research

Statistics of randomly branched polymers in a semi-space

Abstract

We investigate the statistical properties of a randomly branched 3--functional NN--link polymer chain without excluded volume, whose one point is fixed at the distance dd from the impenetrable surface in a 3--dimensional space. Exactly solving the Dyson-type equation for the partition function Z(N,d)=NθeγNZ(N,d)=N^{-\theta} e^{\gamma N} in 3D, we find the "surface" critical exponent θ=5/2\theta={5/2}, as well as the density profiles of 3--functional units and of dead ends. Our approach enables to compute also the pairwise correlation function of a randomly branched polymer in a 3D semi-space.Comment: 15 pages 7 figsures; section VII is slightly reorganized, discussion is revise

    Similar works