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Abstract

We derive a general mean-field theory of inhomogeneous polymer dynamics; a theory whose

form has been speculated and widely applied, but not heretofore derived. Our approach involves a

functional integral representation of a Martin-Siggia-Rose type description of the exact many-chain

dynamics. A saddle point approximation to the generating functional, involving conditions where

the MSR action is stationary with respect to a collective density field ρ and a conjugate MSR

response field φ, produces the desired dynamical mean-field theory. Besides clarifying the proper

structure of mean-field theory out of equilibrium, our results have implications for numerical studies

of polymer dynamics involving hybrid particle-field simulation techniques such as the single-chain

in mean-field method (SCMF).
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I. INTRODUCTION

Our understanding of polymer dynamics has advanced considerably with the advent of

intuitive mean-field concepts such as the tube model[1, 2], which have been extensively

exploited to derive molecularly-inspired constitutive laws for entangled polymers. These

constructs have been remarkably successful at predicting and reproducing a wide range of

linear and nonlinear rheological phenomena in homogeneous polymeric fluids. Nonetheless,

the dynamic properties of the mean-field, e.g. the tube, are postulated, rather than derived

from first principles, so there remain some unsatisfying aspects to the theory.

The situation in inhomogeneous polymeric liquids is far worse[3]; the most sophisticated

mean-field constructs, such as the two-fluid model of Doi and Onuki[4], allow for coupled

equations for collective densities and stresses to be derived, but give little guidance into

the constitutive laws relating stress and flow, and especially across steep gradients in com-

position. Even simpler mean-field theories such as the dynamic density functional theory

(DDFT) method of Fraaije and co-workers[5, 6] do not even engage stress (or recoverable

strain) and momentum density as collective dynamic variables, but retain only monomer

densities evolved by Fickian dynamics driven by chemical potential gradients computed

with static self-consistent field theory (SCFT). Similar approaches have been proposed by

Hasegawa and Doi[7], Yeung and Shi[8], Reister et. al.[9], and Müller and Schmid[10], among

others. In such a highly simplified framework, one can at best hope for a qualitative de-

scription of the low-frequency, long-wavelength, quiescent response of the fluid, embedding

molecular details such as degree of entanglement, molecular weight and architecture, and

monomeric friction into one or more phenomenological Onsager kinetic coefficients.

In principle, Mori-Zwanzig type projection operator methods[11] can be used to project

out linear or nonlinear dynamical equations for a set of collective fields (i.e. densities,

stresses, etc.) from a microscopic Newtonian or Brownian many-chain dynamics. However,

the reduction in dimension associated with the projection process introduces memory kernels

in the collective equations that are essentially intractable, i.e. as difficult as the starting mi-

croscopic dynamics. Simplifying approximations to the kernels, such as the local-equilibrium,

Markov approximation of Kawasaki and Sekimoto[12], are uncontrolled, unpredictable, and

rely on the retained fields being the only slow collective modes in the fluid – an unlikely

proposition.
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Recently, a new class of polymer simulation techniques has evolved that is a hybrid

between particle-based methods and field-based methods. The most widely used variant is

the single-chain in mean-field (SCMF) approach pioneered by Müller and co-workers[13, 14]

in which discrete polymer chains are moved independently in dynamical mean-fields, the

fields updated periodically by using the instantaneous microscopic densities implied by the

chain monomer coordinates and assuming the same local and instantaneous relation between

densities and fields that holds in mean-field theory and at equilibrium (i.e. in SCFT).

Daoulas and Muller [14] have argued that the SCMF, by virtue of using the instantaneous

microscopic densities to construct the fields, actually produces equilibrium results that go

beyond SCFT by including field fluctuations. They have supported this argument by showing

good qualitative agreement with full Monte Carlo (MC) simulations of the equivalent particle

model, although quantitative agreement requires frequent updating of the densities, which

reduces the computational advantage relative to full simulations. Away from equilibrium,

there is also the question of the validity of the local and instantaneous connection between

densities and fields. If fields are updated less frequently than the evolving non-interacting

chains using SCMF or related techniques[15–18], it is not obvious that the equilibrium-

inspired field updating procedure is correct (even in a mean-field sense) for systems out of

equilibrium.

In the present paper, we show how a dynamical mean-field theory can be rigorously

derived for a simple model of flexible homopolymers in an implicit good solvent. The un-

derlying microscopic model is a Rouse-Brownian dynamics for the polymer segments of each

chain and for simplicity hydrodynamic interactions and externally imposed flows are not

included. Our results show that indeed, at the mean-field level, there is an instantaneous

relation between the mean-field and the density that coincides with that employed in the

SCMF framework. Furthermore, we observe that in a numerical implementation, chains and

fields must be moved simultaneously for exact evolution on the dynamical mean-path.

II. MICROSCOPIC DYNAMICS AND FUNCTIONAL INTEGRAL REPRESEN-

TATION

In the present paper we consider a simple system of M interacting chains, each comprised

of N monomers. We assume that the chains are homopolymers but the generalization to
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any chemical sequence is straightforward. The chains are embedded in an implicit solvent

and we assume that the non-bonded interactions among monomers are pairwise and the pair

potential (in units of kBT ) is denoted by v(r − r′).

The Hamiltonian of the system can be written (in the continuous chain representation)

as

βH =
3

2a2

M
∑

k=1

∫ N

0

ds

(

drk
ds

)2

+
1

2

M
∑

k,l=1

∫ N

0

ds

∫ N

0

ds′v(rk(s)− rl(s
′))

where a is the statistical segment length and v(rk(s)−rl(s
′)) represents the effective interac-

tion of monomer s of chain k with monomer s′ of chain l. The corresponding Langevin-Rouse

equation (without hydrodynamic flow) reads:

drk
dt

= Dβ

(

3

a2
d2rk
ds2

−
∑

l

∫ N

0

ds′∇kv(rk(s, t)− rl(s
′, t))

)

+ ηk(s, t) (1)

where D is a monomeric diffusion coefficient and the Gaussian white noise satisfies

< ηk(s, t) > = 0

< ηk(s, t)ηl(s
′, t′) > = 2Dδklδ(s− s′)δ(t− t′)

We note that the form of the interaction potential is arbitrary, but is assumed differentiable.

If the potential has a sufficiently hard core, chain crossings would be eliminated, so our

microscopic dynamics can capture entanglement effects in spite of the nomenclature “Rouse.”

Introducing the instantaneous monomer density field ρ̂(r, t)

ρ̂(r, t) =

M
∑

k=1

∫ N

0

ds δ(r − rk(s, t)) (2)

the Langevin-Rouse equation can be written, in exact form as

drk
dt

= Dβ

(

3

a2
d2rk
ds2

−
∫

dr′∇kv(rk(s, t)− r′)ρ̂(r′, t)

)

+ ηk(s, t) (3)

We will come back to this equation in the discussion of section V.

As is well known, there are many ways to discretize a stochastic differential equation

such as (1) in time, for example using the Ito or Stratonovich prescription ([19]). When

expanded consistently in the time step ε, all such methods yield an identical continuous

time limit theory. In the following, we will adopt the standard Ito discretization (also
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known as the Euler-Maruyama scheme):

rk(s, t+ ε) = rk(s, t) +Dβε

(

3

a2
d2rk
ds2

−
∑

l

∫ N

0

ds′∇kv(rk(s, t)− rl(s
′, t))

)

+
√
2Dεζk(s, t) (4)

with the rescaled Gaussian noise ζk defined by

< ζk(s, t) > = 0

< ζk(s, t)ζl(s
′, t′) > = δklδ(s− s′)δtt′

and where we employ a Kronecker delta function for the discretized time variable t. The

distribution function for the Gaussian noise can be written as

P(ζk) =
1

N exp

(

−1

2

∑

t

∑

k

∫ N

0

dsζ2k(s, t)

)

where N is a normalization factor.

Using a variant of the Martin-Siggia-Rose (MSR)[20] formalism due to Jensen[21], a

generating functional for the time-discretized dynamics can be written as

P(hk(s, t)) =

∫

Drk(s, t)e
iε

∑
t

∑
k

∫
N

0
dshk(s,t)rk(s,t)

<
∏

t

∏

k

∏

s

δ

(

rk(s, t+ ε)− rk(s, t)

−Dβε

(

3

a2
d2rk
ds2

−
∑

l

∫ N

0

ds′∇kv(rk(s, t)− rl(s
′, t))

)

−
√
2Dεζk(s, t)

)

> (5)

where hk(s, t) is a source used to generate expectation values of rk(s, t) and < ... > denotes

the average over the Gaussian noise ζk. Note that within the present Ito convention, there

is no Jacobian (functional determinant) as in the standard MSR method, since the delta-

function yields r(s, t+ ε) explicitly as a function of r(s, t). This discretization also produces

causal propagators in time.

III. COLLECTIVE VARIABLES AND THE DYNAMICAL MEAN-FIELD AP-

PROXIMATION

We next introduce collective density fields into the framework, similar to an earlier MSR

polymer dynamics study by Fredrickson and Helfand[22]. By means of the identity 1 =
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∫

Dρ δ(ρ− ρ̂), where ρ̂(r, t) is the microscopic monomer density field

ρ̂(r, t) =
M
∑

k=1

∫ N

0

ds δ(r − rk(s, t))

followed by an exponential representation of the delta functional, the dynamics can be

rewritten as

P(hk(s, t)) =

∫

DρDφeiε
∑

t

∫
drρ(r,t)φ(r,t)

∫

Drk(s, t)e
iε

∑
t

∑
k

∫
N

0
ds(hk(s,t)rk(s,t)−φ(rk(s,t),t))

<
∏

t

∏

k

δ

(

rk(s, t+ ε)− rk(s, t)

−Dβε

(

3

a2
d2rk
ds2

−
∫

dr′∇kv(rk(s, t)− r′)ρ(r′, t)

)

−
√
2Dεζk(s, t)

)

> (6)

We note that the segment density field ρ now appears in the force term involving the pair

potential v and that a second collective field φ(r, t), arising from the exponentiation of the

delta functional, plays the role of an MSR response field as it is conjugate to ρ.

In the following, we will assume identical fields hk = h on all chains. In that case, the M

chains are decoupled, and the generating functional can be written as

P(h(s, t)) =

∫

DρDφeiε
∑

t

∫
drρ(r,t)φ(r,t)+M logQ(ρ,φ)

where Q(ρ, φ) is the MSR generating functional for a single chain:

Q(ρ, φ) =

∫

Dr(s, t)eiε
∑

t

∫
N

0
ds(h(s,t)r(s,t)−φ(r(s,t),t)) <

∏

t,s

δ

(

r(s, t+ ε)− r(s, t)

− Dβε

(

3

a2
d2r

ds2
−
∫

dr′∇rv(r(s, t)− r′)ρ(r′, t)

)

−
√
2Dεζ(s, t)

)

> (7)

The above equations represent an exact reformulation of the many-chain dynamics in

functional integral form. Previous researchers have arrived at this expression but proceeded

differently. Fredrickson and Helfand[22] expanded Q to quadratic order in the fields and

showed that this leads to a closed theory for response and space-time correlation functions

consistent with the dynamical random phase approximation (RPA)[23]. Grzetic[24] reex-

pressed the single chain Langevin dynamics in Fokker-Planck form, but did not have a

strategy for tackling the high dimensional FP equation.

Here we seek a dynamical mean-field approximation by evaluating P using the saddle-

point (SP) method. For simplicity in the following we will take the source to zero: h = 0.
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The mean-field SP equations result from setting the first variations of the action functional

A(ρ, φ) = iε
∑

t

∫

drρ(r, t)φ(r, t) +M logQ(ρ, φ)

to zero. The following expressions are obtained:

ρ(r, t) = M

∫ N

0

ds < δ(r(s, t)− r) >Q (8)

and

φ(r, t) = i
M

ε

δ

δρ(r, t)
logQ(ρ, φ) (9)

The notation < ... >Q denotes an expectation value with respect to the single chain

dynamics defined by Q, in eq. (7). Using the Fourier representation of the δ-functions, we

have

Q(ρ, φ) =

∫

Dr(s, t)Dq(s, t)e−iε
∑

t

∫
dsφ(r(s,t),t)

< exp

(

i
∑

t

∫ N

0

dsq(s, t)

(

r(s, t+ ε)− r(s, t)

− Dβε

(

3

a2
d2r

ds2
−
∫

dr′∇rv(r(s, t)− r′)ρ(r′, t)

)

−
√
2Dεζ(s, t)

))

> (10)

and thus

δQ

δρ(r, t)
= iDβε

∫

Dr(s, t)Dq(s, t)e−iε
∑

t

∫
dsφ(r(s,t),t)

∫ N

0

dsq(s, t)∇v(r(s, t)− r)

×
∫

Dζ(s, t) exp

(

− 1

2

∑

∫ N

0

dsζ2(s, t) + i
∑

t

∫ N

0

dsq(s, t)

(

r(s, t+ ε)− r(s, t)

− Dβε

(

3

a2
d2r

ds2
−
∫

dr′∇rv(r(s, t)− r′)ρ(r′, t)

)

−
√
2Dεζ(s, t)

))

(11)

The term q(s, t) in the functional integral can be written as a functional derivative w.r.t.

the noise field ζ as

δQ

δρ(r, t)
= −β

√

Dε/2

∫

Dr(s, t)Dq(s, t)e−iε
∑

t

∫
dsφ(r(s,t),t)

∫ N

0

ds∇v(r(s, t)− r)×
∫

Dζ(s, t) exp

(

− 1

2

∑

∫ N

0

dsζ2(s, t)

)

δ

δζ(s, t)
exp

(

i
∑

t

∫ N

0

ds q(s, t)

(

r(s, t+ ε)− r(s, t)

−Dβε

(

3

a2
d2r

ds2
−
∫

dr′∇rv(r(s, t)− r′)ρ(r′, t)

)

−
√
2Dεζ(s, t)

))

(12)
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Integrating (functionally) by parts the derivative with respect to the noise ζ(s, t) we obtain

δQ

δρ(r, t)
= −β

√

Dε/2

∫

Dr(s, t)Dq(s, t)e−iε
∑

t

∫
dsφ(r(s,t),t)

∫ N

0

ds∇v(r(s, t)− r)×
∫

Dζ(s, t)ζ(s, t) exp

(

− 1

2

∑

∫ N

0

dsζ2(s, t)

)

exp

(

i
∑

t

∫ N

0

ds q(s, t)

(

r(s, t+ ε)

−r(s, t)−Dβε

(

3

a2
d2r

ds2
−
∫

dr′∇rv(r(s, t)− r′)ρ(r′, t)

)

−
√
2Dεζ(s, t)

))

(13)

which can be finally rewritten in the simple form

δQ

δρ(r, t)
= −β

√

Dε/2

∫ N

0

ds < ζ(s, t)∇v(r(s, t)− r) >Q (14)

Because of the Ito discretization used for the Langevin equation, r(s, t) depends on the

noise variable ζ(s, t− ε) at times earlier or equal to t− ε and not on ζ(s, t). Therefore, we

have the decoupling

< ζ(s, t)∇v(r(s, t)− r) >Q = < ζ(s, t) >< ∇v(r(s, t)− r) >Q

= 0 (15)

since the expectation value of ζ(s, t) is equal to 0.

At this mean-field level, the second mean-field equation (9) thus becomes

φ(r, t) = 0.

Therefore, in the mean-field approximation, the dynamics of the polymer system can be

described in terms of a single-chain dynamics:

r(s, t+ ε) = r(s, t) +Dβε

(

3

a2
d2r

ds2
−
∫

dr′∇rv(r(s, t)− r′)ρ(r′, t)

)

+
√
2Dεζ(s, t) (16)

where the polymer density field is given by

ρ(r, t) = M

∫ N

0

ds < δ(r(s, t)− r) >Q, (17)

the right hand side being computed as an average over the same independent, single chain

dynamics generated by the functional Q:

Q(ρ, φ) =

∫

Dr(s, t) <
∏

t

δ

(

r(s, t+ ε)− r(s, t)

− Dβε

(

3

a2
d2r

ds2
−
∫

dr′∇rv(r(s, t)− r′)ρ(r′, t)

)

−
√
2Dεζ(s, t)

)

> (18)
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A few remarks can be made at this stage. First of all, eqs.(16) and (17) represent a very

significant simplification of the original microscopic model with M chains. In particular the

mean-field dynamics constitutes a stochastic dynamics for a single chain whose monomers

experience a force −∇rw(r, t) produced by a mean-field w(r, t) given by

w(r, t) =

∫

dr′ v(r − r′)ρ(r′, t).

The field is in turn determined instantaneously by the average density ρ(r, t) computed

from eq.(17). This is an entirely intuitive result that could be obtained from the starting

many-chain dynamics by approximating the exact fluctuating molecular field

ŵ(r, t) =

∫

dr′ v(r − r′)ρ̂(r′, t)

by the average field

w(r, t) =< ŵ(r, t) >=

∫

dr′ v(r − r′) < ρ̂(r′, t) >

and then recognizing that since the chains are now evolving independently of one another,

< ρ̂(r, t) > can be replaced by ρ(r, t) given by eq.(17).

A second important point is that the average density at time t in eq.(17) depends on

the statistical properties of the chain configuration r(s, t) at time t, which according to the

mean-field Langevin eq.(16), depends on ρ(r, t − ε) and not ρ(r, t). Thus, there is no self-

consistency required in computing the density ρ(r, t). The density can be simply evaluated

after each time step in the single-chain Langevin dynamics, albeit by propagating enough

replicas of the chain to accurately evaluate the Q-average on the r.h.s. of eq.(17) (see

discussion below).

Finally, we point out that our derivation could be easily generalized to multiple polymer

species, to other architectures, e.g. block copolymers, and to semi-flexible chains. In the

latter case, within a Gaussian chain model we could simply add a bending energy term such

as κ
2

∫ N

0
ds
(

d2r
ds2

)2

to the Hamiltonian, which would result in an extra force term −κd4r
ds4

in

the single-chain Langevin equation above. If, in addition, the interactions depend on the

tangent vector uk(s, t) of the chain segment at rk(s, t), then the mean-field density will be a

higher dimensional object ρ(r, u, t) depending on both position and orientation.

An important last comment is in order at this stage: had we used the Stratonovich

9



discretization of the Langevin equation

rk(s, t+ ε) = rk(s, t) +
D

2
βε

(

3

a2
d2rk(s, t)

ds2
−
∑

l

∫ N

0

ds′∇kv(rk(s, t)− rl(s
′, t))

+
3

a2
d2rk(s, t+ ε)

ds2
−
∑

l

∫ N

0

ds′∇kv(rk(s, t+ ε)− rl(s
′, t+ ε))

)

+
√
2Dεζk(s, t) (19)

which involves implicitly the position of the chain at time t+ε and at time t, the definition of

the probability distribution eq.(5) would have entailed a Jacobian, but more importantly, the

implicit character of this equation would have prevented the decoupling of eq.(15) that ren-

ders the mean-field equations so simple and intuitive. In fact, although Ito and Stratonovich

discretizations have the same continuous limit when treated exactly, such agreement is not

evident at the mean-field level, with the Stratonovich form leading to intractable equations.

IV. CONVERGENCE TO THE SCFT

We next consider the limit of large time. Assume that the density converges to an

equilibrium density limt→∞ ρ(r, t) = ρ0(r). To simplify the notation, we return to the

continuous notation in time. At large time, the mean-field Langevin equation becomes

dr(s, t)

dt
= Dβ

(

3

a2
d2r

ds2
−
∫

dr′∇rv(r(s, t)− r′)ρ0(r
′)

)

+ η(s, t) (20)

where ρ0(r) is the average density generated by the different realizations of eq. (20). It is

well-known that in the long-time limit, the probability distribution of the variable r(s, t)

generated by (20) is the Boltzmann distribution associated with the Hamiltonian of that

equation. The Hamiltonian is given by

U =
3

2a2

∫ N

0

ds

(

dr

ds

)2

+

∫

dr′
∫ N

0

ds v(r(s)− r′)ρ0(r
′)

Equation (17) for ρ0 thus reduces to

ρ0(r) = M

∫

Dr(s)
∫ N

0
dsδ(r − r(s))e−βU

∫

Dr(s)e−βU

or

ρ0(r) =
M

Z

∫ N

0

ds

∫

Dr(s)δ(r − r(s))e−
3

2a2

∫
N

0
ds( dr

ds)
2

−

∫
N

0
dsΦ(r(s))

10



where Z is the single chain partition function and Φ(r) is a static mean-field

Φ(r) =

∫

dr′v(r − r′)ρ0(r
′).

Using standard quantum mechanical notations, we define the Hamiltonian

H = −a2

6
∇2 + Φ(r)

It follows that the density can be written as

ρ0(r) = M

∫ N

0

ds

∫ ∫

dr1dr2 < r1|e−(N−s)H |r >< r|e−sH |r2>
∫ ∫

dr1dr2 < r1|e−NH |r2>
Defining the usual “chain propagator” fields φ and φ∗ by

φ(r, s) =
1√
Z

∫

dr2 < r|e−sH|r2 >

and

φ∗(r, s) =
1√
Z

∫

dr1 < r1|e−(N−s)H |r >

we havev

ρ0(r) = M

∫ N

0

ds φ∗(r, s)φ(r, s)

The propagator fields φ and φ∗ satisfy the diffusion equations

(

∂

∂s
+H

)

φ = 0

and
(

− ∂

∂s
+H

)

φ∗ = 0

These last equations are just the usual SCFT equations[25]. Therefore, if our dynamical

mean-field equations converge to an equilibrium distribution of segments, we have proved

that the distribution is that implied by the static mean-field theory – SCFT.

V. DISCUSSION AND NUMERICAL IMPLEMENTATION

The practical implementation of the mean-field equations (16) and (17) is very straight-

forward. In order to compute the ensemble average in eq. (17), we have to choose the

number of chain replicas that will be used for the sampling. Let us denote this number

by MS to distinguish it from the physical number of chains in the starting model M . The

11



possibility that accurate sampling could be done with MS ≪ M offers potential advantage

to the dynamical mean-field theory over a full M-chain simulation.

In our discussion of numerical implementation, we only make explicit the time discretiza-

tion. Space variables as well as the curvilinear coordinate s must also be discretized, but as

this is already standard in SCFT and SCMF and can be done many different ways, for the

sake of simplicity we will retain the continuous notation for {r} and {s}. Each of the MS

replica chains is evolved according to the same eq. (16), but with a different noise history

ζ(s, t). To be more specific, assume we have generated the MS chain samples up to time t

according to eq. (16). We thus know the configurations {rα(s, t)} for all the chains of the

sample ensemble α ∈ {1, ...,MS} and any monomer s up to time t. Equation (17) can then

be applied in the form

ρ(r, t) =
M

MS

∫ N

0

ds

MS
∑

α=1

δ(rα(s, t)− r) (21)

where the local error in this expression is expected to be of order (V/[MSN∆V ])1/2, where

V is the volume and ∆V is the cell volume used for the spatial discretization. We can then

use this calculated ρ(r, t) and the current chain replica configurations {rα(s, t)} in eq. (16)

to compute the configuration of all replicas at the next time step, {rα(s, t+ ε)}. Of course,

the whole procedure is initiated by generating an initial set of MS replica chains {rα(s, 0)}
at time t = 0.

Clearly, the time evolution of the MS replicas over a single time step can be trivially

parallelized since all chains are independent from each other. However, they are coupled

at each time step through the density field ρ(r, t) according to eq. (21). The procedure of

updating the density breaks the parallelization, although the contributions to the density

from each chain replica can be computed on separate processors before being gathered

and summed, the latter merge steps being relatively inexpensive compared with replica

propagation. Anticipating that the density evolves more slowly than the chain coordinates, it

is further desirable that the density updates be performed only every n time steps, where n ≥
1 is an integer determined by the targeted numerical accuracy of the dynamical trajectory.

At this stage it is worth pointing out that the proposed dynamical mean-field algorithm

with the particular choice of MS = M corresponds exactly to the SCMF procedure of

Müller and coworkers[13, 14], with the slight modification that Müller et. al. substitute

kinetic MC moves for the single-chain Langevin dynamics. We further note that the SCMF
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case of MS = M and n = 1 (density updates every time step) corresponds exactly to the

full M-chain Langevin dynamics of eq.(3), has the same computational complexity, and is

evidently not a mean-field theory as the computed densities and non-bonded forces fluctuate

in accordance with the local molecular environment. Daoulas and Müller[14] argue that for

practically useful values of n > 1, the SCMF procedure yields realistic field fluctuations

at equilibrium, numerically validated by a comparison with full MC simulations. Out of

equilibrium, the error incurred in the dynamical trajectories by choosing n > 1 is difficult

to assess a priori, and must be validated in specific situations by comparing with full many-

chain simulations.

Returning to the dynamical mean-field theory, a natural question to address is how large

should MS be compared to M . Of course, the smaller MS, the faster the algorithm. However,

MS ≪ M could produce unphysically large fluctuations in ρ and a significant departure

from the mean-field dynamical trajectory due to large sampling error of the r.h.s. of eq (17).

One might hope that parameters MS < M and n > 1 could be identified, e.g. in dense

systems of long polymers, whereby efficient simulations could be conducted of sufficient

accuracy. To the extent that MS is less than M , there would be a proportional reduction

in computational effort compared with the strict SCMF algorithm. We look forward to

numerical investigations that explore this issue. Finally, we emphasize that the (forward

Euler) Langevin single-chain dynamics used for the present analysis could be readily replaced

by a “smart” or force-biased kinetic MC scheme, undoubtedly allowing for larger time steps

and better performance.

In summary, we have derived a dynamical mean-field theory for polymeric fluids based on

a saddle point approximation to a functional integral description of many-chain dynamics.

The theory reduces the full many-chain dynamics to a much simpler problem involving

the coupled stochastic dynamics of a single chain in a time-dependent, ensemble averaged,

mean-field determined by the average density ρ(r, t). Remarkably, the relationship between

the mean-field and the density is instantaneous in time, as assumed in the recently developed

single chain in mean-field (SCMF) approaches, and is non-local in space only to within the

range of the potential. Furthermore, at least for the microscopic model considered, the

analysis does not rely on the identification of additional slow collective variables beyond the

density, such as conformational stress, but embeds such dynamical information through the

retained single chain degrees of freedom. The most natural algorithm for implementing the
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resulting theory is to independently propagate MS replicas of the single chain, e.g. by a

Langevin or MC procedure, and periodically update the mean-field density ρ appearing in

the single chain equations. In the special case of MS equal to the number of chains M in

the corresponding many-chain model, our procedure reduces exactly to the SCMF approach

of Muller and coworkers.
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