quadricQ of AG(2r−2, q) of Equation (7). Following
the approach of [2], in order to compute N , we first count the number of points of
the quadric at infinity Q∞ := Q∩Π∞ of Q and then we determine N = |Q|−|Q∞|.
Observe that the quadric Q∞ of PG(2r − 3, q) has a block matrix of the form

A∞ =


(a1 − b1) a0

a0 (b1 + a1)ε2

. . .

(a1 − b1) a0

a0 (b1 + a1)ε2

 (8)
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with determinant

detA∞ = (ε2[(a1)2 − (b1)2]− (a0)2)r−1.

Since (a0)2 − ε2[(a1)2 − (b1)2] = aq+1 + (bq − b)2/4 and 4aq+1 + (bq − b)2 = 0 we
have detA∞ = 0. This means

det

(
(a1 − b1) a0

a0 (a1 + b1)ε2

)
= 0,

that is, each of the 2 × 2 blocks on the main diagonal of A∞ has rank 1. Conse-
quently, the rank of the matrix A∞ is exactly r − 1.

If a1 = b1, then a0 = 0, the matrix A∞ is diagonal and the quadric Q∞ is
projectively equivalent to

(x1
1)

2 + (x1
2)

2 + · · ·+ (x1
r−1)

2 = 0.

Otherwise, take

M =


1 0

−a0/(a1 − b1) 1
. . .

1 0
−a0/(a1 − b1) 1

 ;

a direct computation proves that

MTA∞M =


a1 − b1 0

0 0
. . .

a1 − b1 0
0 0

 .

Hence, Q∞ is projectively equivalent to the quadric of rank r − 1 with equation

(x0
1)

2 + (x0
2)

2 + · · ·+ (x0
r−1)

2 = 0.

For r odd, we have that Q∞ is either

• a cone with vertex Rad(Q∞) ' PG(r − 2, q) and basis a hyperbolic quadric
Q+(r − 2, q) if q ≡ 1 (mod 4) or r ≡ 1 (mod 4), or

• a cone with vertex Rad(Q∞) ' PG(r − 2, q) and basis an elliptic quadric
Q−(r − 2, q) if q ≡ 3 (mod 4) and r ≡ 3 (mod 4); see [19, Theorem 1.2].
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For r even, Q∞ is a cone with vertex Rad(Q∞) ' PG(r−2, q) and basis a parabolic
quadric Q(r − 2, q).

We now move to investigate the quadric Q. Clearly, the rank of its matrix is
either r − 1, r or r + 1.

Write Π∞ = Σ⊕ Rad(Q∞). As Σ is disjoint from the radical of the quadratic
form inducing Q∞, we have that Q′

∞ := Σ∩Q∞ is a nondegenerate quadric (either
hyperbolic, elliptic or parabolic according to the various conditions).

When Q has the same rank r − 1 as Q∞, we have

dimRad(Q) = dimRad(Q∞) + 1.

Observe that Rad(Q)∩Π∞ ≤ Rad(Q∞). Thus, Rad(Q)∩Σ = {0} and Σ is also a
direct complement of Rad(Q). It follows that Q is cone of vertex a PG(r−1, q) and
basis a quadric of the same kind as Q′

∞. If Q has rank r+ 1, then the hyperplane
at infinity is tangent to Q; in particular Q must have as radical a PG(r − 3, q);
by [19, Lemma 1.22], the basis Q′′ of Q must have the same character (elliptic,
parabolic or hyperbolic) as Q′

∞.
In the case in which the matrix of Q has rank r, Rad(Q) = Rad(Q∞) and Q is

a cone of vertex a PG(r− 2, q) and basis a parabolic quadric Q(r− 1, q) for r odd
or Q is a cone of vertex a PG(r− 2, q) and basis a hyperbolic quadric Q+(r− 1, q)
or an elliptic quadric Q−(r − 1, q) for r even. We can now write the complete list
of sizes for r odd:

|Q∞| = q2r−3 − 1

q − 1
± q(3r−5)/2;

in case rank(Q) = r − 1, then

|Q| = q2r−2 − 1

q − 1
± q3(r−1)/2;

in case rank(Q) = r,

|Q| = q2r−2 − 1

q − 1
;

in case rank(Q) = r + 1, then

|Q| = q2r−2 − 1

q − 1
± q(3r−5)/2.

In particular, the possible values for N = |Q| − |Q∞| are

q2r−3, q2r−3 + q3(r−1)/2 − q(3r−5)/2, q2r−3 − q(3r−5)/2

for q ≡ 1 (mod 4) or r ≡ 1 (mod 4) and

q2r−3 − q3(r−1)/2 + q(3r−5)/2, q2r−3 + q(3r−5)/2
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for q ≡ 3 (mod 4) and r ≡ 3 (mod 4).
When r is even we get:

|Q∞| = q2r−3 − 1

q − 1
;

in case rank(Q) = r − 1 or rank(Q) = r + 1, then

|Q| = q2r−2 − 1

q − 1
;

in case rank(Q) = r,

|Q| = q2r−2 − 1

q − 1
± q(3r−4)/2.

Thus, the possible list of cardinalities for N = |Q| − |Q∞| is

q2r−3, q2r−3 + q(3r−4)/2, q2r−3 − q(3r−4)/2.

Now we are going to show that B(a, b) is a minimal intersection set. First of
all, we prove that for any P ∈ B(a, b) there exists a subspace Λn(P ) ' AG(n, q2),
1 ≤ n ≤ r − 1 through P such that |B(a, b) ∩ Λn(P )| ≤ q2n−1 − qn−1. The
argument is by induction on n. Assume n = 1. Then, for any P ∈ B(a, b) there
exists at least one line ` through P such that |` ∩ B(a, b)| < q, otherwise B(a, b)
would contain more than q2r−1 points. Suppose now that the result holds for
n = 1, . . . , r − 2, take P ∈ B(a, b) and suppose that any hyperplane π through
P meets B(a, b) in at least q2r−3 points. By induction, there exists a subspace
π′ := Λr−2(P ) ' AG(r − 2, q2) through P meeting B(a, b) in at most q2r−5 − qr−3

points. By considering all hyperplanes containing π′ we get |B(a, b)| ≥ (q2 +
1)(q2r−3− q2r−5+ qr−3)+ q2r−5− qr−3 > q2r−1, a contradiction. Thus, through any
P ∈ B(a, b) there exists a hyperplane meeting B(a, b) in (q2r−3 − q(3r−5)/2) points
for r odd or (q2r−3 − q(3r−4)/2) for r even. This implies that B(a, b) is a minimal
intersection set for any r > 2.

Remark 3.3. The quadric Qa(m, d) of Equation (1) shares its tangent hyperplane
at P∞ with the Hermitian variety (2).

The problem of the intersection of the Hermitian variety H with irreducible
quadrics Q having the same tangent plane at a common point P ∈ Q ∩ H has
been considered in detail for r = 3 in [3, 4].

3.2 Proof of Theorem 3.2

First consider the case q odd. Arguing as in the proof of Theorem 3.1 we have
that any hyperplane πP∞ of PG(r, q2) passing through P∞ meets B(a, b) in q2r−3

points.
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In order to determine the possible intersection sizes of B(a, b) with a hyperplane
which does not pass through P∞, say π : xr = m1x1 + · · ·+mr−1xr−1 + d, we need
to compute the number N of affine points of the quadric Q in AG(2r − 2, q) with
equation (7). We first discuss the nature of Q∞ = Q∩Π∞ whose associated matrix
A∞ is of the form (8).

Observe that, under our assumptions, for q odd (−1)r−1 detA∞ is always a
square in GF(q); hence, Q∞ is a hyperbolic quadric of PG(2r − 3).

For q even, choose ε ∈ GF(q2) \ GF(q) such that ε2 + ε + ν = 0, for some
ν ∈ GF(q) \ {1} with Tr q(ν) = 1. Then, ε2q + εq + ν = 0. Therefore, (εq + ε)2 +
(εq + ε) = 0, whence εq + ε+1 = 0. With this choice of ε, the system given by (4)
and (1) reads as

(a1 + b1)(x0
1)

2 + [(a0 + a1) + ν(a1 + b1)](x1
1)

2 + b1x0
1x

1
1 +m1

1x
0
1 + (m0

1 +m1
1)x

1
1

+ . . .+ (a1 + b1)(x0
r−1)

2 + [(a0 + a1) + ν(a1 + b1)](x1
r−1)

2 + b1x0
r−1x

1
r−1

+m1
r−1x

0
r−1 + (m0

r−1 +m1
r−1)x

1
r−1 + d1 = 0.

(9)
The discussion of the (possibly degenerate) quadric Q of Equation (9) may be
carried out in close analogy to what has been done before.

Observe however that, as also pointed out in the remark before [19, Theorem
1.2], some caution is needed when quadrics are studied and classified in even
characteristic. Indeed, let

A∞ =

T
. . .

T

 , where T =

(
2(a1 + b1) b1

b1 2((a0 + a1) + ν(a1 + b1))

)

be the formal matrix associated to the quadric Q∞ of equation

(a1 + b1)(x0
1)

2 + [(a0 + a1) + ν(a1 + b1)](x1
1)

2 + b1x0
1x

1
1 + . . .

+(a1 + b1)(x0
r−1)

2 + [(a0 + a1) + ν(a1 + b1)](x1
r−1)

2 + b1x0
r−1x

1
r−1 = 0.

Its determinant is equal to

detA∞ = [4(a1 + b1)(a0 + a1 + ν(a1 + b1)) + (b1)2]r−1.

In order to encompass the case q even, detA∞ needs to be regarded as a polyno-
mial function in the ring Z[z0, z1, z2, z3] where the terms (a0, a1, b0, b1) are replaced
by indeterminates z0, z1, z2, z3; then we regard it over GF(q) for (z0, z1, z2, z3) =

(a0, a1, b0, b1). This gives detA∞ = b
2(r−1)
1 . Here b1 6= 0 since, by our assumption,

bq 6= b. From [19, Theorem 1.2 (i)], the quadric Q∞ must be non-degenerate.
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Furthermore, by [19, Theorem 1.2 (ii)] the nature of Q∞ can be ascertained as
follows. Let B the matrix

B =


0 b1

−b1 0
. . .

0 b1
−b1 0

 (10)

and define

α =
detB − (−1)r−1 detA∞

4 detB
.

A straightforward computation shows that

α =
(b1)2(r−1) + (4(a1 + b1)(a0 + a1 + ν(a1 + b1)) + (b1)2)r−1

4 (b1)2(r−1)
.

Here α has to be regarded as the quotient of two polynomials in Z[z0, z1, z2, z3]
where the terms (a0, a1, b0, b1) are replaced by indeterminates z0, z1, z2, z3 and,
then, evaluated it over GF(q) for (z0, z1, z2, z3) = (a0, a1, b0, b1). In particular, we
get

α =
(a1 + b1)(a0 + a1 + ν(a1 + b1))

(b1)2
.

Arguing as in [2, p. 439], we see that Tr q(α) = 0 and, hence, Q∞ is hyperbolic
also for q even.

We investigate the possible nature ofQ in either case q odd and q even. Suppose
Q to be non-singular; then Q is a parabolic quadric and

N = |Q| − |Q∞| = (qr−1 + 1)(qr−1 − 1)

q − 1
− (qr−1 + 1)(qr−2 − 1)

q − 1
= qr−2(qr−1 + 1).

If Q is singular, then Q is a cone with vertex a point and basis a hyperbolic
quadric; thus

N = |Q| − |Q∞| = q(qr−1 + 1)(qr−2 − 1)

q − 1
− (qr−1 + 1)(qr−2 − 1)

q − 1
+ 1 =

= qr−2(qr−1 + 1)− qr−1.

This gives the possible intersection numbers.
Finally, in order to show that B(a, b) is a minimal (q2r−3 − qr−2)–fold blocking

set we can use the same techniques as those adopted to prove that B(a, b) is a
minimal blocking set in Theorem 3.1.
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4 4-weight q-ary codes

Throughout this section q is and odd prime power and 4aq+1 + (bq − b)2 = 0 for
any a ∈ GF(q2)∗ and b ∈ GF(q2) \ GF(q). Let B(a, b) the affine set of equation
(4).We are going to determine the parameters of the projective code generated
from B(a, b) as explained in the Introduction.

We begin by determining how many hyperplanes meet B(a, b) in a prescribed
number of points.

Lemma 4.1. The number of hyperplanes Nj meeting B(a, b) in exactly j points
are as follows:

(a) For r ≡ 1 (mod 4), or r odd and q ≡ 1 (mod 4)

Nq2r−3+q3(r−1)/2−q(3r−5)/2 = qr, Nq2r−3 =
q2r − 1

q2 − 1
− 1 + q2r − qr+1,

Nq2r−3−q(3r−5)/2 = qr+1 − qr.

(b) For r ≡ 3 (mod 4) and q ≡ 3 (mod 4)

Nq2r−3+q(3r−5)/2 = qr, Nq2r−3 =
q2r − 1

q2 − 1
− 1 + q2r − qr+1,

Nq2r−3−q3(r−1)/2+q(3r−5)/2 = qr+1 − qr.

(c) For r even,

Nq2r−3−q(3r−4)/2 =
1

2
(qr+1 − qr) Nq2r−3 = qr +

q2r − 1

q2 − 1
− 1 + q2r − qr+1,

Nq2r−3+q3(r−4)/2 =
1

2
(qr+1 − qr).

Proof. From the proof of Theorem 3.2 it follows that in order to prove Cases (a)
and (b) we need to count the number of vectors v := (m0

1,m
1
1, . . . ,m

0
r−1,m

1
r−1, d1) ∈

GF(q)2r−1 such that the matrix

A :=


A∞

m0
1

m1
1
...

m1
r−1

m0
1 m1

1 · · · m1
r−1 d1
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of Q with equation (7) has respectively rank r − 1, r or r + 1.
We observe that A has rank r − 1 if, and only if, there exist a scalar λ such

that for all i = 1, . . . , r − 1 we have m1
i = λm0

i ; also, the value of d1 turns out
to be uniquely determined. Thus, the number of distinct possibilities for the
parameters m1, . . . ,mr−1, d is exactly qr. The rank of the matrix of Q is at least
r in the remaining q2r − qr cases. Suppose it to be r + 1. This means that
the column (m0

1,m
1
1, . . . ,m

0
r−1,m

1
r−1)

T is linearly independent from the columns
of A∞; so, there are q2r−2 − qr−1 ways to choose m0

1, . . . ,m
1
r−1. Furthermore, for

any such choice the vector v = (m0
1, . . . ,m

1
r−1, d1) is also independent from the

first 2r − 2 rows of A. So the overall number of planes with such property is
q2(q2r−2 − qr−1) = q2r − qr+1. The remaining qr+1 − qr choices yield a matrix of
rank r.

In Case (c), again from the proof of Theorem 3.2 when r is even, we need to
count how oftenQ with equation (7) turns out to be elliptic rather than hyperbolic.
For any choice of the parameters m1, . . . ,mr−1, d there is exactly one quadric
Q to consider. As Q∞ is always a parabolic quadric, we can assume it to be
fixed. Denote by σ0, σ+, σ− respectively the number of quadrics Q which are
parabolic, elliptic or hyperbolic. Clearly σ0 corresponds to the case in which
rank(Q) = rank(Q∞) or rank(Q) = rank(Q∞) + 2. We have

σ+ + σ0 + σ− = q2r, σ0 = q2r − qr+1 + qr.

Each point of B(a, b) lies on q2r−1
q2−1

hyperplanes; of these q2r−2−1
q2−1

pass through P∞

(and they must be discounted). Thus, we get

q2r−2|B| = q4r−3 = σ0q2r−3 + σ+(q2r−3 + q(3r−4)/2) + σ−(q2r−3 − q(3r−4)/2) =

q2r−3(σ0 + σ+ + σ−) + q(3r−4)/2(σ+ − σ−) = q4r−3 + (σ+ − σ−)q(3r−4)/2.

Hence, σ+ = σ− = 1
2
(qr+1 − qr).

We can now prove the main theorem of this section.

Theorem 4.2. The points of B(a, b) determine a projective code C of length n =
q2r−1, dimension k = r + 1 and weight enumerator w(x) :=

∑
i Aix

i where

A0 = 1, Aq2r−1 = (q2 − 1)

and all of the remaining Ai’s are 0 with the exception of

• for r ≡ 1 (mod 4) or r odd and q ≡ 1 (mod 4),

Aq2r−1−q2r−3−q3(r−1)/2+q(3r−5)/2 = (qr+1 − qr)(q2 − 1)

Aq2r−1−q2r−3 = q2r−q2+(q2r−qr+1)(q2−1), Aq2r−1−q2r−3+q(3r−5)/2 = qr+2−qr;
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• for r ≡ 3 (mod 4) and q ≡ 3 (mod 4),

Aq2r−1−q2r−3−q(3r−5)/2 = (qr+1−qr)(q2−1), Aq2r−1−q2r−3 = q2r−q2−qr+1(q2−1)

Aq2r−1−q2r−3+q3(r−1)/2−q(3r−5)/2 = qr+2 − qr;

• for r even,

Aq2r−1−q2r−3+q(3r−4)/2 = Aq2r−1−q2r−3−q(3r−4)/2 =
1

2
(qr+1 − qr)(q2 − 1),

Aq2r−1−q2r−3 = q2r + qr+2 − qr − q2 + (q2r − qr+1)(q2 − 1).

In particular, each of these codes has exactly 4 non-zero weights.

Proof. If we regard B(a, b) as a set of points in PG(r, q2), then we can consider
the projective code C of length q2r−1 and dimension r + 1 generated from B(a, b).
Denote by Aj the number of codewords of C of weight j. Observe that a hyperplane
π meeting B(a, b) in n points always determines (q2 − 1) codewords of weight
q2r−1 − n. As the hyperplane at infinity is disjoint from B(a, b), we have

Aq2r−1 = (q2 − 1).

The remaining weights follow from Lemma4.1.

5 3-character multisets in PG(r, q2), r even and

3-weight codes

We keep all previous notation. In [6, Theorem 4.1] it is shown that for r = 2, q
odd and 4aq+1+(bq − b)2 6= 0 or r = 2, q even and Tr q(a

q+1/(bq + b)2) = 1, the set
B(a, b) can be completed to a 2-character multiset B(a, b) yielding a two-weight
code.

Here we prove that using a similar technique we can construct two infinite
families of 3-character multiset of PG(r, q2) generating three-weight codes. The
construction is as follows.

Let r be even. Suppose that either q is odd with 4aq+1 + (bq − b)2 a non-zero
square in GF(q) or q is even and Tr q(a

q+1/(bq + b)2) = 1. From Theorem 3.2
B(a, b) is a set of q2r−1 points of AG(r, q2) with characters q2r−3 − qr−2, q2r−3,
q2r−3 − qr−2 + qr−1.

Now consider the multiset B(a, b) in PG(r, q2) arising from B(a, b) by assigning
multiplicity larger than 1 to the point P∞.

14



More in detail the points of the 3-character multiset B(a, b) are exactly those
of B(a, b) ∪ {P∞} where each affine point of B(a, b) has multiplicity one, and P∞
has multiplicity j.

In this way B(a, b) turns out to have the following characters:

j, q2r−3 + j, q2r−3 − qr−2, q2r−3 − qr−2 + qr−1.

We immediately get

Theorem 5.1. The multiset B(a, b) = B(a, b) ∪ {P∞} where each affine point of
B(a, b) has multiplicity one, and P∞ has multiplicity j, j ∈ {qr−1 − qr−2, q2r−3 −
qr−2} is a 3-character multiset of PG(r, q2).

Theorem 5.2. The linear code C generated from B(a, b) is a [q2r−1+j, r+1]q2-code
with weights

q2r−1, q2r−1 − q2r−3, q2r−1 − q2r−3 + qr−2 + j, q2r−1 − q2r−3 + qr−2 − qr−1 + j

Furthermore for j = qr−1 − qr−2 or j = q2r−3 − qr−2 C is a 3-weight code.

Now we are going to determine the weight enumerator of C for j = qr−1 − qr−2

or j = q2r−3 − qr−2. We prove the following

Theorem 5.3. Let C be the linear code generated from B(a, b). The weight enu-
merator of C is w(x) :=

∑
i Aix

i where

A0 = 1, Aq2r−1 = (q2 − 1)

and all of the remaining Ai’s are 0 with the exception of

Aq2r−1−q2r−3 = q2r−1+q2r−1(q2−1), Aq2r−1−q2r−3+qr−1 = (q2r−q2r−1−1)(q2−1),

for j = qr−1 − qr−2, or

A0 = 1, Aq2r−1 = (q2r − 1)

and all of the remaining Ai’s are 0 with the exception of

Aq2r−1−q2r−3 = q2r−1(q2 − 1), Aq2r−1−qr−1 = q2r−1(q − 1)(q2 − 1),

for j = q2r−3 − qr−2.

Proof. Let denote by Ni the number of hyperplanes meeting B(a, b) in i points. For
j = qr−1 − qr−2 we have just to observe that the only hyperplane meeting B(a, b)
in j points is that at infinity; thus Nqr−1−qr−2 = 1; the hyperplanes meeting B(a, b)
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in q2r−3−qr−2+qr−1 points are the hyperplanes passing through P∞ together with
the hyperplanes for which the corresponding quadric Q of equation (9) is singular.
Therefore,

Nq2r−3−qr−2+qr−1 =
q2r − 1

q2 − 1
+ q2r−1.

The remaining hyperplanes intersect B(a, b) in q2r−3 − qr−2 points and hence

Nq2r−3−qr−2 = q2r − q2r−1 − 1.

For j = q2r−3 − qr−2 a similar argument gives

N2q2r−3−qr−2 =
q2r − 1

q2 − 1
, Nq2r−3−qr−2+qr−1 = q2r−1,

Nq2r−3−qr−2 = q2r − q2r−1

and our theorem follows.

References

[1] A. Aguglia,Quasi-Hermitian varieties in PG(r, q2), q even, Contrib. Discrete
Math. 8:1 (2013), 31–37.

[2] A. Aguglia, A. Cossidente, G. Korchmáros, On quasi-Hermitian varieties, J.
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[6] A. Aguglia, G. Korchmáros, Multiple blocking sets and multisets in Desar-
guesian planes, Des. Codes Cryptogr. 56 (2010), 177–181.

[7] D. Bartoli, A. A. Davydov, M. Giulietti, S. Marcugini, F. Pambianco, Mul-
tiple coverings of the farthest-off points with small density from projective
geometry, Adv. Math. Commun. 9:1 (2015), 63–85.

16



[8] S. Barwick, G. Ebert, Unitals in Projective Planes, Springer Monographs in
Mathematics (2008).

[9] A. Cossidente, O. H. King, Some two-character sets, Des. Codes Cryptogr.
56:2-3 (2010), 105–113.

[10] A. Cossidente, T. Penttila, Two-character sets arising from gluings of orbits,
Graphs Combin. 29 (2013), no. 3, 399–406.

[11] A. R. Calderbank, J. M. Goethals, Three-weight codes and association
schemes, Philips J. Res. 39:4-5 (1984), 143–152.

[12] R. Calderbank, W. M. Kantor, The geometry of two-weight codes, Bull. Lon-
don Math. Soc. 18:2 (1986), 97–122.

[13] I. M. Chakravarti, Geometric construction of some families of two-class and
three-class association schemes and codes from nondegenerate and degener-
ate Hermitian varieties, Graph theory and combinatorics (Marseille-Luminy,
1990). Discrete Math. 111:1-3 (1993), 95–103.

[14] S. Dodunekov, J. Simonis, Codes and projective multisets, Electron. J. Com-
bin. 5 (1998), Research Paper 37.

[15] C. Ding, C. Li, N. Li, Z. Zhou, Three-weight cyclic codes and their weight
distributions, Discrete Math. 339 (2016), 415–427.

[16] K. Ding, C. Ding, Binary Linear Codes With Three Weights, IEEE Comm.
Letters 18 (2014), 1879-1882.

[17] K. Ding, C. Ding, A class of two-weight and three-weight codes and their
applications in secret sharing, IEEE Trans. Inf. Theory 61:11 (2015),
5835–5842.

[18] R. Hill, E. Kolev, A survey of recent results on optimal linear codes in
Combinatorial designs and their applications (Milton Keynes, 1997), (1999),
127–152.

[19] J.W.P. Hirschfeld, J. A. Thas, General Galois Geometries, Second Edition,
Springer-Verlag (2015).

[20] B. Segre, Forme e geometrie Hermitiane, con particolare riguardo al caso
finito, Ann. Mat. Pura Appl. 70:4 (1965), 1–201.
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