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ABSTRACT

Within the next five years, it is expected that the Advanced LIGO/Virgo network will have reached
a sensitivity sufficient to enable the routine detection of gravitational waves. Beyond the initial detec-
tion, the scientific promise of these instruments relies on the effectiveness of our physical parameter
estimation capabilities. A major part of this effort has been towards the detection and characterization
of gravitational waves from compact binary coalescence, e.g. the coalescence of binary neutron stars.
While several previous studies have investigated the accuracy of parameter estimation with advanced
detectors, the majority have relied on approximation techniques such as the Fisher Matrix which
are insensitive to the non-Gaussian nature of the gravitational-wave posterior distribution function.
Here we report average statistical uncertainties that will be achievable for strong detection candidates
(SNR = 20) over a comprehensive sample of source parameters. We use the Markov-Chain Monte
Carlo based parameter estimation software developed by the LIGO/Virgo Collaboration with the goal
of updating the previously quoted Fisher Matrix bounds. We find the recovery of the individual masses
to be fractionally within 9% (15%) at the 68% (95%) credible intervals for equal-mass systems, and
within 1.9% (3.7%) for unequal-mass systems. We also find that the Advanced LIGO/Virgo network
will constrain the locations of binary neutron star mergers to a median uncertainty of 5.1 deg2 (13.5
deg2) on the sky. This region is improved to 2.3 deg2 (6 deg2) with the addition of the proposed LIGO
India detector to the network. We also report the average uncertainties on the luminosity distances
and orbital inclinations of strong detections that can be achieved by different network configurations.

1. INTRODUCTION

Within the next few years, the first generation of
gravitational-wave (GW) interferometers capable of reg-
ularly detecting astrophysical sources will come online
(Harry & the LIGO Scientific Collaboration 2010; Virgo
Collaboration 2009). The Advanced LIGO and Ad-
vanced Virgo detectors (and the anticipated LIGO India
detector) will provide the first insights into the final mo-
ments of compact object mergers, including the mergers
of binary neutron star systems. Intense preparations are
underway to characterize and extract as much physical
information as possible from these signals.

The mergers of binary neutron stars (BNS) are ex-
pected to be one of the most common compact binary
sources in the advanced detector era. Models from stel-
lar evolution and observations of binary pulsars sug-
gest that the number of BNS mergers within Advanced
LIGO/Virgo’s detection horizon could reach several tens
to hundreds each year (Abadie et al. 2010). Although
the peak sensitivity of ground-based detectors is not fo-
cused on the frequency at which BNS systems merge, it
could still be possible to extract information about both
strong field gravitational physics (Li et al. 2012) and the
the equation of state of dense nuclear matter (Hinderer
et al. 2010). Furthermore, the observations of multiple
BNS systems will provide key insights into the evolution
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of binary systems in the field (Kalogera et al. 2004; Kim
et al. 2006; Os lowski et al. 2011; O’Shaughnessy et al.
2010) . As such, BNS systems will likely form the “bread
and butter” of the compact binary coalescence detection
effort in the coming years.

Of course one must distinguish between the detection
of such events and the precision measurement of their
relevant physical parameters. The detection of BNS sys-
tems will be performed with a grid-based matched fil-
tering approach. By comparing the data stream with a
bank of theoretical templates, the time-series data can
be searched for candidate signals (Abadie et al. 2012).
The parameter space of these signals exhibits degenera-
cies and strong correlations. In order to completely re-
alize the science potential of LIGO and Virgo observa-
tions we must perform a full exploration of the parameter
space for each detection. To do so, we characterize the
posterior distribution function using Bayesian inference
to make informative, scientifically meaningful statements
about the physics of BNS systems.

In this paper we will study large signal to noise ratio
BNS coalescence events and report on the measurement
capabilities of the LIGO/Virgo advanced detector net-
work. The particular inference method used in our work
is a Markov chain Monte Carlo (MCMC) sampling code,
lalinference mcmc, included in the LIGO Algorithm
Library parameter estimation library LALInference.

There is a long history of research which has sought
to provide insight into what will be learned by gravita-
tional wave observations. The majority of studies have
employed the Fisher matrix formalism which was first
adapted for gravitational-wave parameter estimation by
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Finn (1992). While each of these studies (Poisson & Will
1995; Cutler & Flanagan 1994; Arun et al. 2005) have
pointed out the limitations of the Fisher Information
Matrix estimates, there have been relatively few studies
which investigate the BNS parameter estimation capa-
bilities of Advanced LIGO/Virgo using the full infras-
tructure of Bayesian inference which must be employed
to draw robust conclusions about the GW source and its
properties (Vallisneri 2008; Rodriguez et al. 2013) .

Fisher matrix estimates, which our study seeks to
improve upon, approximate the likelihood distribution
as a multivariate Gaussian and are thus insensitive to
more complicated structures such as multiple peaks, non-
trivial correlations, skew, etc. Conversely, studies in
gravitational wave parameter estimation have repeatedly
shown that the recovered posterior distribution functions
exhibit the very details which violate the explicit assump-
tions of the Fisher matrix formalism. Furthermore, mea-
sured quantities which are not tightly constrained, par-
ticularly distance and mass ratio, will be influenced by
our choice of prior – a consideration which is typically
left out of Fisher-based studies.

By relaxing assumptions about the shape of the like-
lihood distribution, and therefore the posterior, we pro-
vide more detailed insight into the average measurement
accuracy for LIGO/Virgo observations of “loud” BNS
mergers. These findings will help guide the community
as it prepares to employ GW observations as a new tool
to study astrophysics, relativity, and cosmology.

he goal of our study is to provide touchstone es-
timates of parameter estimation uncertainties for Ad-
vanced LIGO/Virgo observations of strong BNS signals,
accounting for the complexity of the likelihood distribu-
tion. For ease of accessibility, the results are collected
and summarized in Tables 1 and 2.

Our study provides complementary results to previous
investigations which used similar methods but pursued
different questions. While our work reports on the re-
covery of all system parameters for a range of plausi-
ble BNS mass and mass-ratios at a fixed (and compara-
tively large) signal to noise ratio, recent papers (Nissanke
et al. 2011, 2013) have prioritized multi messenger as-
tronomy by simulating a LIGO/Virgo detection catalog
and strictly reporting on how well BNS mergers can be
localized on the sky and/or in volume to facilitate elec-
tromagnetic observations. We are in agreement with the
published work where our findings overlap, and proceed
to also examine how well intrinsic quantities, in partic-
ular the mass parameters, are measured for strong de-
tections. Our work also distinguishes itself both from
Nissanke et al. (2011, 2013) and Veitch et al. (2012) by
quantifying the effects of mass ratio on parameter recov-
ery, whereas the previous studies have restricted their
results for BNS systems to the equal mass case.

In Section 2, we describe the infrastructure of the pa-
rameter estimation code, LALInference, and its associ-
ated MCMC sampler, lalinference mcmc, as well as the
frequency-domain gravitational-wave template we em-
ploy. In Section 3, we qualitatively analyze the posterior
probability density functions for BNS systems with dif-
ferent masses and extrinsic parameters. We select three
equal-mass and one unequal-mass binary systems as pro-
totypical examples of BNS systems. Each system is an-
alyzed 40 times with isotropically selected sky locations

and orbital orientations, and with a distance such that
each signal was injected with a network signal-to-noise
ratio of 20. The results are divided into three subsec-
tions of interest: the recovery of the mass parameters
(Section 3.1), the recovery of the orbital inclination and
luminosity distance (Section 3.2), and the localization
of sources on the sky (Section 3.3). Finally we provide
quantitative 1-dimensional credible intervals on each pa-
rameter in Section 4. Throughout this paper we adopt
geometrized units with G = c = 1.

2. PARAMETER ESTIMATION

The parameter estimation methodology used here –
namely matched filtering with post Newtonian wave-
forms and using MCMC to sample the posterior – have
become sufficiently ubiquitous in the GW literature that
we will give only a very cursory treatment of both mainly
for the sake of introducing notation and terminology. We
refer readers seeking more detail to Appendix A and ref-
erences therein.

We begin by introducing the matched filtering formal-
ism for parameter estimation. We assume that the time-
domain signal in a gravitational-wave network can be
written as the sum of a gravitational waveform h0 and
the noise of the detector n. We further assume that this
noise is stationary and Gaussian with zero mean. The
detector output is simply

s = n+ h0. (1)

Since the noise model is Gaussian, we can write the prob-
ability of a specific signal realization s given an input
waveform h(θ) as proportional to the probability that
the residual is Gaussian distributed once the waveform
has been subtracted

p(s|θ) ∝ exp

[
−1

2
〈n|n〉

]
= exp

[
−1

2
〈s− h(θ)|s− h(θ)〉

]
, (2)

where θ is the set of parameters for the template wave-
forms. The quantity p(s|θ) is the likelihood of the signal
s given the parameters θ. The inner product, 〈 | 〉, is
defined using the noise spectrum of the detectors as

〈a|b〉 ≡ 4<
∫
ã(f)b̃∗(f)

Sn(f)
df, (3)

where Sn(f) is the one-sided power-spectral density

(PSD) as a function of frequency, and ã(f) and b̃(f)
are the Fourier transforms of the time-domain data a(t)
and b(t). If we pick a set of parameters θ such that
h(θ) = h0, then the likelihood (2) will be near a global
maximum; however, the presence of noise will in gen-
eral deflect the maximum of our likeliood away from the
value at h(θ) = h0. Therefore, the maximum likelihood
parameters do not necessarily correspond to the true pa-
rameters of the source.

Once we have the likelihood of the signal (2), we em-
ploy Bayes’ Theorem to obtain the posterior probability
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of the system parameters θ given the signal s as

p(θ|s) =
p(θ)p(s|θ)

p(s)

∝ p(θ) exp

[
−1

2

〈
s− h(θ)|s− h(θ)

〉]
, (4)

where p(θ) are the prior probabilities on our source pa-
rameters and p(s) is a normalization constant.

2.1. Markov-Chain Monte Carlo

The LIGO Algorithm Library Bayesian inference code,
LALInference, is designed as a unified framework for
gravitational-wave parameter estimation. By using
a common setup for waveform generation, PSD es-
timation, data handling, and other associated tech-
niques from gravitational-wave parameter estimation,
LALInference allows the implementation of multiple
samplers of the parameter space, including Nested
Sampling (lalinference nest, described in Veitch
& Vecchio (2010)) and Markov-Chain Monte Carlo
(lalinference mcmc). We elect to use the MCMC sam-
pler for this study. lalinference mcmc is based upon
the previously described code, SpinSpiral (van der
Sluys et al. 2009; Raymond et al. 2010). The MCMC em-
ploys a Metropolis-Hastings sampling algorithm (Gilks
1999), which is described in Appendix A.

2.2. Parameter Space

Our methodology is predicated on the existence of ac-
curate templates. We assume no systematic difference
between our model waveforms and the true GW signal.
We use a frequency-domain waveform accurate up to 3.5
post-Newtonian (pN) order in phase and 3 pN order in
amplitude of the lowest (l = |m| = 2) spatial mode. We
restrict ourselves to quasi-circular, non-spinning wave-
forms as a simplifying assumption. The standard form
of our waveform model, known as the TaylorF2 approx-
imant, is calculated via the stationary-phase approxi-
mation (Buonanno et al. 2009) . Future studies will be
needed to include the impact of realistic NS spin and/or
the bias introduced by using approximate waveforms.

In the absence of any spin, the phase evolution of the
gravitational-waveform is determined by four intrinsic
parameters – the two masses (M1 and M2) and two in-
trinsic constants of integration (φ0 and tc) . In addition,
there are 5 extrinsic parameters which do not influence
the inspiral of the binary, but govern the amplitude of
the signal in each detector. Considering these leads to a
9-dimensional parameter space for non-spinning systems
as employed in our MCMC:

θ = (Mc, q, φ0, tc, D, ι, ψ, α, δ), (5)

where

• Mc ≡ (M1M2)3/5M
−1/5
tot is the chirp mass,

• q ≡M2/M1 is the mass ratio,

• φ0 and tc are the chirp phase and chirp time, arbi-
trary phasing parameters,

• D is the luminosity distance to the binary,

• ι is the orbital inclination (the angle between the
orbital angular momentum and the line of sight),

• ψ is the gravitational-wave polarization, and

• α and δ are the right ascension and declination of
the source on the sky.

Since the wave amplitude depends on the orientation of
the binary with respect to each detector, most of the in-
formation about these extrinsic parameters comes from
two sources: the time-of-arrival triangulation of the sig-
nal, and the relative amplitudes in each detector in the
network.

2.3. Priors

We are interested in the posterior p(θ|s) as it en-
codes information about both the prior state of knowl-
edge about the problem in addition to the likelihood
of the signal. We adopt the same conventions for the
prior distribution as were used in the follow-up pa-
rameter estimation studies of simulated detections dur-
ing LIGO’s sixth, and Virgo’s second, science collection
periods (the LIGO Scientific Collaboration et al. 2013).
They are:

• uniform in component masses from 0.8M� ≤
M1,2 ≤ 30M�, with a minimum chirp mass of 0.6
M�

• uniform in volume, which implies a luminosity dis-
tance prior of p(D)dD ∝ D2dD,

• uniform in coalescence time over the segment of
data being analyzed,

• isotropic in all angles

2.4. Detector Configuration and Noise Models

To perform the integral defined in (3), we used as
our power-spectral density the best estimate for a high-
power, zero-detuning configuration of Advanced LIGO,
provided by the LIGO Scientific Collaboration. Both the
noise curve and technical reports describing it can be
found in Shoemaker (2009). We consider two configura-
tions of the advanced detector network: a three-detector
configuration consisting of the two LIGO sites (in Han-
ford, WA and Livingston, LA) and the Virgo site (in
Pisa, Italy), and a four-detector configuration that adds
the proposed LIGO-India detector (in Chitradurga, KA).
For simplicity, we assume each detector to be operating
at the Advanced LIGO sensitivity.

For a multi-detector network, the noise-weighted in-
ner products (3) combine linearly so long as the noise is
uncorrelated between detectors, allowing us to use the
above formalism with an additional summation over in-
terferometers in the network. We integrate the inner
product from a lower-frequency cutoff of 20Hz to the
innermost-stable-circular orbit of the systems, which for
a non-spinning binary is a function only of the total mass:

πfISCO =
1

63/2Mtot
. (6)
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We define the signal-to-noise ratio (SNR) of a gravita-
tional wave in a single detector as

SNR ≡ 4

σ

∫ ∞
0

|s̃(f)h̃(f)|
Sn(f)

df, (7)

where s̃(f) and h̃∗(f) are the frequency-domain data and
template, respectively, and the normalization σ is given
by

σ2 = 4

∫ ∞
0

|h̃(f)|2
Sn(f)

df. (8)

When dealing with a network of gravitational-wave de-
tectors, the SNRs of the individual detectors add in
quadrature. That is, the network SNR for a detection
is

SNRnetwork =

√∑
i

SNR2
i (9)

where SNRi is the SNR, given by (7), of the ith detector.
For this study, we consider four separate popula-

tions of BNS systems, with component mass combina-
tions of 1M�/1M�, 1.4M�/1.4M�, 1M�/2.5M�, and
2.5M�/2.5M�. Each population consisted of 40 signals
distributed randomly in sky location, polarization, incli-
nation, time-of-arrival, and coalescence phase. The lumi-
nosity distance, D, was selected to yield a signal strength
of SNRnetwork = 20 for each source in each network con-
figuration. While unphysical from an astrophysics per-
spective, this choice allows us to explore the parameter
estimation in the context of loud but plausible detection
candidates. Signals much stronger than SNR = 20 will
most likely be rare. Signals much lower will be at the
threshold for detection, where details of the instrument
noise play a more commanding role in any inferences
which will be drawn from the observations, making it
impossible to meaningfully quantify “typical” parameter
estimation accuracies until the detectors begin operating.

Finally, note that the PSD that defines the inner prod-
uct (3) is simply the time-averaged sensitivity of a given
detector to a specific frequency. Under ideal circum-
stances any stretch of data should contain a specific noise
realization drawn from a Gaussian colored by the PSD
however, in practice, non-Gaussian noise events are oc-
casionally present in the data. While we await the com-
pletion of the advanced detectors, we are without a real-
istic model including the actual instrument performance,
and cannot accurately simulate gravitational-wave data
to the point of making complete predictions about pa-
rameter estimation capabilities. Because of this, we elect
to focus only on the part of the simulation over which we
have control by setting n(t) ≡ 0. Thus, what is reported
here are strictly the statistical errors due to the flexibility
of the waveforms and the expected sensitivity of the ad-
vanced era detectors while suppressing any effects of ran-
dom detector noise. Consequently, what we recover with
the MCMC should be interpreted as the posterior distri-
bution function for each source averaged over all possible
(Gaussian) noise realizations, assuming we have the cor-
rect PSD and that the signal is sufficiently powerful for
the linearized-signal approximation to be valid. By se-
lecting a source population with an artificial distribution

in SNR, we ensure that the “zero-noise” as average un-
certainty approximation is valid. We discuss further the
validity of this approach in Appendix C.

3. RESULTS

Of the nine parameters in the domain of the wave-
form, only six are particularly physically interesting: the
masses of the two binaries, M1 and M2, the orbital in-
clination, ι, the angular position on the sky, α and δ,
and the luminosity distance of the source, D. While the
coalescence phase φ0, the coalescence time tc, and the
wave polarization ψ must be included in any parame-
ter estimation of the waveform, they do not encode any
information of particular astrophysical interest.

In Figure 1, we provide an example of the nine, 1-
dimensional marginalized posterior probability density
functions recovered from a single 1.4M�/1.4M� BNS
system. These PDFs are representative of the type of
results that will be produced by parameter estimation
studies in the advanced detector era. Notice that the
peak of several parameters, including the chirp mass,
Mc, appears to be displaced from the true values in
dashed red. This effect is due to gradients in the priors
on the mass parameters and distance, and the reduction
of the 9-dimensional PDF to a series of marginalized 1-
dimensional PDFs. For instance, the 1-dimensional PDF
for chirp mass is marginalized via

p(Mc|s) =

∫
θ\Mc

p(θ|s) d(θ \Mc) (10)

where the notation θ \Mc implies all parameter of (5)
except Mc. Other parameter and higher-dimensional
marginalizations follow a similar convention. In prac-
tice, the MCMC samples make this integral trivial: since
the samples are distributed according to the posterior,
(10) can be “computed” by simply histogramming the
chain entries of a single parameter, implicitly calculating
a Monte-Carlo integral over all other parameters.

We display marginalized 1D distributions after
smoothing with a Kernel Density Estimator (KDE). At
a prior boundary (e.g. q=1) the KDE is artificially de-
pleted because there is no support from beyond the edge
in parameter space. To rectify this it is customary to
reflect some of the points across the boundary, so that
the KDE resembles the histogram. This estimator is un-
biased as long as the first derivative of the prior is zero
at the boundary. We elected to use 10% of the points, as
it was the minimum number required to get the smooth
KDE to match the binned histograms.

3.1. Mass Parameters

Of the nine variables in our parameter space (5), the
mass parameters,Mc and q, or, correspondingly, M1 and
M2 are the most astrophysically interesting. The ability
of Advanced LIGO/Virgo to construct a population of
BNS masses will be one of the more useful and immediate
applications of gravitational-wave astronomy.

If we sort our results by each system’s mass param-
eters, we find virtually no difference between the mass
PDFs of injections with the same intrinsic parameters.
More simply, at a given SNR the accuracy to which
LIGO/Virgo can measure the mass parameters of a (non-
spinning) BNS system is independent of the sky-location
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Example 1D Posterior Probability Densities for 1.4M�/1.4M� System

Fig. 1.— Marginalized 1D posterior probability densities of a typical 1.4M�/1.4M� BNS system. We have plotted each of the 9
parameters for our non-spinning BNS problem as stated in section 2.2. Note how, even for parameters with excellent recovery, the peak
of the 1D Gaussian is displaced from the injected value (in dashed red). This is not due to a systematic bias, but is caused by the
marginalization of a single dimension from the full 9D posterior space. To better see this effect, compare the 1D PDF for Mc and q with
the 2D marginalized PDF in Figure 2. The plots here represent the Gaussian kernel density estimator of each PDF. The plot for q was
computed by reflecting the highest 10% of samples across the q = 1 boundary, in order for the smoothed plot to agree with the binned
histograms.

and orientation of the binary. This can be understood
if we recall that the mass parameters are the only two
which directly affect the phase evolution of the waveform
(B2). Therefore, as long as the source’s mass parameters
are equivalent, and the injected SNR is the same for each
source, the amount of recoverable information pertaining
to the phase of the waveform is identical. The only no-
ticeable difference will come from the specific realization
of noise produced by the detector, which we address in
Appendix C.

In Figures 2 and 3, we show the marginalized 2D poste-
rior PDFs of our mass parameters for prototypical equal-
mass and unequal-mass binaries. We include the PDF
in both the Mc-q space (relevant for the waveform and
the MCMC algorithm), and the more physically interest-
ing component mass space (M1-M2). Although only the
1.4M�/1.4M� system is included in Figure 2, the PDF

is qualitatively identical to the other equal mass cases,
modulo a scaling factor.

To condense the results into a single figure of merit, we
average the 1-dimensional mass PDFs into a single pos-
terior probability for the system in Figure 4. Notice how,
when averaged and normalized to the injected values, the
recovery of the component masses depends only on the
mass ratio. Furthermore, for systems with equal com-
ponent masses, the posterior barely extends beyond 15%
of the injected values. If one assumes that the threshold
between black holes and neutron stars lies at approxi-
mately 3M�, then it might be naively assumed that the
mass recovery would allow one to discriminate between
black holes and neutron stars.

In practice, there is a physical complication to this
claim: we have neglected the spin of the binaries, which
will be highly correlated to the masses. This coupling
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Fig. 2.— 2D marginalized posterior probability density functions
for the mass parameters recovered in typical a 1.4M�/1.4M� sys-
tem. The posteriors are plotted in terms of parameters used in
the waveform, chirp mass (MC) and the mass ratio (q), and in
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component masses resemble the posterior PDFs shown in Figure
4.

means that, in the case where the component masses have
non-negligible spins parallel to the orbital angular mo-
mentum of the binary, a higher-massed spinning system
can produce waveforms very similar to a non-spinning,
low-mass binary. This effect makes it extremely difficult
to discern between, for example, non-spinning neutron
stars and spin-aligned, stellar mass black holes (Baird
et al. 2013; Hannam et al. 2013). However, the situation
is not hopeless: if the spins are misaligned, the spin vec-
tors will couple to the orientation of the binary (encoded
in the three angles φ0, ι, and ψ) via relativistic preces-
sion. It remains to be seen if using fully spinning wave-
forms will make it possible for Advanced LIGO/Virgo to
discern binary neutron stars from their spinning black
hole counterparts.

In Table 1, we list the 68% and 95% credible intervals
for the mass parameters. We find that the component
masses for equal mass systems can be isolated to between
6.4% and 9% (10.3% and 15%) fractional uncertainty at
the 68% (95%) credible interval. This value drops to
less than 1.9% (3.7%) for the components of the unequal
mass systems. Again, this neglects the effects of spin
which can substantially increase these values.
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Fig. 3.— Similar to Figure 2, but for a typical 1M�/2.5M�
system. The unequal mass ratio displaces the posterior PDFs from
the q ≤ 1 boundary present in the equal-mass case, yielding a
Gaussian PDF in both the Mc-q and M1-M2 spaces.

3.2. Inclination and Distance

Binary neutron star systems (along with neutron
star/black hole systems) are one of the best candidates
for progenitors of short-hard gamma-ray bursts (Nakar
2007, and references therein). After merger, the remnant
is believed to emit the burst along the axis of orbital an-
gular momentum, making the inclination of the binary
system of particular interest to gamma-ray astronomy
(Abadie et al. 2010; Corsi et al. 2012). The inclination is
detected as a relative amplitude difference between the
two gravitational-wave polarizations, such that to lowest
order:

h+(f) =
1 + cos2(ι)

2D
h̃(f)

h×(f) = i
cos(ι)

D
h̃(f). (11)

It should be apparent that the luminosity distance D and
the inclination ι can be highly correlated in any param-
eter estimation recovery.

Given this degeneracy, it should come as no surprise
that the 2D marginalized posteriors of distance and in-
clination are the broadest of the six physically interesting
parameters. Four typical 2D PDFs are presented in Fig-
ure 5. Notice the bimodal uncertainty present in the top
2D PDF along the ι axis, due to the similarity between
the evaluated likelihoods at ι and ι+π/2. As the majority
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Fig. 4.— Mass PDFs for the four BNS systems, averaged over each of the 40 injections. The average is reported since, in practice, there
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cases).

of the information extracted via parameter estimation is
from the phase of the signal, the recovery of the posterior
in D-ι space will be limited, even during the Advanced
LIGO/Virgo era; however, if a gravitational-wave signal
is matched to a detected SGRB counterpart (which may
occur at the rate of ∼ 3yr−1 in Advanced LIGO/Virgo,
according to Metzger & Berger (2012)), the optical in-
formation about the orbital inclination will provide an
additional constraint on the D-ι space, vastly improv-

ing the luminosity distance recovery quoted here. These
results qualitatively agree with those of Nissanke et al.
(2011), who studied in detail MCMC estimation of D-
ι measurements from gravitational-wave detectors with
coincident GRB detections.

In Table 2, we list the averaged 68% and 95% credible
intervals for distance and inclination. Notice that the
uncertainties on distance can be extreme, from tens to
hundreds of Mpc. When discussing the inclination angle,
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Fig. 5.— Typical marginalized 2D mass PDFs for luminosity dis-
tance D and orbital inclination ι. Notice the bimodal distribution
on the first PDF, that can occur when a system is detected nearly
“edge-on” (ι ≈ π/2). In general, the degeneracy between distance
and inclination forces the PDF into one of these two paths when
the system is not edge-on, as seen in the second and third PDFs.

we elected to use | cos(ι)|, as this maps the occasional
bimodal structure into a single PDF, and observing a
compact merger at ι and ι + π/2 should yield identical
physics.

3.3. Sky Localization

Unlike the mass parameters, the recovery of the posi-
tion on the sky is highly dependent on the location of
the source with respect to the detector network in ques-
tion. Much of the information about the sky position of
the source comes from the relative timing of the signals
in each detector. For the HLV configuration there are
two regions in the sky which produce consistent delays
in the arrival time of the GW signal between pairs of
detectors. That is, when using only time-of-arrival infor-
mation, there is equal support in the probability density
functions around the true location and the region of the
sky found by reflecting the correct line of sight through
the plane formed by the three detectors. See Fairhurst
(2011) for a global analysis of time-of-arrival accuracy for
various network configurations, including those consid-
ered here. See also LIGO Scientific Collaboration et al.
(2013) for a similar analysis, applied to each stage of the
advanced detector network.

In practice, however, additional information from the
wave polarization and the relative difference in SNR be-
tween individual detectors can break this plane-reflection
degeneracy, leading to a bi-modal distribution with sig-
nificantly more support in one mode of the PDF. By
fitting for the sky location and the polarization simulta-
neously, the MCMC can often identify the correct mode
on the sky. For the four-detector configuration, this con-
cern is irrelevant: even with time-of-arrival data alone,
the HLVI network can constrain any source to a single
mode on the sky. Even then, there are still locations on
the sky in which two or more detectors are not sensi-
tive to the gravitational-wave signal, yielding distorted,
non-Gaussian PDFs.

The sky location uncertainties for HLV and HLVI are
shown in Figures 6 and 7 respectively. We show all four
mass bins together, since in practice the mass of the sig-
nals has little effect on the recovery of the sky location
for the considered BNS systems. Only the location on
the sky, the network configuration, and the other extrin-
sic parameters were found to be relevant. In particular,
notice the increase in efficiency between the HLV config-
uration and the HLVI configuration. The network SNR
is held fixed for each configuration so the improvements
seen here are strictly due to extra information provided
by the additional interferometer, not the increased SNR
a fourth detector would provide for sources at a fixed
distance.

In the HLV configuration, there exist points on the sky
in which the signal was injected near the plane of the
detector network. This causes the elongated, “banana-
shaped” PDFs seen in Figure 6. In the HLVI configura-
tion, the plane is no longer relevant, and there are sub-
stantially fewer regions in which only two detectors see a
sufficiently strong signal. For the HLV configuration, we
find that all of the signals are recovered with a solid angle
uncertainty of less than 64 deg2 (136 deg2) at the 68%
(95%) credible interval, while the HLVI configuration re-
covers all signals to less than 14 deg2 (45 deg2). The
median quantitative results for the two network configu-
rations show a similar benefit with the addition of LIGO
India, and are again reported in Table 2.

Previous studies have considered the increase in sen-
sitivity from the addition of the LIGO India site. Nis-
sanke et al. (2013) studied the decrease in sky-location
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uncertainties obtained by the inclusion of the LIGO In-
dia site into the advanced detector network. Their study
also employed an MCMC sampling technique (a modified
version of CosmoMC), to determine the average parame-
ter estimation uncertainties for a realistic distribution of
sources. As the current study is interested in the average
uncertainties of strong sources at SNRnetwork = 20, ig-
noring the effects of less viable detection candidates, it is
useful to compare the 95% credible intervals between the
two studies. The cumulative distributions of sky-area un-
certainties for both network configurations in each study
are plotted in Fig. 8.

The difference in uncertainties between the two studies
is illustrative. Nissanke et al. (2013) considered a real-
istic distribution of sources motivated by a local galaxy
catalogue for sources where D ≤ 200Mpc, and homo-
geneously distributed in co-moving volume for sources
where D > 200Mpc. The “detection candidates” which
underwent parameter estimation were limited to the sig-
nals where SNRnetwork ≥ 8.5. The SNR threshold for
a detection is a simplification to the actual detection
statistic used for BNS searches. The current study con-
siders a source population isotropically distributed on
the sky, but at distances such that each signal repre-
sents a relatively high precision case for parameter esti-
mation. Fig. 8 compares the sky-area uncertainties that
will be available to those considering “good gravitational-
wave events” (e.g. precision source localization), and
the uncertainties that one can gather by considering all
gravitational-wave candidates with SNRnetwork ≥ 8.5
(e.g. electromagnetic follow-up). As expected, both
source populations show a dramatic decrease in param-
eter estimation uncertainties with the addition of the
LIGO India site to the advanced detector network. This
holds true even when considering the increased number
of nominal sources available to the HLVI network con-
figuration in the Nissanke population, where the expan-
sion of the network detection horizon due to LIGO India
increases the number of sources to 130, versus 90 in the
HLV configuration. This trend is similar to that observed
in Veitch et al. (2012), contrasting the originally pro-
posed four-detector configuration (with two co-located
Hanford detectors) to the HLVI configuration.

4. CREDIBLE INTERVALS

When quoting parameter estimation results, it is often
convenient to reduce the full parameter space to credible
intervals about single marginalized parameters.. To that
end, we state the averaged 68% and 95% credible inter-
vals about the single parameters for each of the three
parameter pairs of interest. These were already plotted
for the sky locations in Figures 6 and 7.

There are several different ways of computing the
width of a credible interval in this setup. If one con-
siders the points in the MCMC as random draws from
the true posterior, then the α-level credible interval can
be computed by simply ordering the points, removing
N(1− α)/2 points from both sides of the posterior sam-
ples symmetrically, and measuring the width of the re-
maining points. While this procedure can prove haz-
ardous for multi-modal distributions, it is straightfor-
ward and reliable for single-peaked distributions as re-
ported here.

In Table 1, we list the mean 68% and 95% credible

intervals recovered for the four mass configurations in
both network configurations. This essentially quantifies
the widths of the posteriors plotted throughout Section 3.
The purpose of Tables 1 and 2 is to provide a quantita-
tive and quotable source for studies seeking to determine
how well a physical question about BNS systems can be
answered with the Advanced LIGO/Virgo network.

Given the previous reliance of parameter estimation
studies on the Fisher Information Matrix, it is informa-
tive to compare the credible intervals quoted here to pre-
viously reported values in the literature. We recompute
the credible intervals of the chirp mass and the sym-
metric mass ratio (η ≡ m1m2/M

2
tot) at the 68% confi-

dence level (1σ) for the 1.4M�/1.4M� system presented
here. We then compare the findings of the MCMC to
the Fisher matrix predictions using an identical network
configuration (HLV), noise curve, and waveform model.
We compute the Fisher matrix uncertainties using a code
previously described in Rodriguez et al. (2013). We find
that the MCMC credible intervals can vary significantly
from the estimates of the Fisher matrix, with the Fisher
matrix underestimating the fractional uncertainties by as
much as a factor of two. See Table 3. This result agrees
with the conventional wisdom surrounding the Fisher
Matrix accuracy, as well as results where the Fisher Ma-
trix is computed to higher order (Vitale & Zanolin 2010)
This disagreement, while unsurprising, emphasizes the
importance of employing the full parameter estimation
machinery of an MCMC when making physically rele-
vant claims.

5. CONCLUSION

In this paper, we performed an MCMC parameter esti-
mation analysis on the recoverability of basic information
about binary neutron stars, using two projected versions
of the Advanced LIGO/Virgo network. We focused on
the recovery of the two masses, the luminosity distance,
orbital inclination, and the sky location, as these are the
six basic parameters of physical interest to the problem.
The signals were injected at a high, but not unrealis-
tic, SNR = 20 in order to create a reference similar to
those found in previous Fisher Matrix studies while re-
maining in a regime where the “n(t) = 0 as average”
simplification is justified. The simulated signals compre-
hensively covered sky-location, orientation, component
mass, and mass ratios for plausible binary neutron star
systems, while neglecting spin, corrections due to finite
size effects, orbital eccentricity, and other higher-order
modifications to the gravitational wave signal.

Despite the high SNR of our simulated signals, Fisher
matrix results are not adequate to characterize the pa-
rameter estimation capabilities of advanced detectors.
The Fisher matrix approximation assumes the likelihood
distribution is a multivariate Gaussian. In contrast, us-
ing MCMC to sample the posterior distribution function
allows us to relax any assumptions about the functional
form of the posterior (apart from the implicit dependence
on templates and the PSD common to any similar study).
Given the highly non-Gaussian nature of the recovered
posteriors, even in the absence of a simulated noise re-
alization, (see Figures 1, 2, 4-7 ), we conclude that it is
critical for a complete understanding of the gravitational-
wave BNS parameter estimation problem to use Bayesian
sampling techniques.
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Fig. 6.— The uncertainties on the sky of 160 BNS systems in the HLV detector configuration. Each region represents a single injection,

with the colored central region representing the 68% uncertainty region on the sphere, and the gray shade representing the 95% uncertainty
region. The color scheme indicates the total solid angle size of the 68% region. Note the similar shape of the uncertainty regions at
particular points; this is due to the specific pattern of sensitivity over the sky for the three-detector network.
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Fig. 7.— The same as Fig 6, except for the HLVI detector configuration. Note the substantially lower average uncertainties on the skies

for the majority of the injections. Also note the lack of large, “banana-shaped” uncertainties that were recovered by the HLV configuration.
The two improvements are strictly due to the breaking of the plane degeneracy that is facilitated by the transition to a four-detector
network, and not the additional SNR achieved by adding another detector to the network. The SNR was held at 20 for both figures.

The quantitative results reported here represent the
average statistical error for SNR = 20 detections – “loud”
but not unrealistic for Advanced LIGO/Virgo observa-

tions – assuming well-modeled waveforms and detectors
which achieve their design sensitivity. For the mass pa-
rameters we found that, neglecting the effects of spin,
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TABLE 1
Median 68% and 95% credible intervals for intrinsic parameters for each of the four systems considered. We report the
credible intervals of quantities measured, as well as the component masses and total mass. Although the results for the

HLV and HLVI configurations are quantitatively identical, we report them separately for consistency.

HLV

System ∆Mc/Mc ∆M1/M1 ∆M2/M2 ∆Mtot/Mtot ∆q

Credible Level 68% 95% 68% 95% 68% 95% 68% 95% 68% 95%

1M� − 1M� 0.00497% 0.0104% 7.17% 11.9% 6.39% 10.3% 0.643% 1.25% 0.123 0.197

1.4M� − 1.4M� 0.00883% 0.0188% 7.77% 13% 6.87% 11.1% 0.746% 1.47% 0.132 0.212

1M� − 2.5M� 0.0176% 0.0355% 1.86% 3.74% 1.59% 3.23% 1.48% 2.99% 0.0138 0.028

2.5M� − 2.5M� 0.0246% 0.0522% 9.02% 15% 7.82% 12.6% 1.01% 1.94% 0.149 0.239

HLVI

System ∆Mc/Mc ∆M1/M1 ∆M2/M2 ∆Mtot/Mtot ∆q

Credible Level 68% 95% 68% 95% 68% 95% 68% 95% 68% 95%

1M� − 1M� 0.00497% 0.0106% 7.15% 11.9% 6.38% 10.4% 0.646% 1.27% 0.123 0.198

1.4M� − 1.4M� 0.00884% 0.0188% 7.67% 12.8% 6.79% 11.1% 0.733% 1.46% 0.13 0.211

1M� − 2.5M� 0.0176% 0.0352% 1.85% 3.72% 1.59% 3.2% 1.47% 2.96% 0.0137 0.0277

2.5M� − 2.5M� 0.0243% 0.0515% 9.03% 14.9% 7.84% 12.6% 0.998% 1.92% 0.149 0.238

TABLE 2
Median 68% and 95% credible intervals of extrinsic parameters for each of the four systems considered. As expected,

there exists a substantial improvement in the sky localization capabilities of the four-detector HLVI configuration over
the three-detector HLV configuration. Note that the solid-angle sky-location credible intervals, ∆Ω, are calculated

directly on the 2D sphere, not by combining the α and δ uncertainties.

HLV

System ∆D (mpc) ∆| cos(ι)| ∆α (deg) ∆δ (deg) ∆Ω (deg2)

Credible Level 68% 95% 68% 95% 68% 95% 68% 95% 68% 95%

1M� − 1M� 49.4 89.9 0.323 0.611 1.73 4.09 2.51 5.52 5.12 13.5

1.4M� − 1.4M� 61.4 107 0.314 0.588 2.63 5.42 2.53 5.27 4.12 11.2

1M� − 2.5M� 68.8 127 0.31 0.549 2.41 4.6 2.77 6.2 4.37 12.1

2.5M� − 2.5M� 116 198 0.349 0.613 1.75 4.51 2.42 5.01 4.62 12

HLVI

System ∆D (mpc) ∆| cos(ι)| ∆α (deg) ∆δ (deg) ∆Ω (deg2)

Credible Level 68% 95% 68% 95% 68% 95% 68% 95% 68% 95%

1M� − 1M� 42.7 76.2 0.267 0.455 1.13 2.25 1.48 3.01 1.87 5.37

1.4M� − 1.4M� 66.6 121 0.285 0.509 1.27 2.48 1.49 3.01 2 5.12

1M� − 2.5M� 73.7 130 0.297 0.499 1.29 2.42 1.42 2.89 1.75 4.87

2.5M� − 2.5M� 120 213 0.301 0.517 1.18 2.34 1.55 3.14 2.25 5.99



12

0 50 100 150 200

Sky Area 95% Credible Region (deg2 )

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

Sky-area uncertainties, HLV

SNRnetwork=20

SNRtrigger≥8.5

0 50 100 150 200

Sky Area 95% Credible Region (deg2 )

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

Sky-area uncertainties, HLVI

SNRnetwork=20

SNRtrigger≥8.5

Fig. 8.— The cumulative fraction of sources found within deg2

at the 95% credible interval. This plot contains results from two
separate studies: the current study, in which only strong detection
candidates are considered (SNRnetwork = 20), and Nissanke et al.
(2013), which employs a separate MCMC code on a realistic source
population (where SNRtrigger ≥ 8.5 is employed to determine pa-
rameter estimation sources). The strong detection candidates are
constrained to substantially smaller solid angles on the sky, as is
expected for such “gold-plated” events, while both studies show a
substantial decrease in sky-area uncertainties for the HLVI config-
uration.

TABLE 3
68% Credible intervals versus the 1σ Fisher matrix

confidence intervals for mass parameters in each system in
the HLV configuration.

Parameter ∆Mc/Mc ∆η/η

Estimate MCMC FIM MCMC FIM

1M� − 1M� 0.00497% 0.00396% 0.645% 0.704%

1.4M� − 1.4M� 0.00890% 0.00743% 0.745% 0.866%

1M� − 2.5M� 0.0176% 0.00880% 1.475% 0.862%

2.5M� − 2.5M� 0.0245% 0.0221% 1.000% 1.299%

the component masses can be constrained to within 9%
(15%) of their true value to a credible level of 68% (95%)
for systems with equal-mass neutron stars. This value
drops below 1.9% (3.7%) for systems with an asymmetric
masses. It was also found that the fractional uncertain-

ties for equal-mass binary systems are similar at equal
SNR. Only when the masses are unequal are the frac-
tional errors effected. These results were summarized
in Table 1. Our study is the first to comprehensively
quantify neutron star mass measurements in Advanced
LIGO/VIRGO via an MCMC for a range of component
masses and mass ratios.

We also reported on the ability of the two network
configurations to constrain the luminosity distance and
orbital inclination. For distance, it was found that the
uncertainties will average anywhere from 43 to 120 MPC
at 68% credible levels, and from 76 to 213 MPC at 96%
credible levels, making the uncertainties larger than the
luminosity distances themselves in many cases. Further-
more, it was found that the cosine of the orbital incli-
nation can be constrained to within 0.35 (0.61) at the
68% (95%) level on average, suggesting that Advanced
LIGO/Virgo will not be able to offer constraining infor-
mation on GRB beaming angles in coincidence with elec-
tromagnetic observations. Coincidence detections will
still be possible, but the orbital orientation information
from gravitational waves will not provide astrophysically
relevant constrains.

Finally, we reported the ability of advanced networks
to constrain the sky location of strong BNS signals. It
was found that the three-detector configuration, consist-
ing of the Washington and Louisiana LIGO sites plus the
Italian Virgo site, was able to constrain all signals within
64 deg2 (136 deg2) on the sky at the 68% (95%) credible
level, with an average median 68% (95%) credible inter-
val of 4.6 deg2 (12.2 deg2). Meanwhile, the four-detector
configuration, consisting of the three-detector sites plus
a LIGO India detector, was able to localize all the sky
locations to within 14 deg2 (45 deg2) on the sky at the
68% (95%) credible interval, with an average median 68%
(95%) credible interval of 2 deg2 (5.3 deg2). These high-
SNR results were then compared to similar results for a
more realistic, source distribution from Nissanke et al.
(2013).

It should be noted that there are two distinct types
of systematic error, highly relevant to the gravitational-
wave parameter estimation problem, that we have not
addressed in this study. First, we have studied the pa-
rameter estimation uncertainties under the assumption
that the waveform template we use to recover the signal
template exactly matches the fully relativistic waveforms
nature provides. In practice, these waveforms are only
approximations to the fully general-relativistic physics
required to solve the problem. See Buonanno et al.
(2009) for a better description of the systematic uncer-
tainties present in the most common waveform families.
Additionally, there are several astrophysical assumptions
that can potentially contribute to systematic uncertain-
ties in the waveforms, such as the neutron-star equation
of state, possible modifications to General Relativity, ec-
centricity, etc.

Secondly, we have performed our study under ideal-
ized detector-noise conditions. In practice the noise lev-
els of Advanced LIGO and Advanced Virgo can vary with
time and contain occasional excursions which are highly
non-Gaussian. Unfortunately, there is no reliable way
to predict the sort of non-Gaussian detector glitches and
instrumentation effects that will arise in any advanced
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gravitational-wave detector. The realization of noise will
be a major factor in the deflection of signal PDFs from
the idealized cases presented here.

In this study, we have also neglected the effects of spin
in the parameter space, electing to focus on the abso-
lute basic parameters that will be measured routinely in
the Advanced Detector era. Given the high degree of
coupling between the spin and mass of objects in the
gravitational-wave parameter space, it remains unclear
if the mass measurement alone will be sufficient to dis-
tinguish non-spinning neutron stars from highly-spinning
low-mass black holes. Future work will explore this po-
tential mass/spin degeneracy, including the effects of or-

bital precession, with the aim of definitively answering
this question.
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APPENDIX

MARKOV CHAIN MONTE-CARLO

The MCMC sampler included in LALInference employs a Metropolis-Hastings sampling algorithm , which is de-
scribed as follows:

1. Pick an initial point in the parameter space (θold), and then propose a random “jump” to a new set of waveform
parameters, θnew. The jump follows the proposal distribution q (θnew|θold).

2. Calculate the posterior probability, p(θnew|s), of the new parameters using (2) and (4).

3. Accept the new parameters with probability

paccept = min

[
1,
p(θnew|s)q (θold|θnew)

p(θold|s)q (θnew|θold)

]
. (A1)

If the new parameters are accepted, record θnew and repeat with θnew → θold; otherwise, record θold, and repeat.



14

The above procedure is designed to record a chain of samples whose distribution is p (θ|s). By drawing a sufficient
(∼ 1000) number of effectively independent samples from the posterior, the chains traces out the functional form
of the posterior, gathering more samples from regions with high posterior probability density. Depending on the
proposal distribution, q, the convergence (mixing) of the chain may be rapid or slow. We employ multiple optimization
techniques, including both specially-crafted jump proposals (q) and parallel tempering, to ensure adequate mixing of
the Markov Chains throughout our parameter space. Both samplers were tuned and developed during the last science
run of the Initial LIGO/Virgo network. A description of the parameter estimation capabilities of these two samplers
with respect to real interferometer data, as well as a more detailed description of the algorithms and checks for
convergence, can be found in the LIGO Scientific Collaboration et al. (2013).

GRAVITATIONAL-WAVEFORM MODEL

We use a frequency-domain waveform accurate up to 3.5 post-Newtonian (pN) order in phase and 3 pN order in
amplitude of the lowest (l = m = 2) spatial mode. We restrict ourselves to quasi-circular, non-spinning waveforms as a
simplifying assumption. The standard form of our waveform model, known as the TaylorF2 approximant, is calculated
via the stationary-phase approximation. In this setup, the gravitational-wave amplitude is given by

h̃(f) = a(tf )eiψ(f), (B1)

where a(tf ) is the amplitude evaluated at a stationary-phase reference point, which to lowest order takes the form

a(tf ) ∝ f−7/6M5/6
c Θ(angle)/D, where D is the luminosity distance of the binary, and ψ(f) is the pN phase. Θ(angle)

is a function of the orbital orientation with respect to the detector network in terms of the sky position, orbital
inclination, and the wave polarization. In addition to the total mass, Mtot ≡ M1 +M2, it is convenient to work with
the mass ratio and chirp mass, defined in 5. Note that most gravitational-wave literature instead uses the symmetric
mass ratio, defined as η ≡ M1M2/M

2. We elect to use q as it is more physically intuitive, and because it avoids
an integrable singularity that can appear for equal-mass systems when employing a prior on p(η). By convention,
M1 ≥M2. The stationary phase then becomes an expansion in the Newtonian orbital velocity, v = (πMtotf)1/3,

ψ(f) = 2πftc − φ0 +
π

4
+

3

128

(
Mtot

Mc

)5/3 n∑
k=0

αkv
k−5 (B2)

where the αk coefficients are taken from the pN expansion to order n/2. See Buonanno et al. (2009) for a description
and comparison of different waveform families. The terms tc and φ0 in equation (B2) are constants of integration,
referred to as the chirp time and coalescence phase, respectively.

ZERO-NOISE VERSUS VARIED NOISE REALIZATIONS

We have performed the current analysis on zero-noise injections for two reasons. First, the results of a zero-noise
analysis are similar to those that would be achieved by averaging the results of multiple identical injections in different
Gaussian noise realizations. For a unique Gaussian realization of the Advanced LIGO noise curve, the realization
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Fig. 9.— The effects of a non-zero noise realization on the recovered PDF for five different Gaussian realizations of the Advanced LIGO
noise curve. Each blue-dashed PDF represents the recovery of the same 1M�/2.5M� signal in a different noise curve, picked at random
from the Gaussian colored noise defined by the Advanced LIGO power spectral density, while the gray-shaded curve is the zero-noise PDF.
Notice how each curve is a Gaussian PDF with different mean but similar width from the zero-noise PDF. This is to be expected as the
zero-noise mean is identical to the average to first order in 1/SNR, while the zero-noise standard deviation is identical to the average
standard-deviation up to 1/SNR3. This only holds true for glitch-free data, which is an unrealistic idealization when compared to real
data.
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causes the maximum likelihood of the posterior probability distribution to be translated away from the true value.
These displacements tend cancel in the frequentist average over noise realizations, ensuring that the mean uncertainties
should be nearly identical to the uncertainty drawn from the zero-noise runs. This can be seen in Vallisneri (2008),
equations (73) and (74). By expanding the posterior mean and the posterior variance as series in 1/SNR, it can be
seen that the n(t) = 0 posterior mean is identical to the frequentist average over noise realizations of the posterior
mean to first order in 1/SNR. In similar fashion, the n(t) = 0 posterior variance is identical to the noise-realization
frequentist average up to third order in 1/SNR. As the current study operates in a high-SNR regime, the zero-noise
averages (particularly the averages of the posterior variances) are assumed to be valid.

Previous studies have both employed and studied in detail the consequences of this approach. In particular, Nissanke
et al. (2010) demonstrated that the n(t) = 0 posterior is equal to the geometric mean over specific noise realizations
of the posterior, while Sampson et al. (2013) performed a numerical experiment to demonstrate the validity of the
assumption. We perform a similar numerical experiment here in which we demonstrate that the uncertainties from
a n(t) = 0 posterior are equivalent to the frequentist average over uncertainties from multiple noise realizations. We
injected a single 1M�/2.5M� system, detected in HLVI, into 5 separate realizations of Gaussian noise colored by the
Advanced LIGO PSD, and compared the results to the same MCMC recovery in the zero-noise case. This example can
be seen for one-dimensional marginalizations ofMc and q in Fig. 9. In effect, the “real answer” that will be recovered
is a single PDF with similar width to the zero-noise PDF, but with the peak likelihood displaced from the true value.

Of course, this also relies on the assumption that the detector noise is Gaussian. This is the second reason for
employing the zero-noise approximation: it is not feasible to predict the characteristics of realistic advanced detector
noise. While we can simulate a simple non-Gaussian excursion or errors in PSD estimation, there is an infinite set of
possibilities and picking any one is too speculative prior to the advanced detectors are completed and collecting data.
However, as the current study is focused on the average uncertainties, and not the systematics of a single event (for
which we must await a true detection), we feel the n=0 method most adequately satisfies requests from the community
for quotable rule-of-thumb estimates.

Techniques which build off of the theoretical progress made in Allen et al. (2003); Rover (2011); Littenberg & Cornish
(2010) for including glitches in the model for the data, and therefore relaxing the assumptions about stationary and
Gaussian noise, are currently under investigation.


