2,246 research outputs found

    Noise residuals for GW150914 using maximum likelihood and numerical relativity templates

    Full text link
    We reexamine the results presented in a recent work by Nielsen et al. [1], in which the properties of the noise residuals in the 40\,ms chirp domain of GW150914 were investigated. This paper confirmed the presence of strong (i.e., about 0.80) correlations between residual noise in the Hanford and Livingston detectors in the chirp domain as previously seen by us [2] when using a numerical relativity template given in [3]. It was also shown in [1] that a so-called maximum likelihood template can reduce these statistically significant cross-correlations. Here, we demonstrate that the reduction of correlation and statistical significance is due to (i) the use of a peculiar template which is qualitatively different from the properties of GW150914 originally published by LIGO, (ii) a suspicious MCMC chain, (iii) uncertainties in the matching of the maximum likelihood (ML) template to the data in the Fourier domain, and (iv) a biased estimation of the significance that gives counter-intuitive results. We show that rematching the maximum likelihood template to the data in the 0.2\,s domain containing the GW150914 signal restores these correlations at the level of 60%60\% of those found in [1]. With necessary corrections, the probability given in [1] will decrease by more than one order of magnitude. Since the ML template is itself problematic, results associated with this template are illustrative rather than final.Comment: Minor correction

    On Estimation of the Post-Newtonian Parameters in the Gravitational-Wave Emission of a Coalescing Binary

    Get PDF
    The effect of the recently obtained 2nd post-Newtonian corrections on the accuracy of estimation of parameters of the gravitational-wave signal from a coalescing binary is investigated. It is shown that addition of this correction degrades considerably the accuracy of determination of individual masses of the members of the binary. However the chirp mass and the time parameter in the signal is still determined to a very good accuracy. The possibility of estimation of effects of other theories of gravity is investigated. The performance of the Newtonian filter is investigated and it is compared with performance of post-Newtonian search templates introduced recently. It is shown that both search templates can extract accurately useful information about the binary.Comment: 34 pages, 118Kb, LATEX format, submitted to Phys. Rev.

    Trans-dimensional inversion of modal dispersion data on the New England Mud Patch

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bonnel, J., Dosso, S. E., Eleftherakis, D., & Chapman, N. R. Trans-dimensional inversion of modal dispersion data on the New England Mud Patch. IEEE Journal of Oceanic Engineering, 45(1), (2020): 116-130, doi:10.1109/JOE.2019.2896389.This paper presents single receiver geoacoustic inversion of two independent data sets recorded during the 2017 seabed characterization experiment on the New England Mud Patch. In the experimental area, the water depth is around 70 m, and the seabed is characterized by an upper layer of fine grained sediments with clay (i.e., mud). The first data set considered in this paper is a combustive sound source signal, and the second is a chirp emitted by a J15 source. These two data sets provide differing information on the geoacoustic properties of the seabed, as a result of their differing frequency content, and the dispersion properties of the environment. For both data sets, source/receiver range is about 7 km, and modal time-frequency dispersion curves are estimated using warping. Estimated dispersion curves are then used as input data for a Bayesian trans-dimensional inversion algorithm. Subbottom layering and geoacoustic parameters (sound speed and density) are thus inferred from the data. This paper highlights important properties of the mud, consistent with independent in situ measurements. It also demonstrates how information content differs for two data sets collected on reciprocal tracks, but with different acoustic sources and modal content.10.13039/100000006-Office of Naval Research 10.13039/100007297-Office of Naval Research Globa

    Basic Parameter Estimation of Binary Neutron Star Systems by the Advanced LIGO/Virgo Network

    Get PDF
    Within the next five years, it is expected that the Advanced LIGO/Virgo network will have reached a sensitivity sufficient to enable the routine detection of gravitational waves. Beyond the initial detection, the scientific promise of these instruments relies on the effectiveness of our physical parameter estimation capabilities. The majority of this effort has been towards the detection and characterization of gravitational waves from compact binary coalescence, e.g. the coalescence of binary neutron stars. While several previous studies have investigated the accuracy of parameter estimation with advanced detectors, the majority have relied on approximation techniques such as the Fisher Matrix. Here we report the statistical uncertainties that will be achievable for optimal detection candidates (SNR = 20) using the full parameter estimation machinery developed by the LIGO/Virgo Collaboration via Markov-Chain Monte Carlo methods. We find the recovery of the individual masses to be fractionally within 9% (15%) at the 68% (95%) credible intervals for equal-mass systems, and within 1.9% (3.7%) for unequal-mass systems. We also find that the Advanced LIGO/Virgo network will constrain the locations of binary neutron star mergers to a median uncertainty of 5.1 deg^2 (13.5 deg^2) on the sky. This region is improved to 2.3 deg^2 (6 deg^2) with the addition of the proposed LIGO India detector to the network. We also report the average uncertainties on the luminosity distances and orbital inclinations of ideal detection candidates that can be achieved by different network configurations.Comment: Second version: 15 pages, 9 figures, accepted in Ap

    Parameterized tests of the strong-field dynamics of general relativity using gravitational wave signals from coalescing binary black holes: Fast likelihood calculations and sensitivity of the method

    Get PDF
    Thanks to the recent discoveries of gravitational wave signals from binary black hole mergers by Advanced Laser Interferometer Gravitational Wave Observatory and Advanced Virgo, the genuinely strong-field dynamics of spacetime can now be probed, allowing for stringent tests of general relativity (GR). One set of tests consists of allowing for parametrized deformations away from GR in the template waveform models and then constraining the size of the deviations, as was done for the detected signals in previous work. In this paper, we construct reduced-order quadratures so as to speed up likelihood calculations for parameter estimation on future events. Next, we explicitly demonstrate the robustness of the parametrized tests by showing that they will correctly indicate consistency with GR if the theory is valid. We also check to what extent deviations from GR can be constrained as information from an increasing number of detections is combined. Finally, we evaluate the sensitivity of the method to possible violations of GR.Comment: 19 pages, many figures. Matches PRD versio

    A Mock Data and Science Challenge for Detecting an Astrophysical Stochastic Gravitational-Wave Background with Advanced LIGO and Advanced Virgo

    Full text link
    The purpose of this mock data and science challenge is to prepare the data analysis and science interpretation for the second generation of gravitational-wave experiments Advanced LIGO-Virgo in the search for a stochastic gravitational-wave background signal of astrophysical origin. Here we present a series of signal and data challenges, with increasing complexity, whose aim is to test the ability of current data analysis pipelines at detecting an astrophysically produced gravitational-wave background, test parameter estimation methods and interpret the results. We introduce the production of these mock data sets that includes a realistic observing scenario data set where we account for different sensitivities of the advanced detectors as they are continuously upgraded toward their design sensitivity. After analysing these with the standard isotropic cross-correlation pipeline we find that we are able to recover the injected gravitational-wave background energy density to within 2σ2\sigma for all of the data sets and present the results from the parameter estimation. The results from this mock data and science challenge show that advanced LIGO and Virgo will be ready and able to make a detection of an astrophysical gravitational-wave background within a few years of operations of the advanced detectors, given a high enough rate of compact binary coalescing events

    Degeneracy of gravitational waveforms in the context of GW150914

    Full text link
    We study the degeneracy of theoretical gravitational waveforms for binary black hole mergers using an aligned-spin effective-one-body model. After appropriate truncation, bandpassing, and matching, we identify regions in the mass--spin parameter space containing waveforms similar to the template proposed for GW150914, with masses m1=364+5Mm_1 = 36^{+5}_{-4} M_\odot and m2=294+4Mm_2 = 29^{+4}_{-4} M_\odot, using the cross-correlation coefficient as a measure of the similarity between waveforms. Remarkably high cross-correlations are found across broad regions of parameter space. The associated uncertanties exceed these from LIGO's Bayesian analysis considerably. We have shown that waveforms with greatly increased masses, such as m1=70Mm_1 = 70 M_\odot and m2=35Mm_2 = 35 M_\odot, and strong anti-aligned spins (χ1=0.95\chi_1=0.95 and χ2=0.95\chi_2=-0.95) yield almost the same signal-to-noise ratio in the strain data for GW150914.Comment: Accepted for publication in JCA

    How serious can the stealth bias be in gravitational wave parameter estimation?

    Get PDF
    The upcoming direct detection of gravitational waves will open a window to probing the strong-field regime of general relativity (GR). As a consequence, waveforms that include the presence of deviations from GR have been developed (e.g. in the parametrized post-Einsteinian approach). TIGER, a data analysis pipeline which builds Bayesian evidence to support or question the validity of GR, has been written and tested. In particular, it was shown recently that data from the LIGO and Virgo detectors will allow to detect deviations from GR smaller than can be probed with Solar System tests and pulsar timing measurements or not accessible with conventional tests of GR. However, evidence from several detections is required before a deviation from GR can be confidently claimed. An interesting consequence is that, should GR not be the correct theory of gravity in its strong field regime, using standard GR templates for the matched filter analysis of interferometer data will introduce biases in the gravitational wave measured parameters with potentially disastrous consequences on the astrophysical inferences, such as the coalescence rate or the mass distribution. We consider three heuristic possible deviations from GR and show that the biases introduced by assuming GR's validity manifest in various ways. The mass parameters are usually the most affected, with biases that can be as large as 3030 standard deviations for the symmetric mass ratio, and nearly one percent for the chirp mass, which is usually estimated with sub-percent accuracy. We conclude that statements about the nature of the observed sources, e.g. if both objects are neutron stars, depend critically on the explicit assumption that GR it the right theory of gravity in the strong field regime.Comment: 10 pages, 9 figures, 5 table
    corecore