3,692 research outputs found

    Fluctuation Theorems for Entropy Production and Heat Dissipation in Periodically Driven Markov Chains

    Get PDF
    Asymptotic fluctuation theorems are statements of a Gallavotti-Cohen symmetry in the rate function of either the time-averaged entropy production or heat dissipation of a process. Such theorems have been proved for various general classes of continuous-time deterministic and stochastic processes, but always under the assumption that the forces driving the system are time independent, and often relying on the existence of a limiting ergodic distribution. In this paper we extend the asymptotic fluctuation theorem for the first time to inhomogeneous continuous-time processes without a stationary distribution, considering specifically a finite state Markov chain driven by periodic transition rates. We find that for both entropy production and heat dissipation, the usual Gallavotti-Cohen symmetry of the rate function is generalized to an analogous relation between the rate functions of the original process and its corresponding backward process, in which the trajectory and the driving protocol have been time-reversed. The effect is that spontaneous positive fluctuations in the long time average of each quantity in the forward process are exponentially more likely than spontaneous negative fluctuations in the backward process, and vice-versa, revealing that the distributions of fluctuations in universes in which time moves forward and backward are related. As an additional result, the asymptotic time-averaged entropy production is obtained as the integral of a periodic entropy production rate that generalizes the constant rate pertaining to homogeneous dynamics

    A relative entropy rate method for path space sensitivity analysis of stationary complex stochastic dynamics

    Get PDF
    We propose a new sensitivity analysis methodology for complex stochastic dynamics based on the Relative Entropy Rate. The method becomes computationally feasible at the stationary regime of the process and involves the calculation of suitable observables in path space for the Relative Entropy Rate and the corresponding Fisher Information Matrix. The stationary regime is crucial for stochastic dynamics and here allows us to address the sensitivity analysis of complex systems, including examples of processes with complex landscapes that exhibit metastability, non-reversible systems from a statistical mechanics perspective, and high-dimensional, spatially distributed models. All these systems exhibit, typically non-gaussian stationary probability distributions, while in the case of high-dimensionality, histograms are impossible to construct directly. Our proposed methods bypass these challenges relying on the direct Monte Carlo simulation of rigorously derived observables for the Relative Entropy Rate and Fisher Information in path space rather than on the stationary probability distribution itself. We demonstrate the capabilities of the proposed methodology by focusing here on two classes of problems: (a) Langevin particle systems with either reversible (gradient) or non-reversible (non-gradient) forcing, highlighting the ability of the method to carry out sensitivity analysis in non-equilibrium systems; and, (b) spatially extended Kinetic Monte Carlo models, showing that the method can handle high-dimensional problems

    Dynamics of Polymers: a Mean-Field Theory

    Get PDF
    We derive a general mean-field theory of inhomogeneous polymer dynamics; a theory whose form has been speculated and widely applied, but not heretofore derived. Our approach involves a functional integral representation of a Martin-Siggia-Rose type description of the exact many-chain dynamics. A saddle point approximation to the generating functional, involving conditions where the MSR action is stationary with respect to a collective density field ρ\rho and a conjugate MSR response field ϕ\phi, produces the desired dynamical mean-field theory. Besides clarifying the proper structure of mean-field theory out of equilibrium, our results have implications for numerical studies of polymer dynamics involving hybrid particle-field simulation techniques such as the single-chain in mean-field method (SCMF)

    Beyond the Spectral Theorem: Spectrally Decomposing Arbitrary Functions of Nondiagonalizable Operators

    Full text link
    Nonlinearities in finite dimensions can be linearized by projecting them into infinite dimensions. Unfortunately, often the linear operator techniques that one would then use simply fail since the operators cannot be diagonalized. This curse is well known. It also occurs for finite-dimensional linear operators. We circumvent it by developing a meromorphic functional calculus that can decompose arbitrary functions of nondiagonalizable linear operators in terms of their eigenvalues and projection operators. It extends the spectral theorem of normal operators to a much wider class, including circumstances in which poles and zeros of the function coincide with the operator spectrum. By allowing the direct manipulation of individual eigenspaces of nonnormal and nondiagonalizable operators, the new theory avoids spurious divergences. As such, it yields novel insights and closed-form expressions across several areas of physics in which nondiagonalizable dynamics are relevant, including memoryful stochastic processes, open non unitary quantum systems, and far-from-equilibrium thermodynamics. The technical contributions include the first full treatment of arbitrary powers of an operator. In particular, we show that the Drazin inverse, previously only defined axiomatically, can be derived as the negative-one power of singular operators within the meromorphic functional calculus and we give a general method to construct it. We provide new formulae for constructing projection operators and delineate the relations between projection operators, eigenvectors, and generalized eigenvectors. By way of illustrating its application, we explore several, rather distinct examples.Comment: 29 pages, 4 figures, expanded historical citations; http://csc.ucdavis.edu/~cmg/compmech/pubs/bst.ht

    Transition times and stochastic resonance for multidimensional diffusions with time periodic drift: A large deviations approach

    Full text link
    We consider potential type dynamical systems in finite dimensions with two meta-stable states. They are subject to two sources of perturbation: a slow external periodic perturbation of period TT and a small Gaussian random perturbation of intensity ϵ\epsilon, and, therefore, are mathematically described as weakly time inhomogeneous diffusion processes. A system is in stochastic resonance, provided the small noisy perturbation is tuned in such a way that its random trajectories follow the exterior periodic motion in an optimal fashion, that is, for some optimal intensity ϵ(T)\epsilon (T). The physicists' favorite, measures of quality of periodic tuning--and thus stochastic resonance--such as spectral power amplification or signal-to-noise ratio, have proven to be defective. They are not robust w.r.t. effective model reduction, that is, for the passage to a simplified finite state Markov chain model reducing the dynamics to a pure jumping between the meta-stable states of the original system. An entirely probabilistic notion of stochastic resonance based on the transition dynamics between the domains of attraction of the meta-stable states--and thus failing to suffer from this robustness defect--was proposed before in the context of one-dimensional diffusions. It is investigated for higher-dimensional systems here, by using extensions and refinements of the Freidlin--Wentzell theory of large deviations for time homogeneous diffusions. Large deviations principles developed for weakly time inhomogeneous diffusions prove to be key tools for a treatment of the problem of diffusion exit from a domain and thus for the approach of stochastic resonance via transition probabilities between meta-stable sets.Comment: Published at http://dx.doi.org/10.1214/105051606000000385 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Testing Homogeneity of Time-Continuous Rating Transitions

    Get PDF
    Banks could achieve substantial improvements of their portfolio credit risk assessment by estimating rating transition matrices within a time-continuous Markov model, thereby using continuous-time rating transitions provided by internal rating systems instead of discrete-time rating information. A non-parametric test for the hypothesis of time-homogeneity is developed. The alternative hypothesis is multiple structural change of transition intensities, i.e. time-varying transition probabilities. The partial-likelihood ratio for the multivariate counting process of rating transitions is shown to be asymptotically c2 -distributed. A Monte Carlo simulation finds both size and power to be adequate for our example. We analyze transitions in credit-ratings in a rating system with 8 rating states and 2743 transitions for 3699 obligors observed over seven years. The test rejects the homogeneity hypothesis at all conventional levels of significance. --Portfolio credit risk,Rating transitions,Markov model,time-homogeneity,partial likelihood

    Statistics of randomly branched polymers in a semi-space

    Full text link
    We investigate the statistical properties of a randomly branched 3--functional NN--link polymer chain without excluded volume, whose one point is fixed at the distance dd from the impenetrable surface in a 3--dimensional space. Exactly solving the Dyson-type equation for the partition function Z(N,d)=NθeγNZ(N,d)=N^{-\theta} e^{\gamma N} in 3D, we find the "surface" critical exponent θ=5/2\theta={5/2}, as well as the density profiles of 3--functional units and of dead ends. Our approach enables to compute also the pairwise correlation function of a randomly branched polymer in a 3D semi-space.Comment: 15 pages 7 figsures; section VII is slightly reorganized, discussion is revise

    Quantitative analysis of Clausius inequality

    Full text link
    In the context of driven diffusive systems, for thermodynamic transformations over a large but finite time window, we derive an expansion of the energy balance. In particular, we characterize the transformations which minimize the energy dissipation and describe the optimal correction to the quasi-static limit. Surprisingly, in the case of transformations between homogeneous equilibrium states of an ideal gas, the optimal transformation is a sequence of inhomogeneous equilibrium states.Comment: arXiv admin note: text overlap with arXiv:1404.646
    corecore