114 research outputs found

    On Cryptographic Building Blocks and Transformations

    Get PDF
    Cryptographic building blocks play a central role in cryptography, e.g., encryption or digital signatures with their security notions. Further, cryptographic building blocks might be constructed modularly, i.e., emerge out of other cryptographic building blocks. Essentially, one cryptographically transforms the underlying block(s) and their (security) properties into the emerged block and its properties. This thesis considers cryptographic building blocks and new cryptographic transformations

    A Performance Evaluation of Pairing-Based Broadcast Encryption Systems

    Get PDF
    In a broadcast encryption system, a sender can encrypt a message for any subset of users who are listening on a broadcast channel. The goal of broadcast encryption is to leverage the broadcasting structure to achieve better efficiency than individually encrypting to each user; in particular, reducing the bandwidth (i.e., ciphertext size) required to transmit securely, although other factors such as public and private key size and the time to execute setup, encryption and decryption are also important. In this work, we conduct a detailed performance evaluation of eleven public-key, pairing-based broadcast encryption schemes offering different features and security guarantees, including public-key, identity-based, traitor-tracing, private linear and augmented systems. We implemented each system using the MCL Java pairings library, reworking some of the constructions to achieve better efficiency. We tested their performance on a variety of parameter choices, resulting in hundreds of data points to compare, with some interesting results from the classic Boneh-Gentry-Waters scheme (CRYPTO 2005) to Zhandry\u27s recent generalized scheme (CRYPTO 2020), and more. We combine this performance data and knowledge of the systems\u27 features with data we collected on practical usage scenarios to determine which schemes are likely to perform best for certain applications, such as video streaming services, online gaming, live sports betting and smartphone streaming. This work can inform both practitioners and future cryptographic designs in this area

    Traitor Tracing without Trusted Authority from Registered Functional Encryption

    Get PDF
    Traitor-tracing systems allow identifying the users who contributed to building a rogue decoder in a broadcast environment. In a traditional traitor-tracing system, a key authority is responsible for generating the global public parameters and issuing secret keys to users. All security is lost if the \emph{key authority itself} is corrupt. This raises the question: Can we construct a traitor-tracing scheme, without a trusted authority? In this work, we propose a new model for traitor-tracing systems where, instead of having a key authority, users could generate and register their own public keys. The public parameters are computed by aggregating all user public keys. Crucially, the aggregation process is \emph{public}, thus eliminating the need of any trusted authority. We present two new traitor-tracing systems in this model based on bilinear pairings. Our first scheme is proven adaptively secure in the generic group model. This scheme features a transparent setup, ciphertexts consisting of 6L+46\sqrt{L}+4 group elements, and a public tracing algorithm. Our second scheme supports a bounded collusion of traitors and is proven selectively secure in the standard model. Our main technical ingredients are new registered functional encryption (RFE) schemes for quadratic and linear functions which, prior to this work, were known only from indistinguishability obfuscation. To substantiate the practicality of our approach, we evaluate the performance a proof of concept implementation. For a group of L=1024L = 1024 users, encryption and decryption take roughly 50ms and 4ms, respectively, whereas a ciphertext is of size 6.7KB

    Traitor Tracing with N^(1/3)-size Ciphertexts and O(1)-size Keys from k-Lin

    Get PDF
    We present a pairing-based traitor tracing scheme for NN users withpk=ct=O(N1/3),sk=O(1). |\mathsf{pk}| = |\mathsf{ct}| = O(N^{1/3}), \quad |\mathsf{sk}| = O(1). This is the first pairing-based scheme to achieve pkskct=o(N){|\mathsf{pk}|\cdot|\mathsf{sk}|\cdot|\mathsf{ct}|=o(N)}. Our construction relies on the (bilateral) kk-Lin assumption, and achieves private tracing and full collusion resistance. Our result simultaneously improves upon the sizes of pk,ct\mathsf{pk},\mathsf{ct} in Boneh–Sahai–Waters [Eurocrypt \u2706] and the size of sk\mathsf{sk} in Zhandry [Crypto \u2720], while further eliminating the reliance on the generic group model in the latter work

    Converting Pairing-Based Cryptosystems from Composite-Order Groups to Prime-Order Groups

    Get PDF
    We develop an abstract framework that encompasses the key properties of bilinear groups of composite order that are required to construct secure pairing-based cryptosystems, and we show how to use prime-order elliptic curve groups to construct bilinear groups with the same properties. In particular, we define a generalized version of the subgroup decision problem and give explicit constructions of bilinear groups in which the generalized subgroup decision assumption follows from the decision Diffie-Hellman assumption, the decision linear assumption, and/or related assumptions in prime-order groups. We apply our framework and our prime-order group constructions to create more efficient versions of cryptosystems that originally required composite-order groups. Specifically, we consider the Boneh-Goh-Nissim encryption scheme, the Boneh-Sahai-Waters traitor tracing system, and the Katz-Sahai-Waters attribute-based encryption scheme. We give a security theorem for the prime-order group instantiation of each system, using assumptions of comparable complexity to those used in the composite-order setting. Our conversion of the last two systems to prime-order groups answers a problem posed by Groth and Sahai

    A Security Analysis of Some Physical Content Distribution Systems

    Get PDF
    Content distribution systems are essentially content protection systems that protect premium multimedia content from being illegally distributed. Physical content distribution systems form a subset of content distribution systems with which the content is distributed via physical media such as CDs, Blu-ray discs, etc. This thesis studies physical content distribution systems. Specifically, we concentrate our study on the design and analysis of three key components of the system: broadcast encryption for stateless receivers, mutual authentication with key agreement, and traitor tracing. The context in which we study these components is the Advanced Access Content System (AACS). We identify weaknesses present in AACS, and we also propose improvements to make the original system more secure, flexible and efficient

    Efficient Public Trace and Revoke from Standard Assumptions

    Get PDF
    We provide efficient constructions for trace-and-revoke systems with public traceability in the black-box confirmation model. Our constructions achieve adaptive security, are based on standard assumptions and achieve significant efficiency gains compared to previous constructions. Our constructions rely on a generic transformation from inner product functional encryption (IPFE) schemes to trace-and-revoke systems. Our transformation requires the underlying IPFE scheme to only satisfy a very weak notion of security -- the attacker may only request a bounded number of random keys -- in contrast to the standard notion of security where she may request an unbounded number of arbitrarily chosen keys. We exploit the much weaker security model to provide a new construction for bounded collusion and random key IPFE from the learning with errors assumption (LWE), which enjoys improved efficiency compared to the scheme of Agrawal et al. [CRYPTO'16]. Together with IPFE schemes from Agrawal et al., we obtain trace and revoke from LWE, Decision Diffie Hellman and Decision Composite Residuosity

    Optimization techniques and new methods for boradcast encryption and traitor tracing schemes

    Get PDF
    Ankara : The Department of Computer Engineering and the Graduate School of Engineering and Science of Bilkent University, 2012.Thesis (Ph. D.) -- Bilkent University, 2012.Includes bibliographical refences.In the last few decades, the use of digital content increased dramatically. Many forms of digital products in the form of CDs, DVDs, TV broadcasts, data over the Internet, entered our life. Classical cryptography, where encryption is done for only one recipient, was not able to handle this change, since its direct use leads to intolerably expensive transmissions. Moreover, new concerns regarding the commercial aspect arised. Since digital commercial contents are sold to various customers, unauthorized copying by malicious actors became a major concern and it needed to be prevented carefully. Therefore, a new research area called digital rights management (DRM) has emerged. Within the scope of DRM, new cryptographic primitives are proposed. In this thesis, we consider three of these: broadcast encryption (BE), traitor tracing (TT), and trace and revoke (T&R) schemes and propose methods to improve the performances and capabilities of these primitives. Particularly, we first consider profiling the recipient set in order to improve transmission size in the most popular BE schemes. We then investigate and solve the optimal free rider assignment problem for one of the most efficient BE schemes so far. Next, we attempt to close the non-trivial gap between BE and T&R schemes by proposing a generic method for adding traitor tracing capability to BE schemes and thus obtaining a T&R scheme. Finally, we investigate an overlooked problem: privacy of the recipient set in T&R schemes. Right now, most schemes do not keep the recipient set anonymous, and everybody can see who received a particular content. As a generic solution to this problem, we propose a method for obtaining anonymous T&R scheme by using anonymous BE schemes as a primitive.Ak, MuratPh.D

    Fully Collusion Resistant Traitor Tracing

    Get PDF
    We construct the first fully collusion resistant tracing traitors system with sublinear size ciphertexts and constant size private keys. More precisely, let NN be the total number of users. Our system generates ciphertexts of size O(N)O(\sqrt{N}) and private keys of size O(1)O(1). We build our system by first building a simpler primitive called private linear broadcast encryption (PLBE). We then show that any PLBE gives a tracing traitors system with the same parameters. Our system uses bilinear maps in groups of composite order
    corecore