126 research outputs found

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    Design of a class-F power amplifier with reconfigurable output harmonic termination in 0.13 µm CMOS

    Get PDF
    Next generation wireless communication technology requires mobile devices and base stations to support multiband multimode frequencies with higher data rate because of the type of enriched and enhanced features and services that are provided to the end user. The challenge for next generation PA designers is to provide high efficiency, output power and good linearity across multiple frequency bands, modulation standards and bandwidth. Current industry solution involves parallel PAs dedicated to a single band of operation. As more and more features are added, more and more PAs will be required with increasing cost, area and complexity. As a solution to this problem, one tunable fully integrated class-F power amplifier with reconfigurable output harmonic termination is proposed, designed, fabricated and tested with a commercially available 0.13µm CMOS process technology. By using the coupling between the primary and the secondary winding of an on chip transformer with a variable secondary termination capacitance, the second and third harmonic short and open circuit frequencies are dynamically tuned from 700 MHz to 1200 MHz and achieve high efficiency and output power. To overcome CMOS process low break down voltage, a series voltage combining approach is used for the power device to boost output power, by allowing the power supply to exceed process limits. The fabricated die was packaged and mounted to a printed circuit board for evaluation. Compared to previously publish fully integrated PAs, our design exhibits superior peak power added efficiency, 48.4%, and decent saturated output power and power gain of 24.6 dBm and 16.5 dB respectively with reconfigurability from 700 MHz to 1200 MHz

    펄스에 의한 동적 부하 변조 기술을 이용한 고효율 선형 송신기에 관한 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 8. 서광석.STRONG push for longer battery life time and growing thermal concerns for the modern 3G/4G mobile terminals lead to an ever-growing need for higher efficiencies from the handset power amplifiers (PAs). Furthermore, as the modulation signal bandwidth is increased and more complex modulation schemes are introduced for higher data rate, the peak-to-average power ratio (PAPR) of signals increases and the PA requires more power back-off to meet the stringent linearity requirement. Therefore, the PA design has to address the challenging task of enhancing the efficiencies in the back-off power levels. In this dissertation, dynamic load modulation (DLM) technique is investigated to boost the efficiency of a PA in the back-off output power level. This technique increases the efficiency by adjusting the PA load impedance according to the magnitude of the envelope signal. It can be categorized into two types, continuous and discrete types. Continuous-type DLM PA changes load impedance continuously by changing the capacitance of varactors used in the load matching circuit. Although the continuous modulation of the load impedance may result in significant efficiency enhancement, difficulties on integration of varactors and complexities on linearization of the PA make it difficult to be applied to the handset PA applications. Discrete-type DLM PA switches the load impedance from one value to another using RF switches. This type has the advantage in the aspect of ease of integration and simplicity in linearization compared to the continuous-type DLM PA, which make it more suited to the handset PA applications. However, the overall efficiency enhancement is quite limited since the PA does not always operate under the optimal load conditions. To overcome the limitation of the existing DLM techniques, a new method of DLM, called pulsed dynamic load modulation (PDLM), is proposed to operate the PA near the optimum impedance across a continuous back-off power range while still benefiting from the advantages offered by the discrete-type DLM PA. PDLM PA combines the concept of Class-S PA with 1-bit discrete load switching. Analytical calculation using simplified equivalent model is well matched with simulation results. To prove the proposed concept, it is implemented by designing and fabricating a prototype PDLM PA at 837 MHz using a 0.32-μm silicon-on-insulator (SOI) CMOS process. The experimental results show the overall PAE improvement for high-PAPR signals such as LTE signals. Several issues caused by the PDLM technique are also discussed such as imperfect pulse tone termination effect and output noise spectrum due to pulse tones. Improving methods are proposed through the further analysis and evaluation. The proposed PA is compared to the envelope tracking (ET) PA which is commonly used to boost efficiency at the back-off output power. Since the proposed concept is realized with low-power control circuits unlike envelope tracking, which requires high-power circuits such as dc-dc converters and linear amplifiers, the PDLM PA concept of this work can provide a potential solution for high-efficiency PAs for the future mobile terminals using wideband modulation signals.Chapter 1. Introduction 1 Chapter 2. Dynamic Load Modulation Technique 8 2.1 Introduction 8 2.2 Continuous-type dynamic load modulation PA 9 2.3 Discrete-type dynamic load modulation PA 14 2.4 Implementation example 15 2.4.1 DLM PA Structure 16 2.4.2 Linearization 23 2.4.3 Experimental Results 25 2.4.4 Conclusion 31 2.5 Limitations 32 2.6 References 33 Chapter 3. A Pulsed Dynamic Load Modulation Technique for High-Efficiency Linear Transmitters 36 3.1 Introduction 36 3.2 Operation Principle of the PDLM PA 38 3.2.1 Concept of the PDLM PA 38 3.2.2 Theoretical Analysis of the PDLM PA 41 3.3 Circuit Design 47 3.3.1 2 stage CMOS PA design 49 3.3.2 High power RF switch design 59 3.3.3 PWM signal generator and switch driver 61 3.4 Experimental Results 63 3.5 Conclusion 76 3.6 References 77 Chapter 4. Discussions 83 4.1 Operation bandwidth of the PDLM PA 83 4.2 Spectral noise reduction method 87 4.3 References 91 Chapter 5. Conclusions 94 5.1 Research Summary 94 5.2 Future Works 95 Abstract in Korean 97 Publications 99Docto

    Four-element phased-array beamformers and a self-interference canceling full-duplex transciver in 130-nm SiGe for 5G applications at 26 GHz

    Get PDF
    This thesis is on the design of radio-frequency (RF) integrated front-end circuits for next generation 5G communication systems. The demand for higher data rates and lower latency in 5G networks can only be met using several new technologies including, but not limited to, mm-waves, massive-MIMO, and full-duplex. Use of mm-waves provides more bandwidth that is necessary for high data rates at the cost of increased attenuation in air. Massive-MIMO arrays are required to compensate for this increased path loss by providing beam steering and array gain. Furthermore, full duplex operation is desirable for improved spectrum efficiency and reduced latency. The difficulty of full duplex operation is the self-interference (SI) between transmit (TX) and receive (RX) paths. Conventional methods to suppress this interference utilize either bulky circulators, isolators, couplers or two separate antennas. These methods are not suitable for fully-integrated full-duplex massive-MIMO arrays. This thesis presents circuit and system level solutions to the issues summarized above, in the form of SiGe integrated circuits for 5G applications at 26 GHz. First, a full-duplex RF front-end architecture is proposed that is scalable to massive-MIMO arrays. It is based on blind, RF self-interference cancellation that is applicable to single/shared antenna front-ends. A high resolution RF vector modulator is developed, which is the key building block that empowers the full-duplex frontend architecture by achieving better than state-of-the-art 10-b monotonic phase control. This vector modulator is combined with linear-in-dB variable gain amplifiers and attenuators to realize a precision self-interference cancellation circuitry. Further, adaptive control of this SI canceler is made possible by including an on-chip low-power IQ downconverter. It correlates copies of transmitted and received signals and provides baseband/dc outputs that can be used to adaptively control the SI canceler. The solution comes at the cost of minimal additional circuitry, yet significantly eases linearity requirements of critical receiver blocks at RF/IF such as mixers and ADCs. Second, to complement the proposed full-duplex front-end architecture and to provide a more complete solution, high-performance beamformer ICs with 5-/6- b phase and 3-/4-b amplitude control capabilities are designed. Single-channel, separate transmitter and receiver beamformers are implemented targeting massive- MIMO mode of operation, and their four-channel versions are developed for phasedarray communication systems. Better than state-of-the-art noise performance is obtained in the RX beamformer channel, with a full-channel noise figure of 3.3 d

    An Integrated 700–1200 MHz Class-F PA with Tunable Harmonic Terminations in 0.13μm CMOS

    Get PDF
    A fully integrated class-F power amplifier (PA) with reconfigurable harmonic termination over a wide range of frequencies is presented. Reconfigurability is achieved by utilizing on-chip transformers as part of the output matching network. In addition, a stacked transistor architecture was used to boost the output power. The PA was fabricated in a 0.13- μm CMOS process and packaged in a 20-pin quad flat no-leads package. It was configured to operate at 700, 900, and 1200 MHz with a maximum measured saturated output power of +24.6 dBm with a power-added efficiency of 48.3%. The measured gain was 16.5 dB and was flat over the entire bandwidth. The total chip area, including pads, is 1.5 mm × 1.5 mm

    High Efficiency CMOS Power Amplifiers for Drain Modulation Based RF Transmitters

    Get PDF
    The rapid evolution of wireless communication technologies increased the need for handheld devices that can support dissimilar standards or better user mobility and more battery life. Traditional radio architectures fail to satisfy these challenging features. Software Defined Radio (SDR) is recently introduced to implement a new generation of wireless radios capable of coping with these stringent requirements through software reprogramming. Although the term SDR is widely used, it is still an idealized method and is not implementable using available technologies. Hence, the term “SDR”, has been so far, referring to only partially upgradeable radios. Two current practical solutions substituting SDR are broadband and multiband transceivers. Radio Frequency (RF) front ends and especially the power amplifier is the main challenge in implementation of software defined radios. Power Amplifiers (PA) dominate the sources of distortions and power consumption in the RF-front end. They are typically operated in linear classes in order to minimize the linearity degradation. However, they lead to poor average power efficiency especially when fed with signals with high Peak to average power ratio (PAPR) such as Wideband Code Division Multiple Access (W-CDMA) and Long Term Evolution (LTE) signals. This is the main cause of short battery life in transceivers. To remedy this issue, some advanced methods like Doherty amplifier and drain modulation based architectures are introduced. This thesis expounds on the implementation of high efficiency radio transmitters, capable of multi standard operation. The RF amplifier is still one of the main challenges in the realization of these transmitters. In this work, two RF PAs, having multiband and broad band characteristics, were implemented using 0.13µm CMOS technology. The first PA operates at two frequency bands, 2.4GHz and 3.5GHz. The other PA has center frequency equal to 2.4GHz and 600MHz bandwidth, respectively. These PAs are expected to lay the foundation for the realization of high efficiency drain modulation based multiband and broadband transmitters

    Recent Progress in the Design of 4G/5G Reconfigurable Filters

    Get PDF
    YesCurrently, several microwave filter designs contend for use in wireless communications. Among various microstrip filter designs, the reconfigurable planar filter presents more advantages and better prospects for communication applications, being compact in size, light-weight and cost-effective. Tuneable microwave filters can reduce the number of switches between electronic components. This paper presents a review of recent reconfigurable microwave filter designs, specifically on current advances in tuneable filters that involve high-quality factor resonator filters to control frequency, bandwidth and selectivity. The most important materials required for this field are also highlighted and surveyed. In addition, the main references for several types of tuneable microstrip filters are reported, especially related to new design technologies. Topics surveyed include microwave and millimetre wave designs for 4G and 5G applications, which use varactors and MEMSs technologies.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement H2020-MSCA-ITN-2016 SECRET-722424

    A Review of Watt-Level CMOS RF Power Amplifiers

    Full text link

    Reconfigurable Receiver Front-Ends for Advanced Telecommunication Technologies

    Get PDF
    The exponential growth of converging technologies, including augmented reality, autonomous vehicles, machine-to-machine and machine-to-human interactions, biomedical and environmental sensory systems, and artificial intelligence, is driving the need for robust infrastructural systems capable of handling vast data volumes between end users and service providers. This demand has prompted a significant evolution in wireless communication, with 5G and subsequent generations requiring exponentially improved spectral and energy efficiency compared to their predecessors. Achieving this entails intricate strategies such as advanced digital modulations, broader channel bandwidths, complex spectrum sharing, and carrier aggregation scenarios. A particularly challenging aspect arises in the form of non-contiguous aggregation of up to six carrier components across the frequency range 1 (FR1). This necessitates receiver front-ends to effectively reject out-of-band (OOB) interferences while maintaining high-performance in-band (IB) operation. Reconfigurability becomes pivotal in such dynamic environments, where frequency resource allocation, signal strength, and interference levels continuously change. Software-defined radios (SDRs) and cognitive radios (CRs) emerge as solutions, with direct RF-sampling receivers offering a suitable architecture in which the frequency translation is entirely performed in digital domain to avoid analog mixing issues. Moreover, direct RF- sampling receivers facilitate spectrum observation, which is crucial to identify free zones, and detect interferences. Acoustic and distributed filters offer impressive dynamic range and sharp roll off characteristics, but their bulkiness and lack of electronic adjustment capabilities limit their practicality. Active filters, on the other hand, present opportunities for integration in advanced CMOS technology, addressing size constraints and providing versatile programmability. However, concerns about power consumption, noise generation, and linearity in active filters require careful consideration.This thesis primarily focuses on the design and implementation of a low-voltage, low-power RFFE tailored for direct sampling receivers in 5G FR1 applications. The RFFE consists of a balun low-noise amplifier (LNA), a Q-enhanced filter, and a programmable gain amplifier (PGA). The balun-LNA employs noise cancellation, current reuse, and gm boosting for wideband gain and input impedance matching. Leveraging FD-SOI technology allows for programmable gain and linearity via body biasing. The LNA's operational state ranges between high-performance and high-tolerance modes, which are apt for sensitivityand blocking tests, respectively. The Q-enhanced filter adopts noise-cancelling, current-reuse, and programmable Gm-cells to realize a fourth-order response using two resonators. The fourth-order filter response is achieved by subtracting the individual response of these resonators. Compared to cascaded and magnetically coupled fourth-order filters, this technique maintains the large dynamic range of second-order resonators. Fabricated in 22-nm FD-SOI technology, the RFFE achieves 1%-40% fractional bandwidth (FBW) adjustability from 1.7 GHz to 6.4 GHz, 4.6 dB noise figure (NF) and an OOB third-order intermodulation intercept point (IIP3) of 22 dBm. Furthermore, concerning the implementation uncertainties and potential variations of temperature and supply voltage, design margins have been considered and a hybrid calibration scheme is introduced. A combination of on-chip and off-chip calibration based on noise response is employed to effectively adjust the quality factors, Gm-cells, and resonance frequencies, ensuring desired bandpass response. To optimize and accelerate the calibration process, a reinforcement learning (RL) agent is used.Anticipating future trends, the concept of the Q-enhanced filter extends to a multiple-mode filter for 6G upper mid-band applications. Covering the frequency range from 8 to 20 GHz, this RFFE can be configured as a fourth-order dual-band filter, two bandpass filters (BPFs) with an OOB notch, or a BPF with an IB notch. In cognitive radios, the filter’s transmission zeros can be positioned with respect to the carrier frequencies of interfering signals to yield over 50 dB blocker rejection
    corecore