23 research outputs found

    Comparison of STS and ArchiMate Risk and Security Overlay

    Get PDF
    ArchiMate'i kasutatakse tänapäeval laialdaselt erinevates ärivaldkondades ettevõttesüsteemide arhitektuuri modelleerimiseks ning seda võib iseloomustada modelleerimise tööriistana, mis ühendab endas UML'i ja BPMN'i. STS keskendub aga sotsiotehnilisele perspektiivile ja tegijatevahelistele sotsiaalsetele vastastikmõjudele. Kuigi neil on palju ühist, on tegemist siiski erinevate lähenemistega, mistõttu räägitakse tänapäeval ArchiMate'st ja Secure Socio-Technical Systems'ist valdavalt kui eraldiseisvatest süsteemidest. Sellise olukorra tõttu on tekkinud puudujääk tööriistadest ja lähenemistest, mis ühendaks kaks süsteemi üheks uueks, mis võtaks arvesse nii modelleerimise arhitektuurseid kui ka sotsiotehnilisi aspekte. Selline kombinatsioon võib osutuda kasulikuks, kuna ArchiMate'ga saab modelleerida riskijuhtimist ja STS abil saab modelleerida erinevate süsteemi kaasatud tegijate omavahelist suhtlemist sotsiaalsest vaatevinklist ja turvalisuse inimfaktorit. Seega nende kahe süsteemi ühendamise teel võib luua turvalisuse modelleerimise lähenemise, mis katab nii arhitektuurilised kui sotsiaalsed vaatevinklid. Ideaalselt kasutaks selline lähenemine mõlema süsteemi tugevamaid külgi ja lahendaks mõned kitsaskohad. Lähenemise terviklikust hinnatakse ISSRM'i suhtes. Selles lõputöös kirjeldatakse ülalmainitud kombineeritud lähenemist turvalisuse modelleerimisele.Nowadays ArchiMate is widely used in enterprise architecture modelling of the various business domains and briefly could be described as something in between UML and BPMN with main focus in architectural perspective. STS in its turn is focusing on socio-technical perspective and taking into consideration social interactions betwen actors. Current state of the art is talking about Secure Socio-Technical Systems and ArchiMate separately. This is perfectly fine because this two approaches are quite different. Still, they have a lot in common. Based on the state described above problem could be identified as an absence of tools or approaches which will combine these two approaches into a new one, which will take into consideration both architectural and socio-technical perspectives of modelling. This combination could be beneficial because ArchiMate risk and security overlay models risk management and STS models how actors involved in this system interact with each other from social point of view and highlights “human factor” in security. Thus, combination of them could potentially result in security modelling approach which will cover both architecture and social points of view. Ideally, this approach will create some workarounds over weak places in both initial approaches and heavily use their best parts. We will also validate this approach in terms of completeness with respect to ISSRM. In this paper we will describe this combined approach

    Contextualisation of Data Flow Diagrams for security analysis

    Get PDF
    Data flow diagrams (DFDs) are popular for sketching systems for subsequent threat modelling. Their limited semantics make reasoning about them difficult, but enriching them endangers their simplicity and subsequent ease of take up. We present an approach for reasoning about tainted data flows in design-level DFDs by putting them in context with other complementary usability and requirements models. We illustrate our approach using a pilot study, where tainted data flows were identified without any augmentations to either the DFD or its complementary models

    Managing Security Risks Using Attack-Defense Trees

    Get PDF
    Nagu mujal valdkondades, kasvab tänapäeval vajadus turvalisuse järele, nii ka ärimaailmas. Käesolev magistritöö üritab seda probleemi lahendada kasutades riskianalüüsi diagrammi mudelit, mida inglise keeles nimetatakse Attack Tree.ISSRM (Information System Security Risk Managment) on mudel, mis käsitleb kõiki olulisi riskianalüüsi aspekte, on lihtsalt arusaadav ja annab olukorrast kiire ülevaate. Laiendustena on olemas mõned sellised riskianalüüsi diagrammid, kuid ükski neist pole võimeline käsitlema kõiki võimalikke ohuolukordi. See paneb diagrammi kasutamisele piirid, kuna ei arvesta võimalikke vastumeetmeid ohtudele, ega ohuallika profiili.Antud magistritöö pakub sellele probleemile kolmeosalist lahendust.1. luua sild riskianalüüsi puu osast, mis käsitleb kaitsetehnikaid (Attack Defence Tree), kuni ISSRM mudelini;2. arvestades minevikus ette tulnud riske, riskifaktorite tõenäolisuse ja nendega seotud kulutuste mõõteparameetrite väljatöötamine;3. tööriista kasutamine, mis on välja töötatud antud riskianalüüsipuu abil.Selliselt loodud sild aitab leida veel avastamata aspekte riskianalüüsi puus. Lisades sellise laienduse, on riskianalüüsi puu täielikum ja muudab ISSRM-i mudeli mitmekülgsemaks. Selleks, et riske paremini analüüsida, on kasulik arvestada ka minevikus ette tulnud ohte ning neid matemaatiliselt uurida tõenäolisuse aspektist, et minimeerida sarnaste ohuolukordade taastekkimise tõenäosust. Magistritöö tegemise käigus välja töötatud tööriist (Aligned Attack-Defense Tree or A-ADTree) on võimekam riski tõenäosusele hinnangu andmisel teistest juba olemasolevatest versioonidest. Antud tööriist annab riskianalüüsi hindajatele rohkem võimalusi võimalike ohuolukordade lahendamiseks ja ennetamiseks. Kuna siin kasutatud modelleerimiskeeled on juba sobitatud ISSRM mudeliga, võimaldab antud töös välja töötatud laiendus luua enam seoseid selle ning teiste modelleerimiskeelte (nt Secure BPMN, Misuse-case diagram, Secure TROPOS, and Mal-Activity diagram) vahel ka tulevikus.Nowadays there is an increasing demand for answering the security needs in systematic ways. The In this thesis, we have addressed risk management using Attack Tree.Information System Security Risk Management (ISSRM) is a model which covers all the important concepts in risk management. Also, attack trees are simple and efficient tools for showing the risks. There are few extensions of attack trees, but none of them covers all risk concepts. The said problem limited the usage of attack tree model since it does not consider important measures such as countermeasures, or threat agent’s profile.The contribution to resolve the problem in this thesis includes three steps. Obtaining an alignment from Attack-Defense trees to ISSRM. Measurement of the metrics of the nodes of tree using historical dataImplementation of a tool based on obtained tree.Using the alignment, we have detected the uncovered concepts in Attack-Defense tree. Then we tried to add these concepts to the current Attack-Defense tree. Therefore, the new Attack-Defense tree (called Aligned Attack-Defense tree or A-ADTree) covers most important concepts of ISSRM. In order to measure the risk, we have proposed a mathematical model to evaluate the probability of the nodes in the tree, based on historical data. Then, implemented tool helps to materialize the effect of threat agent’s profile, and countermeasures on the risks. The result of implemented tool shows, the obtained A-ADTree has more capabilities (in the evaluation of the probability of risk) in comparison to previous versions. This solution is capable of giving more hints for the project managers when they are deciding about possible solutions in industries. Additionally, this alignment helps to obtain another alignment between A-ADTree and the other modeling languages in future, since these modeling languages are already aligned to ISSRM

    A new privacy framework for the management of chronic diseases via mHealth in a post Covid-19 world

    Get PDF
    Aim New challenges are being faced by global healthcare systems such as an increase in the elderly population, budget cuts as well as the ongoing COVID-19 pandemic. As pressures mount on healthcare systems to provide treatment to patients, mHealth is seen as one of the possible solutions to addressing these challenges. Given the sensitivity of health data, the rapid development of the mHealth sector raises privacy concerns. The aims of this research were to investigate privacy threats/concerns in the context of mHealth and the management of chronic diseases and to propose a novel privacy framework to address these concerns. Subject and Method The study adopted a modified version of the engineering design process. After defining the problem, information was gathered through literature reviews, and analyses of existing regulatory (privacy) frameworks and past research on privacy threats/concerns. Requirements for a new framework were then specified leading to its development and comparison with existing frameworks. Results A novel future-proof privacy framework was developed and illustrated. Using existing regulatory frameworks for privacy and privacy threats/concerns from research studies, privacy principles and their resulting requirements were identified. Further, mechanisms and associated technologies needed to implement the privacy principles/requirements into a functional prototype were also identified. A comparison of the proposed framework with existing frameworks, should that it addressed privacy threats/concerns in a more comprehensive manner. Conclusion This research makes a valuable contribution to protecting privacy in mHealth. The novel framework developed is an improvement on existing frameworks. It is also future-proof since its foundations are built on regulatory frameworks and privacy threats/concerns existing at the time of its deployment/revision

    Formalizing and safeguarding blockchain-based BlockVoke protocol as an ACME extension for fast certificate revocation

    Get PDF
    Certificates are integral to the security of today’s Internet. Protocols like BlockVoke allow secure, timely and efficient revocation of certificates that need to be invalidated. ACME, a scheme used by the non-profit Let’s Encrypt Certificate Authority to handle most parts of the certificate lifecycle, allows automatic and seamless certificate issuance. In this work, we bring together both protocols by describing and formalizing an extension of the ACME protocol to support BlockVoke, combining the benefits of ACME’s certificate lifecycle management and BlockVoke’s timely and secure revocations. We then formally verify this extension through formal methods such as Colored Petri Nets (CPNs) and conduct a risk and threat analysis of the ACME/BlockVoke extension using the ISSRM domain model. Identified risks and threats are mitigated to secure our novel extension. Furthermore, a proof-of-concept implementation of the ACME/BlockVoke extension is provided, bridging the gap towards deployment in the real world

    Model of a secure virtual environment for managing information exchange in scientific and educational organizations

    Get PDF
    In this paper, the authors highlight the issues of constructing a set-theoretic model for the administration of information exchange in a protected virtual environment in the interaction of scientific and educational organization

    Ensuring the Integrity of Electronic Health Records

    Get PDF
    Me elame ajastul, kus meie käsutuses on väga palju andmeid, kuid samas on nende andmete õigsust ja tõestusväärtust väga raske kontrollida. Nii on kasvõi Eurooopas või Ameerikas toimunud valimiste (sotsiaal)meedia abil mõjutamine asjakohane näide - aastaid tagasi ei võidud selle võimalikkusest mõeldagi, tänapäevase meedia abil aga küll. Samamoodi hakkab massidesse jõudma big data analüüs. Geeni- ja terviseandmete töötlemine on muutunud igapäevaseks, aga selleks, et tulemusi saaks 100% õigeteks pidada, on vajalik, et nende andmete tõestusväärtus oleks algallikas kinnitatud. Viimane on aga võimalik ainult digitaalse allkirja või templiga, mis on antud võimalikult lähedal algallikale - meditsiinidokument peab olema allkirjastatud isiklikult perearsti poolt, sest ainult nii on võimalik seda tulevikus arvesse võtta.Hetkel on suureks probleemiks ka asjaolu, et digitaalallkirjastamise formaat on muutumas. Seetõttu oleks väga palju vanas formaadis digiallkirju vaja ümber teha ja ühtlasi tagada, et hiljem on algse dokumendi tõestusväärtus sama, mis vastava dokumendi tegemise ajal.We are living in an era with an abundance of electronic data, yet the integrity and evidential value of these data are very hard to check. At present the problems like affecting the 2016 presidential elections in the USA or elections in the Europe by (social) media are highly topical. A few years ago such activity seemed completely improbable but it is entirely possible using contemporary means of data manipulation. Big data analysis as well is constantly reaching wider masses. The processing of sensitive genetic and health data has become an everyday issue. However, in order to ensure the complete authenticity of these data, it is necessary to guarantee their evidential value by certifying their initial source.The initial source can only be certified by adding a digital signature or seal to a document containing health data, which should be done as close to its source as possible. It means that we can later rely on a medical document only if its compiler, the general practitioner, has digitally signed it.Currently a major concern is that the format of electronic signing is changing and a large number of documents in old format have to be signed again. Thus, a solution should be found to the highly topical problem of how to ensure that the document has the original, unchanged evidential value also many years later

    IoT Health Devices: Exploring Security Risks in the Connected Landscape

    Get PDF
    The concept of the Internet of Things (IoT) spans decades, and the same can be said for its inclusion in healthcare. The IoT is an attractive target in medicine; it offers considerable potential in expanding care. However, the application of the IoT in healthcare is fraught with an array of challenges, and also, through it, numerous vulnerabilities that translate to wider attack surfaces and deeper degrees of damage possible to both consumers and their confidence within health systems, as a result of patient-specific data being available to access. Further, when IoT health devices (IoTHDs) are developed, a diverse range of attacks are possible. To understand the risks in this new landscape, it is important to understand the architecture of IoTHDs, operations, and the social dynamics that may govern their interactions. This paper aims to document and create a map regarding IoTHDs, lay the groundwork for better understanding security risks in emerging IoTHD modalities through a multi-layer approach, and suggest means for improved governance and interaction. We also discuss technological innovations expected to set the stage for novel exploits leading into the middle and latter parts of the 21st century
    corecore