44,989 research outputs found

    Functional imaging: is the resting brain resting?

    Get PDF
    It is often assumed that the human brain only becomes active to support overt behaviour. A new study challenges this concept by showing that multiple neural circuits are engaged even at rest. We highlight two complementary hypotheses which seek to explain the function of this resting activity

    ROI-Based Analysis of Functional Imaging Data

    Full text link
    In this technical report, we present fMRI analysis techniques that test functional hypotheses at the region of interest (ROI) level. An SPM-compatible Matlab toolbox has been developed which allows the creation of subject-specific ROI masks based on anatomical markers and the testing of functional hypotheses on the regional response using multivariate time-series analysis techniques. The combined application of subject-specific ROI definition and region-level functional analysis is shown to appropriately compensate for inter-subject anatomical variability, offering finer localization and increased sensitivity to task-related effects than standard techniques based on whole brain normalization and voxel or cluster-level functional analysis, while providing a more direct link between discrete brain region hypotheses and the statistical analyses used to test them.National Institute of Health (R29 DC02852, ROI DC02852

    Simultaneous whole-animal 3D-imaging of neuronal activity using light field microscopy

    Get PDF
    3D functional imaging of neuronal activity in entire organisms at single cell level and physiologically relevant time scales faces major obstacles due to trade-offs between the size of the imaged volumes, and spatial and temporal resolution. Here, using light-field microscopy in combination with 3D deconvolution, we demonstrate intrinsically simultaneous volumetric functional imaging of neuronal population activity at single neuron resolution for an entire organism, the nematode Caenorhabditis elegans. The simplicity of our technique and possibility of the integration into epi-fluoresence microscopes makes it an attractive tool for high-speed volumetric calcium imaging.Comment: 25 pages, 7 figures, incl. supplementary informatio

    Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease

    Get PDF
    Because regional blood flow increases in association with the increased metabolic demand generated by localised increases in neural activity, functional imaging researchers often assume that changes in blood flow are an accurate read-out of changes in underlying neural activity. An understanding of the mechanisms that link changes in neural activity to changes in blood flow is crucial for assessing the validity of this assumption, and for understanding the processes that can go wrong during disease states such as ischaemic stroke. Many studies have investigated the mechanisms of neurovascular regulation in arterioles but other evidence suggests that blood flow regulation can also occur in capillaries, because of the presence of contractile cells, pericytes, on the capillary wall. Here we review the evidence that pericytes can modulate capillary diameter in response to neuronal activity and assess the likely importance of neurovascular regulation at the capillary level for functional imaging experiments. We also discuss evidence suggesting that pericytes are particularly sensitive to damage during pathological insults such as ischaemia, Alzheimer’s disease and diabetic retinopathy, and consider the potential impact that pericyte dysfunction might have on the development of therapeutic interventions and on the interpretation of functional imaging data in these disorders

    Functional brain imaging : a brief overview of imaging techniques and their use in human and canine anxiety research

    Get PDF
    When used in combination with specific radioactive markers, functional imaging modalities such as Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) enable the visualization of several neurotransmitter receptors and transporters, as well as of the perfusion and metabolism of the brain. This paper gives an overview of the functional imaging techniques, as well as of the studies that have been performed on humans and canines with anxiety disorders. Thus far, most of the research in this field has been focused on brain perfusion and the serotonergic and dopaminergic neurotransmitters, and less on gamma-aminobutyric acid (GABA), glutamate, norepinephrine and the hypothalamic-pituitary-adrenal (HPA) axis

    Functional Imaging of Autonomic Regulation: Methods and Key Findings.

    Get PDF
    Central nervous system processing of autonomic function involves a network of regions throughout the brain which can be visualized and measured with neuroimaging techniques, notably functional magnetic resonance imaging (fMRI). The development of fMRI procedures has both confirmed and extended earlier findings from animal models, and human stroke and lesion studies. Assessments with fMRI can elucidate interactions between different central sites in regulating normal autonomic patterning, and demonstrate how disturbed systems can interact to produce aberrant regulation during autonomic challenges. Understanding autonomic dysfunction in various illnesses reveals mechanisms that potentially lead to interventions in the impairments. The objectives here are to: (1) describe the fMRI neuroimaging methodology for assessment of autonomic neural control, (2) outline the widespread, lateralized distribution of function in autonomic sites in the normal brain which includes structures from the neocortex through the medulla and cerebellum, (3) illustrate the importance of the time course of neural changes when coordinating responses, and how those patterns are impacted in conditions of sleep-disordered breathing, and (4) highlight opportunities for future research studies with emerging methodologies. Methodological considerations specific to autonomic testing include timing of challenges relative to the underlying fMRI signal, spatial resolution sufficient to identify autonomic brainstem nuclei, blood pressure, and blood oxygenation influences on the fMRI signal, and the sustained timing, often measured in minutes of challenge periods and recovery. Key findings include the lateralized nature of autonomic organization, which is reminiscent of asymmetric motor, sensory, and language pathways. Testing brain function during autonomic challenges demonstrate closely-integrated timing of responses in connected brain areas during autonomic challenges, and the involvement with brain regions mediating postural and motoric actions, including respiration, and cardiac output. The study of pathological processes associated with autonomic disruption shows susceptibilities of different brain structures to altered timing of neural function, notably in sleep disordered breathing, such as obstructive sleep apnea and congenital central hypoventilation syndrome. The cerebellum, in particular, serves coordination roles for vestibular stimuli and blood pressure changes, and shows both injury and substantially altered timing of responses to pressor challenges in sleep-disordered breathing conditions. The insights into central autonomic processing provided by neuroimaging have assisted understanding of such regulation, and may lead to new treatment options for conditions with disrupted autonomic function

    In-vivo two-photon imaging of the honey bee antennal lobe

    Get PDF
    Due to the honey bee's importance as a simple neural model, there is a great need for new functional imaging modalities. Herein we report on the use of two-photon microscopy for in-vivo functional and morphological imaging of the honey bee's olfactory system focusing on its primary centers, the antennal lobes (ALs). Our imaging platform allows for simultaneously obtaining both morphological measurements of the AL and in-vivo calcium recording of neural activities. By applying external odor stimuli to the bee's antennas, we were able to record the characteristic odor response maps. Compared to previous works where conventional fluorescence microscopy is used, our approach offers all the typical advantages of multi-photon imaging, providing substantial enhancement in both spatial and temporal resolutions while minimizing photo-damages and autofluorescence contribution with a four-fold improvement in the functional signal. Moreover, the multi-photon associated extended penetration depth allows for functional imaging within profound glomeruli.Comment: 3 pages, 3 figure

    Bessel beam illumination reduces random and systematic errors in quantitative functional studies using light-sheet microscopy

    Get PDF
    Light-sheet microscopy (LSM), in combination with intrinsically transparent zebrafish larvae, is a choice method to observe brain function with high frame rates at cellular resolution. Inherently to LSM, however, residual opaque objects cause stripe artifacts, which obscure features of interest and, during functional imaging, modulate fluorescence variations related to neuronal activity. Here, we report how Bessel beams reduce streaking artifacts and produce high-fidelity quantitative data demonstrating a fivefold increase in sensitivity to calcium transients and a 20 fold increase in accuracy in the detection of activity correlations in functional imaging. Furthermore, using principal component analysis, we show that measurements obtained with Bessel beams are clean enough to reveal in one-shot experiments correlations that can not be averaged over trials after stimuli as is the case when studying spontaneous activity. Our results not only demonstrate the contamination of data by systematic and random errors through conventional Gaussian illumination and but,furthermore, quantify the increase in fidelity of such data when using Bessel beams

    Functional imaging and radiotherapy

    Full text link
    peer reviewedLes progrès technologiques réalisés par l’image- rie médicale l’ont placée au centre de la prise en charge des patients oncologiques, tant au niveau du diagnostic, du pro - nostic et du suivi que dans la prise en charge thérapeutique. En effet, l’imagerie représente, à l’heure actuelle, la pierre angulaire des traitements de radiothérapie. Les objectifs du radiothérapeute sont d’irradier le plus précisément possible la tumeur à dose curative, tout en évitant les organes sains. Pour y arriver, le radiothérapeute utilise de façon routinière l’imagerie anatomique (Scanner et IRM). Depuis quelques années, le développement des différentes imageries métabo - liques et fonctionnelles, comme l’imagerie par émission de positons (PET-CT) et la résonnance magnétique fonctionnelle, ouvrent de nouvelles possibilités thérapeutiques grâce aux informations qu’elles apportent sur la biologie des tumeurs. Cet article décrit, de manière non exhaustive, les différentes imageries anatomiques et métaboliques à la disposition du radiothérapeute
    • …
    corecore