2,935 research outputs found

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Increase the adoption of Agent-based Cyber-Physical Production Systems through the Design of Minimally Invasive Solutions

    Get PDF
    During the last few years, many approaches were proposed to offer companies the ability to have dynamic and flexible production systems. One of the conventional ap-proaches to solving this problem is the implementation of cyber-physical production sys-tems using multi-agent distributed systems. Although these systems can deal with several challenges faced by companies in this area, they have not been accepted and used in real cases. In this way, the primary objective of the proposed work is to understand the chal-lenges usually found in the adoption of these solutions and to develop a strategy to in-crease their acceptance and implementation. Thus, the document focuses on the design and development of cyber-physical produc-tion systems based on agent approaches, requiring minimal changes in the existing pro-duction systems. This approach aims of reducing the impact and the alterations needed to adopt those new cyber-physical production systems. Clarifying the subject, the author presents a definition of a minimal invasive agent-based cyber-physical production system and, the functional requirements that the designers and developers must respect to imple-ment the new software. From these functional requirements derived a list of design princi-ples that must be fulfilled to design and develop a system with these characteristics. Subsequently, to evaluate solutions that aim to be minimally invasive, an evaluation model based on a fuzzy inference system is proposed, which rank the approaches accord-ing to each of the design principles and globally. In this way, the proposed work presents the functional requirements, design principles and evaluation model of minimally invasive cyber-physical production systems, to increase the adoption of such systems

    The Cyber Physical Implementation of Cloud Manufactuirng Monitoring Systems

    Get PDF
    AbstractThe rise of the industrial internet has been envisaged as a key catalyst for creating the intelligent manufacturing plant of the future through enabling open data distribution for cloud manufacturing. The context supporting these systems has been defined by Service Oriented Architectures (SOA) that facilitate data resource and computational functions as services available on a network. SOA has been at the forefront EU research over the past decade and several industrially implemented SOA technologies exist on the manufacturing floor. However it is still unclear whether SOA can meet the multi-layered requirements present within state-of-the-art manufacturing Cyber Physical Systems (CPS). The focus of this research is to identify the capability of SOA to be implemented at different execution layers present in a manufacturing CPS. The state-of-the-art for manufacturing CPS is represented by the ISA-95 standard and is correlated with different temporal analysis scales, and manufacturing computational requirements. Manufacturing computational requirements are identified through a review of open and closed loop machine control orientations, and continuous and discrete control methods. Finally the Acquire Recognise Cluster (ARC) SOA for reconfigurable manufacturing process monitoring systems is reviewed, to provide a topological view of data flow within a field level manufacturing SOA

    A categorical framework of manufacturing for industry 4.0 and beyond

    Get PDF
    AbstractWith rapid advancements in industry, technology and applications, many concepts have emerged in manufacturing. It is generally known that the far-sighted term ‘Industry 4.0’ was published to highlight a new industrial revolution. Many manufacturing organizations and companies are researching this topic. However, the achievement criteria of Industry 4.0 are as yet uncertain. In addition, the technology roadmap of accomplishing Industry 4.0 is still not clear in industry nor in academia to date. This paper focuses on the fundamental conception of Industry 4.0 and the state of current manufacturing systems. It also identifies the research gaps between current manufacturing systems and Industry 4.0 requirements. The major contribution is an implementation structure of Industry 4.0, consisting of a multi-layered framework is described, and is shown how it can assist people in understanding and achieving the requirements of Industry 4.0

    Enabling virtual radio functions on software defined radio for future wireless networks

    Get PDF
    Today's wired networks have become highly flexible, thanks to the fact that an increasing number of functionalities are realized by software rather than dedicated hardware. This trend is still in its early stages for wireless networks, but it has the potential to improve the network's flexibility and resource utilization regarding both the abundant computational resources and the scarce radio spectrum resources. In this work we provide an overview of the enabling technologies for network reconfiguration, such as Network Function Virtualization, Software Defined Networking, and Software Defined Radio. We review frequently used terminology such as softwarization, virtualization, and orchestration, and how these concepts apply to wireless networks. We introduce the concept of Virtual Radio Function, and illustrate how softwarized/virtualized radio functions can be placed and initialized at runtime, allowing radio access technologies and spectrum allocation schemes to be formed dynamically. Finally we focus on embedded Software-Defined Radio as an end device, and illustrate how to realize the placement, initialization and configuration of virtual radio functions on such kind of devices

    Interoperable Architecture For Logical Reconfigurations Of Modular Production Systems

    Get PDF
    Individualisation of products and ever-shorter product lifecycles require manufacturing companies to quickly reconfigure their production and adapt to changing requirements. While most of the existing literature focuses on organisational structures or hardware requirements for reconfigurability, requirements and best practices for logical reconfigurations of automated production systems are only sparsely covered. In practice, logical system reconfigurations require adjustments to the software, which is often done manually by experts. With the ongoing automation and digitisation of manufacturing systems in the context of Industry4.0, the need for automated software reconfigurations is increasing. However, heterogeneous and proprietary technologies in the field of industrial automation pose a hurdle to overcome for generally applicable approaches for logical reconfigurations in the industrial domain. Therefore, this paper reviews available technologies that can be used to solve the problem of automated software reconfigurations. For this purpose, an architecture and a procedure are proposed on how to use these technologies for automatic adaptation and virtual commissioning of control software in industrial automation. To demonstrate the interoperability of the approach, collective cloud manufacturing is used as a composing platform. The presented approach further includes a domain-specific capability model for the specification of software artefacts to be generated, allowing jobs to be described and matched on the platform. The core element is a code generator for generating and orchestrating the control code for process execution using the reconfigurable digital twin as a validator on the platform. The approach is evaluated and demonstrated in a real-world use case of a modular disassembly station

    Cyber-Physical-Systems for Fluid Manufacturing Systems

    Get PDF
    Increased volatility continues to challenge the automotive manufacturer's production performance. More than a century after the start of mass production, changeable production systems that allow the flexibility for the economic mass production of customized products have arisen. Limitations on established production systems are driving the development of changeable production systems like the Fluid Manufacturing System (FLMS). In an FLMS, the individual production modules are mobile and consist of Cyber-Physical Systems (CPS) which can be combined ad-hoc to adapt to changing requirements. By connecting different CPS - e.g., Autonomous Mobile Robots (AMR) or smart load carriers - adaptable and flexible production will be achieved. This paper presents the first real-world initiation of an FLMS with the design and development of CPS and digital twins for production and logistics at the ARENA2036 research campus

    Correct-by-Construction Approach for Self-Evolvable Robots

    Full text link
    The paper presents a new formal way of modeling and designing reconfigurable robots, in which case the robots are allowed to reconfigure not only structurally but also functionally. We call such kind of robots "self-evolvable", which have the potential to be more flexible to be used in a wider range of tasks, in a wider range of environments, and with a wider range of users. To accommodate such a concept, i.e., allowing a self-evovable robot to be configured and reconfigured, we present a series of formal constructs, e.g., structural reconfigurable grammar and functional reconfigurable grammar. Furthermore, we present a correct-by-construction strategy, which, given the description of a workspace, the formula specifying a task, and a set of available modules, is capable of constructing during the design phase a robot that is guaranteed to perform the task satisfactorily. We use a planar multi-link manipulator as an example throughout the paper to demonstrate the proposed modeling and designing procedures.Comment: The paper has 17 pages and 4 figure
    • …
    corecore