10,484 research outputs found

    Remote sensing inputs to landscape models which predict future spatial land use patterns for hydrologic models

    Get PDF
    A tropical forest area of Northern Thailand provided a test case of the application of the approach in more natural surroundings. Remote sensing imagery subjected to proper computer analysis has been shown to be a very useful means of collecting spatial data for the science of hydrology. Remote sensing products provide direct input to hydrologic models and practical data bases for planning large and small-scale hydrologic developments. Combining the available remote sensing imagery together with available map information in the landscape model provides a basis for substantial improvements in these applications

    Examination of the seepage face boundary condition in subsurface and coupled surface/subsurface hydrological models

    Get PDF
    A seepage face is a nonlinear dynamic boundary that strongly affects pressure head distributions, water table fluctuations, and flow patterns. Its handling in hydrological models, especially under complex conditions such as heterogeneity and coupled surface/subsurface flow, has not been extensively studied. In this paper, we compare the treatment of the seepage face as a static (Dirichlet) versus dynamic boundary condition, we assess its resolution under conditions of layered heterogeneity, we examine its interaction with a catchment outlet boundary, and we investigate the effects of surface/subsurface exchanges on seepage faces forming at the land surface. The analyses are carried out with an integrated catchment hydrological model. Numerical simulations are performed for a synthetic rectangular sloping aquifer and for an experimental hillslope from the Landscape Evolution Observatory. The results show that the static boundary condition is not always an adequate stand-in for a dynamic seepage face boundary condition, especially under conditions of high rainfall, steep slope, or heterogeneity; that hillslopes with layered heterogeneity give rise to multiple seepage faces that can be highly dynamic; that seepage face and outlet boundaries can coexist in an integrated hydrological model and both play an important role; and that seepage faces at the land surface are not always controlled by subsurface flow. The paper also presents a generalized algorithm for resolving seepage face outflow that handles heterogeneity in a simple way, is applicable to unstructured grids, and is shown experimentally to be equivalent to the treatment of atmospheric boundary conditions in subsurface flow models

    Designing a Suite of Models to Explore Critical Zone Function

    Get PDF
    Critical Zone; weathering; hydrology; ecology; watershedsThe Critical Zone (CZ) incorporates all aspects of the earth's environment from the vegetation canopy to the bottom of groundwater. CZ researchers target processes that cross timescales from that of water fluxes (milliseconds to decades) to that of the evolution of landforms (thousands to tens of millions of years). Conceptual and numerical models are used to investigate the important fluxes: water, energy, solutes, carbon, nitrogen, and sediments. Depending upon the questions addressed, these models must calculate the distribution of landforms, regolith structure and chemistry, biota, and the chemistry of water, solutes, sediments, and soil atmospheres. No single model can accomplish all these objectives. We are designing a group of models or model capabilities to explore the CZ and testing them at the Susquehanna Shale Hills CZ Observatory. To examine processes over different timescales, we establish the core hydrologic fluxes using the Penn State Integrated Hydrologic Model (PIHM) – and then augment PIHM with simulation modules. For example, most land-atmosphere models currently do not incorporate an accurate representation of the geologic subsurface. We are exploring what aspects of subsurface structure must be accurately modelled to simulate water, carbon, energy, and sediment fluxes accurately. Only with a suite of modeling tools will we learn to forecast – earthcast -- the future CZ

    Designing a Suite of Models to Explore Critical Zone Function

    Get PDF
    Critical Zone; weathering; hydrology; ecology; watershedsThe Critical Zone (CZ) incorporates all aspects of the earth's environment from the vegetation canopy to the bottom of groundwater. CZ researchers target processes that cross timescales from that of water fluxes (milliseconds to decades) to that of the evolution of landforms (thousands to tens of millions of years). Conceptual and numerical models are used to investigate the important fluxes: water, energy, solutes, carbon, nitrogen, and sediments. Depending upon the questions addressed, these models must calculate the distribution of landforms, regolith structure and chemistry, biota, and the chemistry of water, solutes, sediments, and soil atmospheres. No single model can accomplish all these objectives. We are designing a group of models or model capabilities to explore the CZ and testing them at the Susquehanna Shale Hills CZ Observatory. To examine processes over different timescales, we establish the core hydrologic fluxes using the Penn State Integrated Hydrologic Model (PIHM) – and then augment PIHM with simulation modules. For example, most land-atmosphere models currently do not incorporate an accurate representation of the geologic subsurface. We are exploring what aspects of subsurface structure must be accurately modelled to simulate water, carbon, energy, and sediment fluxes accurately. Only with a suite of modeling tools will we learn to forecast – earthcast -- the future CZ

    Socio-hydrological modelling: a review asking “why, what and how?”

    Get PDF
    Interactions between humans and the environment are occurring on a scale that has never previously been seen; the scale of human interaction with the water cycle, along with the coupling present between social and hydrological systems, means that decisions that impact water also impact people. Models are often used to assist in decision-making regarding hydrological systems, and so in order for effective decisions to be made regarding water resource management, these interactions and feedbacks should be accounted for in models used to analyse systems in which water and humans interact. This paper reviews literature surrounding aspects of socio-hydrological modelling. It begins with background information regarding the current state of socio-hydrology as a discipline, before covering reasons for modelling and potential applications. Some important concepts that underlie socio-hydrological modelling efforts are then discussed, including ways of viewing socio-hydrological systems, space and time in modelling, complexity, data and model conceptualisation. Several modelling approaches are described, the stages in their development detailed and their applicability to socio-hydrological cases discussed. Gaps in research are then highlighted to guide directions for future research. The review of literature suggests that the nature of socio-hydrological study, being interdisciplinary, focusing on complex interactions between human and natural systems, and dealing with long horizons, is such that modelling will always present a challenge; it is, however, the task of the modeller to use the wide range of tools afforded to them to overcome these challenges as much as possible. The focus in socio-hydrology is on understanding the human–water system in a holistic sense, which differs from the problem solving focus of other water management fields, and as such models in socio-hydrology should be developed with a view to gaining new insight into these dynamics. There is an essential choice that socio-hydrological modellers face in deciding between representing individual system processes or viewing the system from a more abstracted level and modelling it as such; using these different approaches has implications for model development, applicability and the insight that they are capable of giving, and so the decision regarding how to model the system requires thorough consideration of, among other things, the nature of understanding that is sought

    Modeling the isotopic evolution of snowpack and snowmelt : Testing a spatially distributed parsimonious approach

    Get PDF
    This work was funded by the NERC/JPI SIWA project (NE/M019896/1) and the European Research Council ERC (project GA 335910 VeWa). The Krycklan part of this study was supported by grants from the Knut and Alice Wallenberg Foundation (Branch-points), Swedish Research Council (SITES), SKB and Kempe foundation. The data and model code is available upon request. Authors declare that they have no conflict of interest. We would like to thank the three anonymous reviewers for their constructive comments that improved the manuscript.Peer reviewedPublisher PD

    Hydrologic Transport of Dissolved Inorganic Carbon and Its Control on Chemical Weathering

    Get PDF
    Chemical weathering is one of the major processes interacting with climate and tectonics to form clays, supply nutrients to soil microorganisms and plants, and sequester atmospheric CO2. Hydrology and dissolution kinetics have been emphasized as factors controlling chemical weathering rates. However, the interaction between hydrology and transport of dissolved inorganic carbon (DIC) in controlling weathering has received less attention. In this paper, we present an analytical model that couples subsurface water and chemical molar balance equations to analyze the roles of hydrology and DIC transport on chemical weathering. The balance equations form a dynamical system that fully determines the dynamics of the weathering zone chemistry as forced by the transport of DIC. The model is formulated specifically for the silicate mineral albite, but it can be extended to other minerals, and is studied as a function of percolation rate and water transit time. Three weathering regimes are elucidated. For very small or large values of transit time, the weathering is limited by reaction kinetics or transport, respectively. For intermediate values, the system is transport controlled and is sensitive to transit time. We apply the model to a series of watersheds for which we estimate transit times and identify the type of weathering regime. The results suggest that hydrologic transport of DIC may be as important as reaction kinetics and dilution in determining chemical weathering rates

    Permafrost - physical aspects and carbon cycling, databases and uncertainties

    Get PDF
    Permafrost is defined as ground that remains below 0°C for at least 2 consecutive years. About 24% of the northern hemisphere land area is underlain by permafrost. The thawing of permafrost has the potential to influence the climate system through the release of carbon (C) from northern high latitude terrestrial ecosystems, but there is substantial uncertainty about the sensitivity of the C cycle to thawing permafrost. Soil C can be mobilized from permafrost in response to changes in air temperature, directional changes in water balance, fire, thermokarst, and flooding. Observation networks need to be implemented to understand responses of permafrost and C at a range of temporal and spatial scales. The understanding gained from these observation networks needs to be integrated into modeling frameworks capable of representing how the responses of permafrost C will influence the trajectory of climate in the future
    • 

    corecore